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Abstract—A recent result in network calculus theory pro- service curves that deteriorates with time. Most available
vided statistical delay bounds for exponentially bounded traf- network service curves for a statistical setting were derived
fic that grow as O(H log H) with the number of nodes on the by either making strong assumptions on the properties of

network path.! In this paper we establish the corresponding o e ;i
lower bound which shows that under these assumptions, the network, or by modifying the definition of a service

typical end-to-end delays can indeed grow a® (H log H). curve. Examples of the former can be found in [8], where
The lower bound is obtained by analyzing the end-to-end delays at each node are assumed to satisfy a priori delay
delay in a tandem network. Ac_ritica_ll assumption is that each pounds, in [9], where it is assumed that a node discards
?ﬁgkfésmuﬁéngi?ﬁi;he :ae”r“e rsoevri"c;gectc')’:g ﬁiggcehvitaae\aecr:etﬂanto?r?traﬁic that exceeds a threshold, and in [10], which assumes
general, delays ha\?e ?i qupalitatively different scaling beha\;ior that service at subsequgnt nodes is St?_tlStICB_”y independent.
than is suggested by a worst-case analysis or by assumingExamples of the latter include [7], which assumes that the
independence on the service obtained at network nodes. statistical service description is made over time intervals,
and [11], [12], which assumes sample path guarantees for
service.

The stochastic network calculus is a tool for deriving A recent study [13] presented the construction of a
statistical delay bounds in networks. In analogy to thetatistical network service curve for a network where traffic
deterministic network calculus [1], [2], [3], arrivals arearrivals conform to the Exponentially Bounded Burstiness
bounded by statistical arrival envelopes, and the servi(@BB) model [14]. This coincides with the class of so-
available to different flows at the nodes of the network isalled linear bounded envelope processes introduced by
bounded from below by statistical (lower) service curveghang [3], which includes as special cases multiplexed
The framework of the stochastic network calculus permitegulated arrivals and many Markov-modulated processes
the consideration of packet networks where traffic arglt excludes long-range correlated or heavy-tailed traffic
service types are characterized in terms of probabilitiodels. Traffic arrivals are modeled there as fluid-flow.
distributions. The probabilistic description of traffic andunder these assumptions, it was shown for a tandem net-
service also permits to capture and express the benefitspelrk of H nodes with (EBB) cross traffic at each node (see
statistical multiplexing gain in packet networks [4]. Figure 1) that delays grow no more théH{ H log H) with

A key technique in the network calculus is to exprestie number of nodes [13]. This scaling behavior is quite
the service of a flow along a path as a composition of tlti#fferent to that obtained with other analytical methods.
service received at each node on the path. More preciséhgr example, the deterministic network calculus predicts
when service at each node is described in terms of servigdinear growth of end-to-end delays in these networks [2].
curves, the network service can be given as the min-plDelays in product form queueing networks [15] also scale
algebra convolution of the per-node service curves. Thisearly. Finally, a linear growth of delays is also obtained
result was established first in the context of a determinisiii¢c a stochastic network calculus, when the service at nodes
network calculus, where service at each node satisfiegseassumed to be statistically independent [10].
given lower bound [5], [6]. Finding the corresponding com- In light of the different scaling properties found by
position result in a stochastic setting turned out to be hapther modeling approaches, the results in [13] raise two
and, for a long time, was limited to special cases and stroggestionslUnder which assumptions on the network and the
assumptions. In [7] it was shown that a straightforwardrrivals are O(H log H) bounds on the delay valid? And
application of the min-plus convolution yields a networlare such bounds ever shar@he purpose of this paper is

