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Abstract— A recent result in network calculus theory pro-
vided statistical delay bounds for exponentially bounded traf-
fic that grow asO(H log H) with the number of nodes on the
network path.1 In this paper we establish the corresponding
lower bound which shows that under these assumptions,
typical end-to-end delays can indeed grow asΘ(H log H).
The lower bound is obtained by analyzing the end-to-end
delay in a tandem network. A critical assumption is that each
packet maintains the same service time at each traversed node.
The results of this paper provide conclusive evidence that, in
general, delays have a qualitatively different scaling behavior
than is suggested by a worst-case analysis or by assuming
independence on the service obtained at network nodes.

I. I NTRODUCTION

The stochastic network calculus is a tool for deriving
statistical delay bounds in networks. In analogy to the
deterministic network calculus [1], [2], [3], arrivals are
bounded by statistical arrival envelopes, and the service
available to different flows at the nodes of the network is
bounded from below by statistical (lower) service curves.
The framework of the stochastic network calculus permits
the consideration of packet networks where traffic and
service types are characterized in terms of probability
distributions. The probabilistic description of traffic and
service also permits to capture and express the benefits of
statistical multiplexing gain in packet networks [4].

A key technique in the network calculus is to express
the service of a flow along a path as a composition of the
service received at each node on the path. More precisely,
when service at each node is described in terms of service
curves, the network service can be given as the min-plus
algebra convolution of the per-node service curves. This
result was established first in the context of a deterministic
network calculus, where service at each node satisfies a
given lower bound [5], [6]. Finding the corresponding com-
position result in a stochastic setting turned out to be hard
and, for a long time, was limited to special cases and strong
assumptions. In [7] it was shown that a straightforward
application of the min-plus convolution yields a network

1Throughout this paper we use the big-Oh or Landau notation for the
asymptotic comparison of functions. For two sequencesAn andBn, the
notationAn = O(Bn) means that the ratioAn

Bn
is bounded by a constant,

while An = Ω(Bn) means that the ratioBn
An

is bounded. If both relations
hold, we writeAn = Θ(Bn).

service curves that deteriorates with time. Most available
network service curves for a statistical setting were derived
by either making strong assumptions on the properties of
the network, or by modifying the definition of a service
curve. Examples of the former can be found in [8], where
delays at each node are assumed to satisfy a priori delay
bounds, in [9], where it is assumed that a node discards
traffic that exceeds a threshold, and in [10], which assumes
that service at subsequent nodes is statistically independent.
Examples of the latter include [7], which assumes that the
statistical service description is made over time intervals,
and [11], [12], which assumes sample path guarantees for
service.

A recent study [13] presented the construction of a
statistical network service curve for a network where traffic
arrivals conform to the Exponentially Bounded Burstiness
(EBB) model [14]. This coincides with the class of so-
called linear bounded envelope processes introduced by
Chang [3], which includes as special cases multiplexed
regulated arrivals and many Markov-modulated processes
but excludes long-range correlated or heavy-tailed traffic
models. Traffic arrivals are modeled there as fluid-flow.
Under these assumptions, it was shown for a tandem net-
work of H nodes with (EBB) cross traffic at each node (see
Figure 1) that delays grow no more thanO(H log H) with
the number of nodes [13]. This scaling behavior is quite
different to that obtained with other analytical methods.
For example, the deterministic network calculus predicts
a linear growth of end-to-end delays in these networks [2].
Delays in product form queueing networks [15] also scale
linearly. Finally, a linear growth of delays is also obtained
in a stochastic network calculus, when the service at nodes
is assumed to be statistically independent [10].

In light of the different scaling properties found by
other modeling approaches, the results in [13] raise two
questions:Under which assumptions on the network and the
arrivals areO(H log H) bounds on the delay valid? And
are such bounds ever sharp?The purpose of this paper is
to answer both questions and shed light on the mechanism
for the growth of delays in stochastic models for networks.

The main result of this paper is an answer to the second
question. We show that theO(H log H) bound on end-
to-end delays from [13] cannot be improved upon without
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additional assumptions. To demonstrate this, we construct
an example of a network that satisfies the assumptions
for the O(H log H) upper bounds on delay and show
that typical delays grow withΩ(H log H). Concretely, we
analyze the delays of packets in a tandem network ofH
identical nodes with no cross traffic. We prove for the
example that the end-to-end delay of packets is bounded
from below by Ω(H log H). This lower bound on delay
remains valid if the flow experiences cross traffic at each
node.

We also consider the first question above, i.e., the domain
of validity of the O(H log H) bound. Different from the
fluid flow service assumptions made in [13], we will con-
struct service curves that incorporate packetization effects.
We extend theO(H log H) scaling bound on end-to-end
delays to packet networks where the distribution of the size
and number of packets arriving in a given time interval has
an exponentially bounded tail. This includes in particular
the Poisson and related processes frequently studied in
queuing theory. In contrast with most of the queueing
network literature (and also [10]), we do not assume that
service times of a packet are independently regenerated at
each traversed node.

