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Abstract
One of the most important tra�c types in future

packet�switched networks is high�bandwidth� variable�bit�
rate �VBR� video� Since video is a delay�sensitive media�
the network must allocate resources to maintain quality�of�
service �QoS� guarantees on throughput� delay� and delay
jitter to video connections� A key component of resource al�
location is the tra�c characterization of video sources that
determines the resources required to support video connec�
tions� In this study� we propose a method for characterizing
VBR video tra�c with a �xed number of leaky buckets in
networks with a deterministic service� We explore tradeo	s
of network utilization in two directions
 ��� the number of
leaky buckets used for tra�c characterization� and ��� the
amount of information from a video sequence used to pro�
duce the characterization� We evaluate our method with a
set of ��minute long MPEG�compressed video traces�

� Introduction
The design of a packet�switched network that can sup�

port variable�bit�rate �VBR� video applications is a di��
cult task that has recently received much attention in the
research community� VBR video connections place signif�
icant demands on the network because such connections
require large amounts of bandwidth as well as minimum
guarantees on their quality�of�service �QoS�� for example�
bounded delays� minimum throughput� and bounded jit�
ter� Many high�quality video applications are sensitive to
statistical �uctuations in the service and demand a deter�
ministic service that provides worst�case QoS guarantees�

A key element for the implementation of a determinis�
tic service is the tra�c characterization that speci	es the
tra�c on a connection� The tra�c characterization in a
network with a deterministic service is used in admission
control functions and policing mechanisms� At connec�
tion establishment time� admission control functions de�
cide whether tra�c on a new connection can be supported
at its speci	ed QoS without violating the QoS of existing
connections� Once a connection is established� policing
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mechanisms ensure that all tra�c submitted to the net�
work on the connection conforms to its characterization�

A tra�c characterization for a deterministic service
must be both accurate and policable� If the tra�c char�
acterization is not accurate in specifying the tra�c on a
connection� i�e�� if the characterization speci	es more traf�
	c than is actually transmitted� the admission control tests
will overestimate the resource requirements of a connec�
tion� resulting in poor network utilization� Due to the
complex timely correlations of VBR video sequences� elab�
orate tra�c characterizations are needed to achieve a high
degree of accuracy� However� such an elaborate charac�
terization scheme may come at the expense of increased
complexity of policing mechanisms that enforce the tra�c
characterization in real time� The choice of tra�c charac�
terization is a tradeo
 between the high accuracy preferred
by admission control tests and the simplicity required for
implementing policing mechanisms�

Many tra�c characterizations for VBR video have been
proposed in the literature� Several studies �see �� for a re�
cent survey� characterize VBR video tra�c with stochastic
processes that capture both the distribution of number of
bits per frame as well as the autocorrelation function of
VBR video sequences� Since stochastic characterizations
do not provide a worst�case bound on the tra�c arrivals
on a connection� they are inappropriate for use in a deter�
ministic network�

Other works ��� �� ��� �� consider deterministic char�
acterizations for video tra�c� In ��� Knightly and Zhang
present the Deterministic Binding Interval Dependent �D�
BIND� tra�c model that characterizes video tra�c with a
set of rate�interval pairs f�Rj� Ij� j � � j � ng that de	ne
an n�segment piecewise linear function� The numerical ex�
amples presented in �� suggest that the D�BIND model can
characterize VBR video tra�c accurately� but the problem
of parameter�selection is not addressed�

An important class of tra�c characterizations are those
that can be policed by leaky bucket mechanisms ���� Such
tra�c characterizations provide a good tradeo
 between
accuracy and simplicity� they can be e�ciently imple�
mented ���� and they are shown to accurately characterize
VBR video in ���� A leaky bucket mechanism has a burst
parameter � and a rate parameter �� and it can be im�



plemented with a single counter and timer� In ��� Low
and Varaiya study the tradeo
 between the burst � and
the rate � for resource allocation� They express the depen�
dency of � on �� and they de	ne a class of leaky bucket
parameters f��j� �j�g that are dominant� i�e�� they explic�
itly show the smallest possible value of � for any choice
of �� However� the selection of a 	xed number m of these
parameters for some number m of leaky buckets is not
considered� and the QoS guarantees speci	ed in this work
and a more recent work by Chong �� are speci	c to rate�
proportional processor sharing �RPPS� multiplexers ����

In this study� we consider two fundamental problems
of video characterization� We 	rst address the question of
how much information about a video sequence is needed
to accurately characterize the sequence� The tra�c char�
acterization is based on the so�called empirical envelope
which de	nes the tightest upper bound on tra�c gener�
ated by a particular video sequence� We present a method
for determining an accurate tra�c characterization based
on a subset of the empirical envelope� The characterization
algorithm requires some knowledge of the video sequence�
and we investigate the impact of reducing the information
used to produce a tra�c characterization�

The second problem we consider is the selection of
leaky bucket parameters for policing a video sequence� We
present a heuristic algorithm that selects parameters for a
	xed number of leaky buckets to characterize a VBR video
sequence� Parameters are selected based on some subset
of the empirical envelope as discussed above� We evalu�
ate the e
ectiveness of our heuristic as compared to other
approaches from the literature using a number of video seg�
ments coded with the MPEG compression algorithm ���

The remainder of this paper is structured as follows� In
x� we review deterministic tra�c characterizations of VBR
video tra�c and discuss the notion of the empirical enve�
lope� In x� we investigate the amount of information nec�
essary to accurately characterize a VBR video sequence�
In x� we describe an algorithm that selects leaky bucket
parameters� We evaluate the e
ectiveness of our character�
ization method in x� with a number of MPEG�compressed
video sequences� We conclude our study in x��

� Deterministic Characterization of
VBR Video Tra�c

��� Tra�c Constraint Functions A�

A worst�case characterization of a tra�c source can be
formally described as follows� Let A denote the actual
tra�c on a connection� where A��� ��t denotes the tra�c
arrivals in the time interval ��� � � t� An upper bound A�

on A is called a tra�c constraint function for A if for all
times � � � and t � � the following holds ���

A��� � � t � A
��t� ���

Note that A� is by construction a time�invariant bound
of A� i�e�� A��t� provides a bound on the maximum tra�c
arrivals from any interval of length t� For admission control
tests of a deterministic service ���� we further require a

tra�c constraint function to be subadditive� that is� A�

must satisfy the following equation�

A
��t� � t�� � A

��t�� �A
��t�� �t�� t� � � ���

Tra�c constraint functions will be used in admission con�
trol tests that require subadditive functions ��� ��� ���

Tra�c constraint functions can express the worst�case
tra�c admitted by a large class of policing mechanisms�
For example� consider the tra�c admitted to the network
by a leaky bucket mechanism ���� A leaky bucket mech�
anism ��� �� with rate parameter � and burstiness param�
eter � limits the tra�c on a connection� The tra�c con�
straint function A� for tra�c policed by a leaky bucket
mechanism ��� �� is given by the linear constraint ���

A
��t� � � � �t for all t � � ���

Similarly� if multiple leaky buckets ��i� �i� are connected
in series �i�e�� a multi�level leaky bucket ���� the amount
of tra�c admitted to the network is limited by each of
the leaky buckets� The tra�c constraint function for a m�
level leaky bucket is anm�piecewise linear concave function
given as follows ��� ���

A
��t� � min

��i�m
f�i � �itg ���

��� The Empirical Envelope E�

Many tra�c constraint functions A� can bound a given
tra�c source� but some are more appropriate for charac�
terizing video than others� For example� a simple peak�
rate characterization satis	es the de	nition of a tra�c
constraint function� but such a scheme overestimates the
bandwidth requirements of a bursty connection� Since the
network must reserve resources to support tra�c on a con�
nection according to its characterization� the tra�c con�
straint function A� for a connection should be selected as
tight as possible�

We refer to the tightest tra�c constraint function for a
given tra�c source is its empirical envelope� denoted by E�

��� ��� The empirical envelope E� of a video sequence
is optimal in the sense that� for any subadditive tra�c
constraint function A� that satis	es equation ���� E��t� �
A��t� for all t� The empirical envelope E� is given by the
following equation ��� ���

E
��t� � sup

���

A��� � � t �t � � ���

It follows from equation ��� that E� is subadditive�
We next review a method from ��� for obtaining the

empirical envelope for a given video sequence� Assume
that a video sequence consists ofN frames with 	xed inter�
frame time r� Further assume that frames are fragmented
into ���byte ATM cells with a payload of �� bytes each�
these cells are transmitted at equally�spaced intervals over
the frame time r� If the sequence of frame sizes of a video
sequence is given by ff�� f�� � � � � fNg� the empirical enve�
lope E� can then be constructed by 	rst calculating ����

E
��ir� � max

��k�N�i

k�iX
j�k

fj for i � �� �� � � �N ���
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Figure �� Relationship between A��� t� E��t�� and E��t��

The values of the empirical envelope at times that are not
multiples of the frame time are then obtained by spacing
the cells in E���i � ��r� � E��ir� evenly over the frame
time �ir� �i� ��r�

Once the empirical envelope E� has been computed for
a video sequence� it is straightforward to obtain a multi�
level leaky bucket characterization if there is no restric�
tion on the number of leaky bucket pairs available� Recall
from equation ��� that a multi�level leaky bucket polices
a concave� piecewise�linear function� Therefore� the con�
cave hull of the empirical envelope E� is the tightest tra�c
constraint function that can be policed by leaky buckets�
We use E� to denote the concave hull of the empirical en�
velope E�� The function E� is clearly a tra�c constraint
function in the sense of equation ���� and the subadditivity
of E� follows from its concavity� We illustrate functions E�

and E� in Figure ��

� Approximations of the Envelope
The empirical envelope E� is the optimal tra�c con�

straint function in terms of accuracy� but it has a signif�
icant drawback in that its production is computationally
expensive� The number of operations required to compute
the empirical envelope E� for a video sequence consisting
of N frames is O�N��� Since N exceeds ������� for most
entertainment motion pictures� it may not be possible to
calculate the entire empirical envelope in real time� The
characterization E� requires knowledge of the envelope�
and so its production is also computationally intensive�
We therefore seek other tra�c constraint functions that
closely approximate the envelope from above but can be
calculated with fewer operations� Next we show how a
subset of the envelope can be used to characterize a video
sequence in x���� and we evaluate the impact of subset
size k on the number of connections established by admis�
sion control tests in x����

��� Approximations Sk and Rk

We consider approximations based on a subset of the
empirical envelope� In particular� we present in this section
approximations that are derived from the 	rst k frames of
the envelope� E���� kr� where r is the frame rate of the
video sequence� We call E���� kr the �pre	x� of size k� and
we consider di
erent methods for extrapolating E���� kr

to obtain subadditive tra�c constraint functions that are
de	ned for all times t�

Feasible extrapolations of E���� kr must be at least as
large as the empirical envelope E� for all times t� Since
we only know that E� is a subadditive function with pre�
	x E���� kr� any extrapolation must be at least as large
as the largest subadditive extension of E���� kr� We de�
note this largest subadditive extension by Sk � where Sk is
obtained by calculating�

Sk�ir� �

�
E
��ir� for i � k�

min
��j�i

fSk�jr� � Sk��i� j�r�g for i � k�

���
Note that equation ��� only de	nes Sk for times that are
multiples of the frame time r� The values for intermediate
values of Sk are then determined by spacing the cells evenly
over each frame� The relationship between Sk and the
empirical envelope E� is shown in Figure ��a��

Although the function Sk is the tightest tra�c con�
straint function that can be obtained directly from a sub�
set of k frames from the envelope� the production of Sk
requires a large number of computations� In particular�
we see from its de	nition in equation ��� that the number
of computations required to construct Sk is O�N��� the
same number required for computing the empirical enve�
lope itself� Since our goal is an approximation that can
be calculated with fewer computations� we turn to other
approximation schemes�

Consider a function obtained by a simple repetition of
the frames from E���� kr over all times t� We denote such
a function by Rk� where Rk is given by�

Rk�t� � b
t

kr
cE��kr� �E

��t� b
t

kr
c�kr�� for t � �� ���

Observe that Rk can be immediately obtained from the
pre	x E���� kr� so the computational complexity of com�
puting Rk is O�kN�� The relationship between Rk and the
empirical envelope E� is illustrated in Figure ��b�� In the
	gure� note that the two functions are identical over the
	rst k frame times and that the 	rst k frames of Rk are
subsequently repeated�

Although the function Rk satis	es equation ���� it is not
necessarily subadditive� and hence does not satisfy our def�
inition of a tra�c constraint function� We thus de	ne the
function Rk to be be the concave hull of Rk � The func�
tion Rk� depicted in Figure ��c�� is clearly a subadditive
tra�c constraint function� Rk can be expressed in terms
of the multi�level leaky bucket model as shown in equa�
tion ��� as follows�

Rk�t� � min
��i�n

f�i � �itg ���

where parameters �i and �i are determined by some ap�
propriate algorithm�

��� Evaluation
We now empirically evaluate the accuracy of the tra�c

constraint functions E�� Sk � and Rk with traces of MPEG�
compressed video� We investigate the impact of the choice
of k on the accuracy of both Sk and Rk�
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Figure �� Approximations of the Empirical Envelope

RR

500

R
S  

500

500
R500S  

1R

1S  

Frame Number (thousands)
0 5 10 15 20 25 30

0

1

2

3

4

5

E*C
um

ul
at

iv
e 

Tr
af

fic
 (m

ill
io

ns
 o

f c
el

ls
)

S  5

5
S  

50

50

Figure �� Tra�c constraint functions for News�

We use two MPEG traces in the evaluation� one from
the entertainment 	lm Jurassic Park ��Park��� and the
second from a news broadcast ��News��� These sequences
were captured on UNIX workstations and encoded with
the Berkeley MPEG�encoder ���� Both Park and News
are ���minute video sequences with frame sizes of ���x���
and frame pattern IBBPBBPBBPBB�

In these experiments� we consider a single multiplexer
that operates at ��� Mbps� a data rate that corresponds
to OC��� We assume that the switch transmits its packets
with a First�Come�First�Served �FCFS� discipline��

Figure � illustrates tra�c constraint functions for the
News trace� We show the empirical envelope E� as well as
functions Sk and Rk for various values of k� In the 	gure�
the empirical envelope E� is shown as the lowest curve�
while the functions Sk and Rk are depicted by dotted and
dashed curves� respectively� As expected� the approxima�
tion functions estimate the empirical envelope E� more
accurately for larger values of k�

A key observation from Figure � is that the function Rk

approximates Sk closely for all values of k considered�
only R� and S� di
er considerably� Since Sk is the tightest

�The exact admission control test for FCFS multiplexers is
given by d �

P
j�N

A�j 	t
 � t � s for all t � � ��� In this

admission control test� N denotes the set of all connections at
a multiplexer� d denotes the single delay bound the multiplexer
supports� and s denotes the maximum cell transmission time�

tra�c characterization that can be produced from k frames
of the empirical envelope� we note that Rk provides an ac�
curate characterization��

To better evaluate the accuracy of each characteriza�
tion� we next consider the utilizations that can be achieved
at a network switch using tra�c constraint functions Rk�
In Figure �� we illustrate the network utilization obtained
at a multiplexer using E� as well as Rk for various val�
ues of k� All connections at a multiplexer are assumed
to be of the same type and have identical delay bounds�
For each characterization� we plot the number of connec�
tions that can be admitted simultaneously against the de�
lay bounds of those connections� For example� we observe
in Figure ��b� that the tra�c constraint function R� can
be used to support �� News connections for delay bounds
larger than ��ms�

The general trend in both graphs is that the number
of connections accepted using Rk as the tra�c constraint
function is increasing in k� For example� note in Fig�
ure ��a� that R�� and R�� admit the same number of
connections as the empirical envelope for delay bounds up
to ��ms and ���ms� respectively�

Note that for both video sequences� the function R���

admits the same number of connections as the empiri�
cal envelope E� for delay bounds up to ��� milliseconds�
Thus� the 	rst ��� frames of the envelope �i�e�� Rk where
k � ���� are su�cient to characterize both video sequences
for the delay bound range considered�

� Leaky Bucket Parameter Selection
In the previous section� we showed how much of the en�

velope was needed to produce an accurate tra�c character�
ization� and we produced such a tra�c characterization Rk

that can be policed by a number of leaky buckets ��i� �i��
However� the number of leaky buckets required for polic�
ing Rk can be large� For example� �� leaky bucket mech�
anisms are needed to police R��� for the News sequence
described in x���� In an actual network� the number of
leaky buckets available to police a connection may be lim�
ited to only two or three�

In this section� we show how to reduce the number of

�Results for the Park sequence� omitted due to space limita�
tions� are similar to those for the News sequence shown�
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Figure �� Utilization comparison�

leaky buckets used to police the characterization� To min�
imize the di
erence between the original characterization
and the approximation� we require� ��� a cost function
that expresses the di
erence between two tra�c charac�
terizations� and ��� an algorithm to minimize such a cost
function�

We formulate the problem as follows� Given a func�
tion Rk that can be policed by n leaky buckets �see equa�
tion �����

Rk�t� � min
��i�n

f�i � �itg

We want to 	nd a set of m �m � n� leaky bucket pa�
rameters f��i� �i� j � � i � mg that determine a tra�c
constraint function B��

B
��t� � min

��i�m
f�i � �itg ����

Assume that we are given a cost function C�B�� Rk� that
expresses the di
erence between B� and Rk � We select pa�
rameters ��i� �i� to solve the following optimization prob�
lem�

minimize a cost function C�B��Rk�
subject to the constraint Rk�t� � B��t� �t � ��

The constraint guarantees that B� can be used as a tra�c
constraint function for a deterministic service� In the re�
mainder of this section we describe a general form for the
cost function C�B��Rk� and present a heuristic algorithm
to solve the optimization problem�

��� Cost Function C�B�� Rk�
Here� we describe a cost function C�B��Rk� that

expresses the di
erence between the two functions B�

and Rk� The minimization of C subject to the con�
straint Rk�t� � B��t� for all times t � � should result
in a tra�c constraint function B� that allows the admit�
tance of a large number of connections� While it is clear
that the function B� should be as tight as possible� the
choice of cost function C is not obvious� It is not apparent
that a straightforward minimization of the absolute dif�
ference between the two functions is an appropriate cost
function� For example� since the large burstiness of VBR
video limits the number of admitted connections at small
delay bounds� it is important that the function B� approx�
imates Rk more closely for small values of t�

One can 	nd a number of cost functions with di
erent
tradeo
s� Due to space limitations� we do not evaluate
di
erent choices for C in this paper� Here we choose the
following cost function to be used in the remainder�

C�B�
�Rk� �

Z k r

�

�B��t�� Rk�t��

Rk�t�
dt� ����

We considered several cost functions� and we selected the
function shown in equation �� because it produced good
empirical results�

��� A Heuristic Algorithm
We next present a heuristic algorithm that selects pa�

rameters for a 	xed number m of leaky buckets to produce
a tra�c constraint function B� of low cost� The algo�
rithm takes as input the function Rk� the number m of
leaky buckets ��i� �i� available to police B�� the cost func�
tion C�B��Rk�� and a sensitivity parameter � � �� The
heuristic algorithm produces as output a set of m leaky
bucket pairs ��i� �i�� The approach of the algorithm is
to select initial values for all leaky bucket pairs ��i� �i�
and then iteratively modify these values to reduce the
cost C�B��Rk�� The algorithm is presented in Figure ��

The initialization of the pairs ��i� �i� is shown in steps �
through � of Figure �� Observe that these values are se�
lected from the set of pairs f��j� �j�g that determine the

function Rk�
The heuristic improves this initial selection by altering

the ��i� �i� pairs as shown in steps � through ��� The
heuristic algorithm iteratively considers each ��i� �i� pair
and modi	es its values to reduce the cost function C� and
the process completes only when the cost cannot be sig�
ni	cantly reduced� The critical step of the algorithm is
step �� where a single pair ��i� �i� is modi	ed to mini�
mize the cost function� During this step� the values for
pairs f��j� �j� j j �� ig are 	xed� and the pair ��i� �i� is se�
lected subject to the constraint that �i�� 	 �i 	 �i���

�

Note that the choice of �i is dependent on �i according to
the relationship described in ��� ���

In the empirical results presented in x�� we select
the ��i� �i� pair of minimum cost in step � through an

�Boundary conditions for this selection are �� � � and �m � �n �



Input� A set of n leaky bucket parameters f	�j � �j
g

that de�ne the function E�k� the numberm of
available leaky buckets� a cost function