L _ _ _ to answer both questions and shed light on the mechanism

Throughout this paper we use the big-Oh or Landau notation for g tha growth of delays in stochastic models for networks.
asymptotic comparison of functions. For two sequendgsand B,,, the . . .
notationA,, = O(B,,) means that the ratigi= is bounded by a constant, ~ 1n€ main result of this paper is an answer to the second
while A, = Q(By) means that the ratig= is bounded. If both relations question. We show that thé(H log H) bound on end-
hold, we write A,, = O(B5,). " to-end delays from [13] cannot be improved upon without
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additional assumptions. To demonstrate this, we construct lﬁ;?ﬁf lﬁ;’ﬁf ltcr;(f]f?cs

an example of a network that satisfies the assumptions

for the O(H log H) upper bounds on delay and show Node 1 Node 2 Node !t
that typical delays grow witl(H log I ). Concretely, we — fon

analyze the delays of packets in a tandem network/of l l l
identical nodes with no cross traffic. We prove for the

example that the end-to-end delay of packets is bounded Fig. 1. A tandem network with cross traffic.

from below by Q(H log H). This lower bound on delay
remains valid if the flow experiences cross traffic at each
node. we give numerical examples that compare the upper and
We also consider the first question above, i.e., the doma@er bounds obtained in this paper to simulation results.
of validity of the O(H log H) bound. Different from the In Section VI, we present brief conclusions.
fluid flow service assumptions made in [13], we will con-
struct service curves that incorporate packetization effects.
We extend theO(H log H) scaling bound on end-to-end We consider a network witlt/ nodes in series (usually
delays to packet networks where the distribution of the si#gferred to as a tandem network), as shown in Figure 1.
and number of packets arriving in a given time interval hdsach node represents a workconserving scheduler that
an exponentially bounded tail. This includes in particul&#€termines the order in which arrivals from different flows
the Poisson and related processes frequently studiedali¢ processed. Our analysis is valid for any scheduling
queuing theory_ In contrast with most of the queuein@'QOfithm that is ‘Iocally FIFO’ in the sense that it preserves
network literature (and also [10]), we do not assume th#te order of arrivals within a flow or flow class. We
service times of a packet are independently regeneratec@gume infinite sized buffers, that is, there are no losses
each traversed node. due to buffer overflows. In principle, this model can be
The significance of th@(H log H) scaling behavior of applied to rather general network topologies, and flows
end-to-end delays stems from the linear scaling in oth@fe not prohibited from looping back on themselves or
network models, in particular, networks with determinisinteracting with each other repeatedly. However, we require
tically bounded arrivals and service, and networks witthat statistical bounds on cross traffic are available at each
Poisson arrivals and independent exponentially distributé@de. Service at different nodes and arrivals from different
service times. With respect to th@(H) bound when the flows are not required to be statistically independent. We
service satisfies deterministic bounds, this paper providg@gnerally assume that a stability condition holds at each
conclusive evidence that, in general, delays scale differenfipde, that is, the average arrival rate to a node does not
than in the deterministic network calculus. With respe&xceed the service rate.
to the ©(H) scaling of delays in product form queue- Arrivals to a flow are modeled by a non-decreasing, left
ing network models and network calculus models witontinuous procesd(t) with A(t) = 0 for ¢ < 0. Arrivals
independent service, this paper shows that dispensing wifi@y be either fluid-flow or packetized. If the arrivals are
the assumption on independent service changes the scagfgerated by a process that produces a packet obsize

II. NETWORK MODEL

behavior of network delays. 0 attimeT,, (n=1,2,...), the arrival process is given by
The paper may also contribute to a discussion when in- A(t) = Z v
dependence assumptions of service are justified. Originally, o o

. . . . T, <t
the independence assumption on service was made to obtain s

simple and solvable models for packet networks in termswdich is clearly non-decreasing and left continuous. De-
series of M/M/1 queueing systems [16]. The independenpartures from a node or a network are described similarly,
assumption has been empirically justified for networks witand will be denoted byD(t). The backlog is defined by
high-volume cross traffic, high loads, short network path&(t) = A(t) — D(t), and the delay is defined by
high network connectivity, and other randomizing effects . )
[17]. Conversely, the assumption is known to be optimistic W(t) = inf{w 2 0: A®t) < Dt +w)}-
in situations of low loads, long paths, light cross trafficThe end-to-end delay experienced by the flow along its path
and heavy-tailed packet-size distributions. through the network will be denoted By (¢t), where H

The remainder of this paper is structured as follows. Isignifies the number of nodes on the path. As- oo,
Section II, we discuss in detail the network model used’(¢) converges in distribution to the steady-state delay,
in this paper. In Section Ill, we construct an exampléenoted here byV;. We will analyze the distribution of
of a network where delays grow witf(H log H). In 1y through itsquantiles defined for0 < z < 1 by
Section IV, we extend th&(H log H) upper bound for )
delays from [13] to packetized arrival models. In Sectionv, ~ wr(2) =inf{w>0: P(Wyg <w) <z)} .