The significance of theΘ(H log H) scaling behavior of
end-to-end delays stems from the linear scaling in other
network models, in particular, networks with determinis-
tically bounded arrivals and service, and networks with
Poisson arrivals and independent exponentially distributed
service times. With respect to theΘ(H) bound when the
service satisfies deterministic bounds, this paper provides
conclusive evidence that, in general, delays scale differently
than in the deterministic network calculus. With respect
to the Θ(H) scaling of delays in product form queue-
ing network models and network calculus models with
independent service, this paper shows that dispensing with
the assumption on independent service changes the scaling
behavior of network delays.

The paper may also contribute to a discussion when in-
dependence assumptions of service are justified. Originally,
the independence assumption on service was made to obtain
simple and solvable models for packet networks in terms a
series of M/M/1 queueing systems [16]. The independence
assumption has been empirically justified for networks with
high-volume cross traffic, high loads, short network paths,
high network connectivity, and other randomizing effects
[17]. Conversely, the assumption is known to be optimistic
in situations of low loads, long paths, light cross traffic,
and heavy-tailed packet-size distributions.

The remainder of this paper is structured as follows. In
Section II, we discuss in detail the network model used
in this paper. In Section III, we construct an example
of a network where delays grow withΩ(H log H). In
Section IV, we extend theO(H log H) upper bound for
delays from [13] to packetized arrival models. In Section V,
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Fig. 1. A tandem network with cross traffic.

we give numerical examples that compare the upper and
lower bounds obtained in this paper to simulation results.
In Section VI, we present brief conclusions.

II. N ETWORK MODEL

We consider a network withH nodes in series (usually
referred to as a tandem network), as shown in Figure 1.
Each node represents a workconserving scheduler that
determines the order in which arrivals from different flows
are processed. Our analysis is valid for any scheduling
algorithm that is ‘locally FIFO’ in the sense that it preserves
the order of arrivals within a flow or flow class. We
assume infinite sized buffers, that is, there are no losses
due to buffer overflows. In principle, this model can be
applied to rather general network topologies, and flows
are not prohibited from looping back on themselves or
interacting with each other repeatedly. However, we require
that statistical bounds on cross traffic are available at each
node. Service at different nodes and arrivals from different
flows are not required to be statistically independent. We
generally assume that a stability condition holds at each
node, that is, the average arrival rate to a node does not
exceed the service rate.

Arrivals to a flow are modeled by a non-decreasing, left
continuous processA(t) with A(t) = 0 for t ≤ 0. Arrivals
may be either fluid-flow or packetized. If the arrivals are
generated by a process that produces a packet of sizeYn >
0 at timeTn (n = 1, 2, . . . ), the arrival process is given by

A(t) =
∑

n:Tn<t

Yn ,

which is clearly non-decreasing and left continuous. De-
partures from a node or a network are described similarly,
and will be denoted byD(t). The backlog is defined by
B(t) = A(t)−D(t), and the delay is defined by

W (t) = inf{w ≥ 0 : A(t) ≤ D(t + w)} .

The end-to-end delay experienced by the flow along its path
through the network will be denoted byWH(t), whereH
signifies the number of nodes on the path. Ast → ∞,
WH(t) converges in distribution to the steady-state delay,
denoted here byWH . We will analyze the distribution of
WH through itsquantiles, defined for0 < z < 1 by

wH(z) = inf
{
w ≥ 0 : P

(
WH ≤ w) ≤ z

)}
.



III. T HE Ω(H log H) LOWER BOUND

In this section, we construct a network model satisfying
the assumptions of Section II and prove that in this model,
the end-to-end delay of packets is bounded from below by
Ω(H log H). The network consists of a tandem network
as shown in Figure 1 withH nodes, and is traversed by a
single flow without any cross traffic at the nodes. Each node
represents a workconserving FIFO server with an infinite
buffer that operates at a constant rateC.

The arrivals from the flow to the first node are described
by a compound Poisson process [18], where packets arrive
at timesT1, T2, . . . according to a Poisson process with rate
λ, and the size of each packet is independently exponen-
tially distributed with parameterµ. The service time of any
given packet is proportional to its size and hence identical
at each node. We assume that the load factorρ = λ/(µC)
satisfiesρ < 1. This ensures that the backlog process at
each node is stable and the delay distribution can converge
to a steady state. Ifρ ≥ 1, the backlog and delay even at
the first node may grow arbitrarily large.