C	B��Rk
� and a sensitivity parameter ��
Output� A set of m leaky bucket parameters 	�i� �i
 to

determine the tra�c constraint function B��

�� Procedure Parameterize 	Rk� m� C	B�� Rk
� �

�� For i � � To m �� Initialize 	�i� �i
 ��
�� �i � �b in

m
c

�� �i � �b in
m
c

�� End For

�� Do �� Greedy modi�cations ��

�� Cost � C	B�� Rk

�� For i � m Down To �

�� Select 	�i� �i
 to minimize C	B�� Rk

��� End For

��� While 	 Cost � C	B�� Rk
 � � 

��� Output B� � min��i�mf�i � �itg
��� End Procedure

    

Figure �� Parameterization algorithm�

exhaustive search through all possible values of �i� How�
ever� with �i expressed in terms of �i� it is possible to
write C�B��Rk� with �i as the only independent variable�
and the selection can be determined analytically by set�
ting �C

��i
to zero� Also� while we do not make guarantees

on the running time of the algorithm� the examples that
we ran converged rapidly� In all examples using a sensi�
tivity parameter � � �� no more than six iterations were
required�

� Empirical Evaluation
We are now ready to evaluate our characterization

method by comparing it with other tra�c characteriza�
tion schemes from the literature� With the results from x�
and x�� we can make recommendations for a characteriza�
tion method as follows� In x�� we found that ��� frames
of the envelope are su�cient to produce an accurate VBR
characterization� i�e�� we use the function R���� In x�� we
chose a particular cost function C for use in the heuristic
algorithm� In this section� we compare our characteriza�
tion method using the above selections with other schemes
using the MPEG video traces Park and News described
in x��� and a single multiplexer at a switch that operates
at ��� Mbps�

The tra�c characterizations from the literature that we
use for comparison include a peak�rate allocation� a dual
leaky bucket scheme that uses the peak and average tra�c
rates� and the so�called �concave hull approach� presented
previously in ���� These benchmarks are described in the
following�

�a� Peak�rate� The straightforward peak�rate allocation
is the simplest of all tra�c characterizations� A peak�rate
characterization is determined by a single rate parame�
ter � that corresponds with the peak rate of the connec�
tion� Such a characterization can be policed with a cell�
spacer that ensures a minimum interarrival time between
consecutive cells ���� The tra�c constraint function for

peak�rate allocation is given as follows�

A
�

peak�t� � �t ����

�b� Dual bucket� The dual bucket scheme uses a ��level
leaky bucket that enforces both the peak rate �� and the
average rate �� of a video connection as speci	ed by the
ATM Forum in ��� The peak rate is policed with a cell�
spacer that ensures a maximum rate ��� while a leaky
bucket mechanism ���� ��� enforces the average rate �� of
the connection� The value of �� is selected as small as pos�
sible subject to the constraint that �����t � E��t� for all
times t� For the dual�bucket scheme� the tra�c constraint
function is given by�

A
�

db�t� � minf�� t � �� � ��tg ����

�c� Concave hull ���� Similar to the heuristic algorithm
presented in this paper� the concave hull approach se�
lects a number m of leaky bucket parameters to charac�
terize the tra�c on a video sequence� The parameters are
taken directly from the concave hull of the empirical en�
velope� If the concave hull of the empirical envelope is an
n�piecewise linear function characterized by a set of n pa�
rameters f��j � �j�j� � j � ng� where �i 	 �j for i 	 j�
then the concave hull approach forms its tra�c constraint
function from the 	rst m such parameters� that is�

A
�

hull�t� � min
��j�m

f�j � �jtg ����

We evaluate the accuracy of a tra�c constraint function
as follows� For a given characterization A�� we plot the ra�
tio of the number of connections admitted using A� to the
number admitted using the optimal characterization with
the empirical envelope E� as a function of the delay bound
of those connections� That is� for a given function A� we
plot�

Utilization Ratio�A�� �
� Connections with A�

� Connections with E�
����

For example� a tra�c characterization that admits an op�
timal number of connections would correspond to the con�
stant curve Utilization Ratio�A�� � ��

��� Number of Leaky Buckets
In this section� we examine the impact of the number

of leaky buckets on network utilization� We consider pa�
rameter selections for m � �� m � �� m � �� and m � �
leaky buckets� and we consider the two tra�c constraint
functions that yield a variable number of leaky buckets�
B� as produced by our heuristic algorithm� and A�hull as
produced by the concave hull scheme�

Figures ��a� and ��b� illustrate utilization ratios ob�
tained for B� and A�hull� respectively� these 	gures de�
pict utilization ratios for characterizations of the News se�
quence� For two leaky buckets� we see that neither algo�
rithm is dominant over the entire range of delay bounds�
However� notice in Figure ��a� that the utilization ratio
for B� is close to � over the entire interval if more than �
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Figure �� Leaky bucket evaluation�

leaky buckets are used� Observe in Figure ��b� that the
utilization ratio for A�hull declines signi	cantly for higher
delay bounds even if � leaky buckets are used�

In summary� the concave hull approach is superior for
m � � if the delay bounds to be supported are small�
However� the heuristic algorithm is superior to the concave
hull approach if three or more leaky buckets are available�

��� Single Tra�c Type
Figures ��a� and ��b� show the utilization ratios of Park

and News connections� respectively� for the entire suite of
tra�c characterizations described previously� namely� B��
A�peak� A

�

db� and A�hull � We depict characterizations B�

and A�hull for m � � and m � ���

Notice the poor performance of both A�peak and A�db
in both graphs� The function A�peak achieves a utilization

ratio of less than ��� for delay bounds greater than ��ms
for these video sequences� The function A�db performs only
slightly better than A�peak� The peak�rate and dual�bucket

schemes are clearly inferior to both the heuristic algorithm
and the concave hull approach�

The utilization ratio for each curve A�hull is � for small
delay bounds� and the ratio decreases gradually as the de�
lay bound increases� The delay bound at which the utiliza�
tion ratio begins decreasing is dependent on the number
of leaky buckets m� Notice in Figure ��a� that the point
of decline begins at d � ��ms for m � � and at d � ���ms

�Note that for the case m � �� i�e� two leaky buckets� the
parameters selected by our algorithm are distinct from those
selected by the dual bucket algorithm�
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Figure �� Comparison for single tra�c type�

for m � �� Observe that both characterizations pro�
duced by the heuristic in this paper are superior to those
produced by the concave hull approach for delay bounds
greater than ���ms in Park and ��ms in News�

��� Multiple Tra�c Types
In the 	nal example� we consider the support of two

tra�c types simultaneously� We consider two types of con�
nections� those carrying the Park sequence and those car�
rying the News sequence� All connections of the same type
have identical delay bounds� We consider a switch that
uses Earliest�Deadline�First �EDF� multiplexing� that is�
cells are ordered for transmission according to their dead�
lines ����

Figure � illustrates the maximum number of Park and
News connections that can be simultaneously supported at
an EDF multiplexer for the speci	ed delay bounds� The
delay bounds are dPark � ���ms and dNews � ��ms
for Figure ��a�� while the delay bounds for Figure ��b�
are dPark � ���ms and dNews � ���ms�

We 	rst note in both graphs that the number of connec�
tions admitted using B� is a factor of two or three greater
than the number admitted using either A�peak or A�db� For

example� in Figure ��a�� A�peak can support �� News con�

�The exact admission control test for EDF multiplexers is
given by ���� t �

P
j�N

A�j 	t�dj
�s	t
 for all t � d�� Here�N

denotes the set of all connections at a multiplexer� dj denotes
the delay bound for a connection j � N � and s	t
 is the maxi�
mum cell transmission time from any connection k with dk � t�
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Figure �� Comparison for multiple tra�c types�

nections and � Park connections� while B� with two leaky
buckets can support �� Park connections for the same num�
ber of �� News connections�

In Figure ��a�� observe that B� admits more connec�
tions than A�hull for m � � when more than �� Park
connections are supported� In both graphs the use of
our heuristic algorithm with three leaky buckets yields a
characterization that is close to optimal� In Figure ��b�
we see the superiority of our heuristic over the concave
hull approach for higher delay bounds� Notice that B�

withm � � admits more connections than A�hull form � ��

� Concluding Remarks
The tra�c characterization used for VBR video connec�

tions has a signi	cant impact on the number of connections
that can be established in a packet�switched network with
a deterministic service� In this paper� we explored two
fundamental problems of video characterization� we deter�
mined how much of a video sequence is needed to produce
an accurate characterization� and we presented a heuris�
tic algorithm to select parameters for a number of leaky
buckets� We combined these two techniques and presented
a method for selecting leaky bucket parameters to charac�
terize VBR video tra�c�
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