[1l. THE Q(H log H) LOWER BOUND hold. We will give a brief overview of the published work

In this section, we construct a network model satisfyin§y this area. _
the assumptions of Section Il and prove that in this model, BOXma [19] analyzed a tandem network with two queues
the end-to-end delay of packets is bounded from below wth Poisson arrivals and general service times distri-
Q(H log H). The network consists of a tandem networlutions, and derived the steady-state distribution at the
as shown in Figure 1 witlil nodes, and is traversed by sSecond node. Boxma showed that the (positive) correlations
single flow without any cross traffic at the nodes. Each nofétween the waiting times at the two nodes are higher than
represents a workconserving FIFO server with an infinitB & Network where service times at nodes are independent.
buffer that operates at a constant réte Calo [20] showed that in G/G/1 tandem networks with

The arrivals from the flow to the first node are describgdentical service times, the node delay of a packet is non-
by a compound Poisson process [18], where packets arffiereasing in the number of nodes. For a network with
attimesTy, T», . . . according to a Poisson process with ratE0iSSon arrivals and a bimodal packet size distribution, he
), and the size of each packet is independently exponétptained the Laplace transform for steady-state delays.
tially distributed with parametex. The service time of any ~ Vinogradov has authored a series of articles on tandem
given packet is proportional to its size and hence identica@tworks with identical service times and no cross traf-
at each node. We assume that the load fagter \/(1C) fic. (Some_ of these papers are only available in Russian
satisfiesp < 1. This ensures that the backlog process #nguage journals.) In [21], he presents an expression for
each node is stable and the delay distribution can convef§é Steady-state distribution of the end-to-end delay in a
to a steady state. |5 > 1, the backlog and delay even attandem network with Poisson arrivals and general service
the first node may grgw arbitrarily large. time distributions. In subsequent work [22], [23], he showed

for exponentially distributed service times, that the aver-

Theorem 1 Given a network with the assumptions state@i9€ per-node delay grows logarithmically at downstream
at the beginning of the section. LBf;; denote the steady- 0des, and hence the average end-to-end delay behaves
state end-to-end delay of a packet along the path throu§g ©(H log H). This result provided evidence that the
the network. There exists for eachwith 0 < = < 1 a Scaling of a tandem networks with identical service times

constanty > 0 that depends only on the load factorand differs from that of a network where service times are

on the value of such that independently re-sampled at each nodes. Vinogradov also
found the asymptotic scaling behavior of the per-node

H delay when the load fact h Th It

Pr(Wy < —log(vH) | < . elay when the load factor approaches one. These results

pC have been extended to general arrivals and to the transient

An explicit estimate fory will be provided in the proof. regime [24], [25], [26].

. . The exact expressions obtained by Vinogradov for the
g;?i?f;he theorem we obtain that the quantiles of the del%}'stribution of the end-to-end delay are not explicit and do

not lend themselves well to numerical evaluation: Even in
the case of the compound Poisson arrival process described
In conjunction with Eqg. (14) this implies that typical delayst the beginning of the section, finding the value of the
grow asWy = O(H log H) with the number of nodes. distribution function P(Wy > w) requires, for eachw,

Note that the end-to-end delay of a packet has twie solve a transcendental equation and then compute an
components. The first is the pure processing time, whidhtegral of the solution. In this light, our Theorem 1 adds
clearly grows linearly with the number of nodes. Théo the above literature by giving explicit lower bounds that
second contribution is the time the packet spends waiting¢an be numerically evaluated for all values gt

wg(z) = Q(HlogH) . Q)

the queues at nodds= 1,..., H. The theorem indicates

that at downstream nodes the waiting time of a typicg' Proof of Theorem 1

packet dominates its processing time. Consider a scenario where the network is started at time
. t = 0 with empty queues, and number the packets in order

A. Related literature of their arrival to the network by, = 1,2,.... Let X,, =

The tandem network described at the beginning of thg, —7,,_; denote the time between the arrival of the 1-
section is a variant of an M/M/1/ queueing network wherst and then-th packet at the first node, and &}, be the
the service times of each packet are identical in each quesige of then-th packet.