Theorem 1 Given a network with the assumptions stated
at the beginning of the section. LetWH denote the steady-
state end-to-end delay of a packet along the path through
the network. There exists for eachz with 0 < z < 1 a
constantγ > 0 that depends only on the load factorρ and
on the value ofz such that

Pr

(
WH ≤ H

µC
log (γH)

)
≤ z .

An explicit estimate forγ will be provided in the proof.
From the theorem we obtain that the quantiles of the delay
satisfy

wH(z) = Ω(H log H) . (1)

In conjunction with Eq. (14) this implies that typical delays
grow asWH = Θ(H log H) with the number of nodes.

Note that the end-to-end delay of a packet has two
components. The first is the pure processing time, which
clearly grows linearly with the number of nodes. The
second contribution is the time the packet spends waiting in
the queues at nodesh = 1, . . . , H. The theorem indicates
that at downstream nodes the waiting time of a typical
packet dominates its processing time.

A. Related literature

The tandem network described at the beginning of the
section is a variant of an M/M/1/ queueing network where
the service times of each packet are identical in each queue.
There exists a small (and possibly not widely known) litera-
ture that has studied tandem networks with identical service
times with no cross traffic. While obviously a niche group
of models, they have proven useful for studying scenarios
where the independence assumption on the service does not

hold. We will give a brief overview of the published work
in this area.

Boxma [19] analyzed a tandem network with two queues
with Poisson arrivals and general service times distri-
butions, and derived the steady-state distribution at the
second node. Boxma showed that the (positive) correlations
between the waiting times at the two nodes are higher than
in a network where service times at nodes are independent.
Calo [20] showed that in G/G/1 tandem networks with
identical service times, the node delay of a packet is non-
decreasing in the number of nodes. For a network with
Poisson arrivals and a bimodal packet size distribution, he
obtained the Laplace transform for steady-state delays.

Vinogradov has authored a series of articles on tandem
networks with identical service times and no cross traf-
fic. (Some of these papers are only available in Russian
language journals.) In [21], he presents an expression for
the steady-state distribution of the end-to-end delay in a
tandem network with Poisson arrivals and general service
time distributions. In subsequent work [22], [23], he showed
for exponentially distributed service times, that the aver-
age per-node delay grows logarithmically at downstream
nodes, and hence the average end-to-end delay behaves
as Θ(H log H). This result provided evidence that the
scaling of a tandem networks with identical service times
differs from that of a network where service times are
independently re-sampled at each nodes. Vinogradov also
found the asymptotic scaling behavior of the per-node
delay when the load factor approaches one. These results
have been extended to general arrivals and to the transient
regime [24], [25], [26].

The exact expressions obtained by Vinogradov for the
distribution of the end-to-end delay are not explicit and do
not lend themselves well to numerical evaluation: Even in
the case of the compound Poisson arrival process described
at the beginning of the section, finding the value of the
distribution functionP (WH > w) requires, for eachw,
to solve a transcendental equation and then compute an
integral of the solution. In this light, our Theorem 1 adds
to the above literature by giving explicit lower bounds that
can be numerically evaluated for all values ofH.

B. Proof of Theorem 1

Consider a scenario where the network is started at time
t = 0 with empty queues, and number the packets in order
of their arrival to the network byn = 1, 2, . . . . Let Xn =
Tn−Tn−1 denote the time between the arrival of then−1-
st and then-th packet at the first node, and letYn be the
size of then-th packet.

For the purpose of the proof, we rescale the unit of traffic
by 1/µ so that the average packet size is1, and the unit
of time by 1/(µC) so that the rate of the server is1. In
these units, the inter-arrival distancesXn are exponentially
distributed with rateρ, and the packet lengthsYn are



exponentially distributed with rate1. For later use, we
compute the moment-generating function ofXn − Yn as

E
(
eθ(Xn−Yn)

)
=

1
(1− θ/ρ)(1 + θ)

, (θ < ρ) .

Denote byWH,n the total delay experienced by then-th
packet on its path through the network. The packet arrives
to the first node at time

Tn =
n∑

i=1

Xi ,

and departs from last node as soon as it and all prior packets
have been processed at all nodes, at time

sup
j=1,...,n

{ j∑

i=1

Xi + HYj +
n∑

i=j+1

Yi

}
.

SubtractingTn from this expression, we obtain for the end-
to-end delay

WH,n = sup
j=1,...,n

{
HYj −

n∑

i=j+1

(Xi − Yi)
}

.

To derive a lower bound on the distribution ofWH,n, we
split it into two pieces

WH,n ≥ sup
j=1,...,n

{
HYj − b(n− j)

}

− sup
j=1,...,n

{ n∑

i=j+1

(Xi − Yi − b)
}

(2)

that we estimate separately. Here,b > E(Xi − Yi) is a
constant that will be further specified below. Since the
network is started with empty queues at timet = 0, WH,n is
stochastically increasing inn and its distribution converges
monotonically to the steady-state delay distributionWH .