There exists a small (and possibly not widely known) litera- For the purpose of the proof, we rescale the unit of traffic
ture that has studied tandem networks with identical servibg 1/u so that the average packet sizelisand the unit
times with no cross traffic. While obviously a niche groupf time by 1/(uC) so that the rate of the server Is In

of models, they have proven useful for studying scenaritisese units, the inter-arrival distanc&s are exponentially
where the independence assumption on the service doesdistributed with ratep, and the packet length¥,, are



exponentially distributed with ratd. For later use, we In the last line, we have taken advantage of the fact that
compute the moment-generating functionXf — Y,, as  the terms of the sum decrease wijthio estimate the sum

1 by an integral. For the exponential distribution, the integral
By =~ (0<p). evaluates to
(1—06/p)(1+0)
Denote byWWy ,, the total delay experienced by theth log Pr< sup {H Y; —b(n— j)} < w>

packet on its path through the network. The packet arrives J=Ln
to the first node at time < ,Eefw/H(l — efnb/H) (4)

n - b '

T, = Z Xi s Equating the right hand side of Eq. (4) tgg = and solving
i=1 for w, we obtain

and departs from last node as soon as it and all prior packets
have been processed at all nodes, at time Pr(

sup {HYJ — b(n—j)} < Hlog

j=1,....n

H(l—e‘"b/H)
b|log z|

J n < z.
sup {ZXNLHYﬁ 3 Y} =
j=1,....n i1

i=j+1 Estimating the second supremum in Eg. (2) is a classical
Subtracting’, from this expression, we obtain for the endProblem for which many techniques are available. The sum
to-end delay has the same distribution as a random walk consisting of
. indepenent steps. B > E(X,, —Y,,) then the supremum
Win= sup {HYj _ Z (X, —Y;)}. is boungied upiformly inn, since the random walk has
' j=1,..,n i1 a negative drift and almost surely escapes-tco. Our

) o approach is to consider the Markov chain
To derive a lower bound on the distribution dfy ,,, we

split it into two pieces

n

Zi= J] &P, j=1,...n-1.

WHon = sup {HYj —b(n — j)} i=n—j+1
j=1,...,7
e n If b and @ are chosen so thak (e?(Xi=Yi=8)) < 0 then
— sup { S (X -Yi - b)} () Zi,...,Zn—1 form a nonnegative supermartingale
Jj=1,....n .
=it . L
B(Zj | 2) = B(X Yz, 7))

that we estimate separately. Hete> E(X; — Y;) is a
constant that will be further specified below. Since the
network is started with empty queues at time 0, Wy » IS we invoke Doob's maximal inequality [27] (p. 496) to see
stochastically increasing in and its distribution converges it
monotonically to the steady-state delay distributi®n;. Pr( sup 7 > 1) < E(Z)).

For the first supremum in Eq. (2), we use that the pro- j=1,.n—1 ~
cessing timeg’; are independent and identically distributecéy the definition ofZ;

< 7.

.y Zn_1, this implies

to compute
Pr( sup {HYj—b(n—j)}gw) PT( sup Z (Xi—Yi—b)>0>
j=1,....,n Jj=1,...n i=j+1
n—1 .
b < a(Xn_)/n_b)
- H{l—Pr<Y>w+J)}7 = Bl )

, H e—b0

- T (1-0/p)+0)" )
whereY is a random variable with the same distribution (1-0/p)A+06)
as theY;. To estimate the product, we take logarithms anidote that the term foy = n in the first line corresponds to
use thatlog(1 — ) < —z to obtain an empty sum that does not contribute to the probability.

. To complete the proof, fi¥ < z < 1 and choose
1ogP7“( sup {HY —b(n —j)} < w)

=L _oinf L (-
o oy b= inf Sllog(=(1—2)(1-0/p)1+06)],
s - Z} PT<Y TH ) so that
J=
(w+bn)/H n
< ,% Pr(Y >y)dy. ©) Pr(j_slup Z (Xi—Yi—b)>0> <z(l-2).
Jw/H =1,...,n

i=j+1



We combine Eq. (4) with Eq. (5) to bound the right hané&or the lower bound, we sét = 1/p and insert Eq. (3)

side of Eq. (2) and arrive at into Eq. (2) to obtain
H(l . e—nb/H) H /(w+bn)/H(y0>a
Pr{ Wy, < Hlogy ——F——= <z. log Pr(Wg <w < —— Z) d
T( Hon = Og{ 25/ log 2| } =7 & ( H ) b i y ) Y
: o (Hyo)*
The theorem follows by setting = (2b|logz|)~" and T "o w1
takingn — oo. O

Setting the right hand side equal teg z and solving for

C. The role of the packet size distribution w yields for the quantiles

We next investigate how generalizing the packet size S (Hyo)>/ ()

LT . wi(z) > . (7
distribution impacts the scaling of end-to-end delays. As (b(or — 1)|logz|)1/(a71)
in the proof of Theorem 1, we work in units where the
link capacity isC = 1, and the expected packet size'hus, typical end-to-end delays show at least a power-
E(Y)) = 1. For simplicity, we will assume in this subsectiorlaw growth in the number of nodes. The closeis to 1,
that arrivals are evenly spaced, i.e., the inter-arrival distan@., the heavier the tail of the packet size distribution, the
is given by X,, = 1/p. This is not a serious restrictionmore rapid the growth of the end-to-end delay with the
because under the mild assumption that the second momginber of nodes. Note that even for large valuesapf
of [X — Y], is finite, the Strong Law of Large Numbersthe Q(H*/(>~1)) growth observed for the Pareto packet-
can be used to bound the second supremum in Eq. (2). ¥ee distribution always dominates t& [ log H) growth
consider three examples of packet size distributions: expzi)served for packet size distributions with exponential tails.

nential (light-tailed), Pareto (heavy-tailed), and Bernoulli As for corresponding upper bounds on the end-to-end
(deterministically bounded). delay, we note that the results from [13] can be applied
Exponential: To obtain a lower bound folWy, we use whena > 2. We sus.pgct- that the regultmg delay bo_unds

may be rather pessimistic and are likely to grow with a

Eq. (2) withb set equal to the packet spacing. Then the SeI%:i'gher power ofH than actual delays. It is an open problem

2:3 SVZPL%T;?#SE%J? 4')5 t%:zt-:tranteed to be nonnegatl\{g 'modify these techniques to obtain any end-to-end delay
' bounds in the heavy-tailed regime< « < 2. A second

H problem is to find matching upper and lower bounds on

log Pr(Wy < w) < —3€_w/H~ the delay for all values of: that capture the exact scaling

behavior of the end-to-end delay.

Bernoulli: For our last example, we consider a packet-

size distribution that is deterministically bounded. Suppose
H that there are two packet siz@g,.. > Ymin > 0, Where

wr(2) 2 Hlog (b|logz|) ‘ (6) large packets occur with some small frequencgy.e.,

Setting the right hand side equal teg z and solving for
w leads to

We will see in the next section that this model, like the — P7r(Y = Ymax) =p, Pr(Y = ymin) =1-p.
Poisson model discussed at the beginning of the section L
falls within the scope of theD(H log H) delay bound The mean packet size is given by
discussed in Section IV. E(Y) = pYmax + (1 — p) Yomin -
Pareto: Next we consider the situation where the packet o
size distribution follows a Pareto law We clearly have the deterministic bound on the end-to-end
delay

PT(Y>y): <y0> s yzyo HylniHSWHSHymax~
Y

_ _ If we chooseb = 1/p — ymin, then the second supremum
The parameterr determines the decay of the tail of thqn Eq. (2) is nonnegative, and we compute
distribution, with smaller values af signifying a heavier

tail, while y, determines the scale. We assume that 1 nt )
so that the distribution has a finite mean and chaogse: Pr (WH < w) < H Pr (HY —bj < w)
(o —1)/a so that =0 .
é (]_ _ p)#{]zw+b]<Hymax}
E(Y) — o Yo = 1. N (1 7p)(Hymaxfw)/b )

a—1 n—oo



Solving for the quantiles provides the bound flows by a node or a network is EBB, if it admits a constant-
b|log | rate service curve with an exponential error function

[log(1 —p)|~ S(t)=Rt, e(o) = Me™", (12)

This demonstrates that the difference between typical dghereR, M, andé are positive constants. These definitions
lays and the maximal delay given by the deterministic uppgrfe equivalent to the characterization of arrivals and service
bound remains bounded as the number of nodes becom@®ugh moment-generating functions in [3]. The statistical
large. In other words, typical delays on a long path aggnvelopeG will be called an EBB envelope, and the
essentially determined by the processing time of the largegétistical service curve will be called an EBB service curve.
packets. This finding holds up for bounded packet-size An important example of EBB service is tHeftover
distributions in general. service curve that is available to a flow at a node where
the arrivals from all other flows are EBB. More precisely,
consider a flow arriving to a workconserving server of

In this section we establish the wvalidity of thecapacityC that uses a locally FIFO scheduling algorithm.
O(Hlog H) bound for the network from Figure 1. In Assume that the aggregate arrivals from all other flows have
previous work [13], we derived ad(H log H) bound an EBB envelope as in Eq. (11) with parameters/,, and
for a network with fluid-flow EBB arrivals of through andg,, and that the packet-size distribution of the flow under
cross traffic. However, the lower bounds from the previousonsideration satisfies an exponential tail estimate
section assume a packetized traffic model. Therefore, the oo
derivations of the upper bounds from [13] do not immedi- Pr(Y 2 0) < Mpe ™.
ately apply, and must be adapted to the network at hantthen it can be shown that for any choice Bf< C' — r,

We start by recalling some key definitions from thehe flow receives an EBB service curve as in Eq. (12),
stochastic network calculus. Atatistical envelopdor an where the exponertt = (99—1 4 9;1)—1 lies betweerd,, /2
arrival process is a pair of functions, aenvelope function gnd 0,/2 and the constand/ can be bounded in terms of
G(t) and arerror functione (o) [13], [28], such that for any the choice of R and the other parameters. For fluid-flow
0<s<tandanysc >0 arrivals the formula for the leftover service curve reduces

to Theorem 3 of [13]; in the absence of cross traffic one
Pr(A(t) = A(s) > G(t = 5) + 0) < &(0). ©) can takeR = C. We provide a proof sketch for tandem

The service given to a flow by a node or a networRetworks as considered in Theorem 1 at the end of the
is determined by several factors, including the capacity &ection.
the node, the characteristics of cross traffic, the schedulingAssume that each node in the tandem network from
algorithm, and packet size distribution. In the stochastfdgure 1 has capacity at least, and that the arrivals
network calculus, the service is described by a statistid&m each cross flow have EBB envelopes with identical
service curve, which gives a lower bound on the departuregrametersr, M, and ¢. Assume furthermore that the
in terms of the arrivals. Atatistical service curv§7], [13] through flow has an EBB envelope with a rate< C' —r
is a pair of functions, aservice curveS(t) and an error and is either fluid-flow, or packetized with an exponentially

®)

wH(Z) Z Hymax -

IV. THE O(H log H) UPPER BOUND

function (o), such that for any > 0, bounded packet size distribution. Since the flow receives a
EBB service at each node, the results from Section 4 of [13]
Pr(D(t) < Ax[S —0]4(1)) < e(o0). (10) imply that end-to-end delay bounds satisfy
Here, the min-plus convolutiorf * g of two functions is Pr(Wy > w) < HoM =0 w/H (13)
given by

where the constantd/’ and ¢’ depend on the parameters
frg(t)y= inf {f(s)+g(t—s)}, of the flows but not onH, anda is a fixed positive power
s€(0.1] (typically o < 3). Setting the right hand side equal %o
and [z]+ = max(z,0) denotes the positive part of theand solving forw yields for the quantiles of the delay
numberz. The service given to a flow on its entire path iglistribution the bound
called anetwork service curve
We say that an arrival process is EBB [14], if it satisfies a wii(2) = O(H log H) . (14)
constant-rate statistical envelope with an exponential errorwe conclude this section by explicitly computing a delay
function, bound for the model considered in Theorem 1. We obtain
G(t)=rt, e(o) = Me %7, (11) the EBB characterization of the compound Poisson process

. . from its moment-generating function
wherer, M, andf are positive constants. Correspondingly,

we say that the service provided to a flow or an aggregate of E[e?41)] = eiot



see [27]. The Chernoff bound implies that Eq. (11) with 50¢

A = = =Upper bound
r=—¢t M=1 (15) Simulation
w—0" 40}|='='Lower bound e

defines a statistical envelope that satisfies Eq. (9). ',/

We claim that at the service available to the flow at each 2 3o Lo’
node is EBB with > s

S(t) = Ct, (o) = pe™7, 8200
wherep = \/(uC) is the load factor. To see this, note that 10} ,/' e -
if B(t) >0, thenD(t) = A(t) + C(t —t) — Y*(t), where Rt -
Y*(t) is the remaining workload of the packet being served Nl - ‘ ‘ ‘ ‘
at timet. It follows from the memoryless property of the 10 20 | d30 40 50
Total nodes

exponential distribution that for each> 0

(a) Load factorp = 0.1
Pr(D(t) < A% [S — a]4(t)) = pe "7,

. 501 .
as claimed. - - -Upper bound R
To construct the network service curve, we need to Simulation Rt
choose two parameters, a time step that is used for 40r{ == Lower bound R
discretization, and a small rate> 0 that is used to relax Lo
statistical envelopes and service curves. At each node the £ 30r L
service curve is replaced by g ’,"
_ 2 20f e R
S(t) = Ct, ey(0) = perCroen, :
which satisfies in addition to Eg. (10) that 10—,"’ \_‘_\—""‘
Pr(D(t) < Ax [S—a]+(t—|—70)> <ey(0).  (16)
O L L L L I}
. . 10 20 30 40 50
From Theorem 1 of [13], we obtain the network service Total nodes
curve (b) Load factorp = 0.9
petc H
Snet(t) = (C' — (H = 1)d)t, enet(o) = HE ¢ #o/H  Fg 2. End-to-end delayw; (z) as a function of the number of nodes
HITo H for two values of the load factor. (quantile= 1—10~9, link capacity

which again satisfies Eq. (16). The desired delay bound néiv= 100 Mbps, mean packet size™" = 400 Bytes.)
follows from Theorem 2 of [13]. After optimizing ovety
and settingd = (C — r)/H, we arrive at Eq. (13) with
a=2 A. Example 1
C We consider the scenario from Theorem 1. Packets arrive
c_r to the network as a Poisson process. The link capacity is
/ (C —r) 16 given by C' = 100 Mbps, and the average size of packets
0 = <r+ I ) : ik is u~1 = 400 Bytes [29]. For a given load factqs, we
ot determine the arrival rate by = puC.
V. NUMERICAL EXAMPLES We focus on quantilesvy(z) wherez = 1 — ¢ is
In this section we illustrate the upper and lower boundgry close tol. To simulatewy(z), we start with an
on the end-to-end delay by numerical examples. As ampty network and run the simulations unti)® packets
Section Ill, we consider a tandem network &f nodes, have completed service at nodg storing the 100 largest
each representing a FIFO server of a fixed capa€lty observed values of the end-to-end delay at each node. We
with no cross traffic. Arrivals are packetized, and the packise the smallest of these values as our estimate for the
etsY1,Y,,... are independent and identically distributed-quantile of the end-to-end delay.
random variables. The service time of theth packet In Figure 2 we show the end-to-end delay bounds as a
at each node is given by, /C, i.e., it is identical at function of the number of nodds in the network, when the
each node along the path of the flow. Packets arrive laad factor is low p = 0.1) and high p = 0.9). The figures
times 11,15, ..., where the inter-arrival distancek,, = illustrate the quantitative relationship between the upper
T, — T, _1 are independent and identically distributed imnd lower bounds and the simulations. Note that values of
Example 1, and constant in Example 2. the delays, both bounds and simulations, are quite similar at

M = epHe/(quHe)
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Fig. 3. End-to-end delayv(z) as a function of the load factgs  Fig. 4. Lower bounds for the median of the end-to-end delay for different
(path lengthH = 25 nodes,z = 1 — 1076, C = 100 Mbps, »~! =  packet size distributions as a function of the number of nodes= (5,
400 Bytes.) C =1, p=0.75, mean packet size 1, packet spacin).

low and high load factors. For the chosen rangé&/ofvhich  number of nodes? and fixed load factop = 0.75. For

is already larger than typical routes in a packet network, thge purpose of comparison, we use dimensionless variables,
graphs appear to grow linearly. This indicates that, for paflhere the link capacity i€’ = 1, the average packet size is
lengths encountered in practice, a linear growth of delaysy) — 1, and the distance between consecutive packets is
may be a suitable heuristic, and that analytical models thls}lp = 4/3. Also included in the plot is the expected value
show a linear growth can be justified. ' of the pure processing time.

In Figure 3 we evaluate the delays for fixed path length rigyre 4 shows that different packet size distributions
(H = 25) as the load factop approaches one. In order ©Ogjye rise to fundamentally different scaling behavior. The
capture the blow-up of the delays as- 1, we use aloga- ypper curve shows the power-law growth of the end-to-end
rithmic scale on the vertical axis. In addition to the bounq§e|ay of the Pareto distribution; here, the powenj§a —
and the simulations, we include Vinogradov's asymptoti& — 2. The middle curve shows the sightly superlinear
formula for the average end-to-end del@yi(log(1 - p)| (1 1og H) growth of the delay bounds for the exponential
asp — 1) [22]. The simulations show a significant increasgacyet-size distribution. For the Bernoulli distribution, we
in the end-to-end delay only at values of the load factgjpserve linear scaling, caused by the linear growth of the
well above90%. Vinogradov's result captures the blow-URyorst-case delay. Note that the growth rate lies well above
asp — 1 rather well, even though it applies to the meag,g average rate£(Y) = 1 and is determined by the
rather than the-th quantile, but has no useful relationshigy,aximum packet lengthua. = 2.
to the simulations for smaller values pf On the other
hand, the upper and lower bounds correctly predict the VI. CONCLUSIONS

order of magnitude of the delays seen in the simulations ] . )
at values of the load factgs < 0.9, but the lower bound ~We have shown that in a network with exponentially

fails to capture the blow-up, while the upper bound oveRounded arrivals and service, and where each packet main-
estimates the rate of blow-up. Thus, the upper and low@ns the same service time at each traversed node, end-
bound capture the scaling of delays Hs— oo but may to-end delays grow a®(H log H) with the number of
become loose as — 1. nodes. This is quite different from the knowa{H) scaling
obtained when service at nodes is statistically independent.
B. Example 2 We proved a lower bound for delays in a tandem network
In this example we illustrate the impact of the packewithout cross traffic where packets arrive according to a
size distribution on lower bounds for the median of th@oisson process and have exponentially distributed service
end-to-end delays (that is, we set= 0.5). We consider times. The ©(H log H) scaling of delays followed by
three different packet-size distributions: An exponenti@dapting a previously obtaine@(H log H) upper bound
distribution (x = 1), a heavy-tailed Pareto distribution withto a packetized arrival description. TRE H log H) bounds
a = 1.5 andyy = 1/3, and a Bernoulli distribution where aremain valid in networks with cross traffic and with differ-
small fractionp = 0.1 of packets has sizg,,.x = 2 while ent packet-size distributions, so long as all arrival processes
the remaining packets have sizg;, = 0.8889. We use satisfy suitable exponential bounds. An open question is
the lower bounds in Eq. (6), Eq. (7) and (8) for varyingvhether there are scenarios with purely fluid-flow arrivals



where delays grow a$)(H log H). We believe this to [14]
be the case, but suspect it may require to analyze rather
subtle correlations between the arrivals from cross flows @)
different nodes.
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