For the first supremum in Eq. (2), we use that the pro-
cessing timesYj are independent and identically distributed
to compute

Pr
(

sup
j=1,...,n

{
HYj − b(n− j)

}
≤ w

)

=
n−1∏

j=0

{
1− Pr

(
Y >

w + bj

H

)}
,

whereY is a random variable with the same distribution
as theYj . To estimate the product, we take logarithms and
use thatlog(1− x) ≤ −x to obtain

log Pr
(

sup
j=1,...,n

{
HY − b(n− j)

}
≤ w

)

≤ −
n−1∑

j=0

Pr
(
Y >

w + bj

H

)

≤ −H

b

∫ (w+bn)/H

w/H

Pr
(
Y ≥ y

)
dy . (3)

In the last line, we have taken advantage of the fact that
the terms of the sum decrease withj to estimate the sum
by an integral. For the exponential distribution, the integral
evaluates to

log Pr

(
sup

j=1,...,n

{
HYj − b(n− j)

}
≤ w

)

≤ −H

b
e−w/H

(
1− e−nb/H

)
. (4)

Equating the right hand side of Eq. (4) tolog z and solving
for w, we obtain

Pr

(
sup

j=1,...,n

{
HYj − b(n−j)

}
≤ H log

H(1−e−nb/H)
b| log z|

)

≤ z .

Estimating the second supremum in Eq. (2) is a classical
problem for which many techniques are available. The sum
has the same distribution as a random walk consisting ofn
indepenent steps. Ifb > E(Xn − Yn) then the supremum
is bounded uniformly inn, since the random walk has
a negative drift and almost surely escapes to−∞. Our
approach is to consider the Markov chain

Zj =
n∏

i=n−j+1

eθ(Xi−Yi−b) , j = 1, . . . , n− 1 .

If b and θ are chosen so thatE
(
eθ(Xi−Yi−b)

) ≤ 0 then
Z1, . . . , Zn−1 form a nonnegative supermartingale

E(Zj+1 | Zj) = E
(
eθ(Xn−j−Yn−j−b)Zj | Zj

)

≤ Zj .

We invoke Doob’s maximal inequality [27] (p. 496) to see
that

Pr
(

sup
j=1,...,n−1

Zj ≥ 1
)
≤ E(Z1) .

By the definition ofZ1, . . . , Zn−1, this implies

Pr

(
sup

j=1,...,n

n∑

i=j+1

(Xi − Yi − b) > 0
)

≤ E
(
eθ(Xn−Yn−b)

)

=
e−bθ

(1− θ/ρ)(1 + θ)
. (5)

Note that the term forj = n in the first line corresponds to
an empty sum that does not contribute to the probability.

To complete the proof, fix0 < z < 1 and choose

b = inf
0<θ<ρ

1
θ

∣∣log
(
z(1− z)(1− θ/ρ)(1 + θ

)∣∣ ,

so that

Pr

(
sup

j=1,...,n

n∑

i=j+1

(Xi − Yi − b) > 0
)
≤ z(1− z) .



We combine Eq. (4) with Eq. (5) to bound the right hand
side of Eq. (2) and arrive at

Pr

(
WH,n ≤ H log

{H(1− e−nb/H)
2b| log z|

})
≤ z .

The theorem follows by settingγ = (2b| log z|)−1 and
taking n →∞. ¤

C. The role of the packet size distribution

We next investigate how generalizing the packet size
distribution impacts the scaling of end-to-end delays. As
in the proof of Theorem 1, we work in units where the
link capacity is C = 1, and the expected packet size
E(Y ) = 1. For simplicity, we will assume in this subsection
that arrivals are evenly spaced, i.e., the inter-arrival distance
is given by Xn = 1/ρ. This is not a serious restriction
because under the mild assumption that the second moment
of [X − Y ]+ is finite, the Strong Law of Large Numbers
can be used to bound the second supremum in Eq. (2). We
consider three examples of packet size distributions: expo-
nential (light-tailed), Pareto (heavy-tailed), and Bernoulli
(deterministically bounded).

Exponential: To obtain a lower bound forWH , we use
Eq. (2) withb set equal to the packet spacing. Then the sec-
ond supremum in Eq. (2) is guaranteed to be nonnegative,
and we obtain from Eq. (4) that

log Pr
(
WH ≤ w

) ≤ −H

b
e−w/H .

Setting the right hand side equal tolog z and solving for
w leads to

wH(z) ≥ H log
(

H

b| log z|
)

. (6)

We will see in the next section that this model, like the
Poisson model discussed at the beginning of the section
falls within the scope of theO(H log H) delay bound
discussed in Section IV.

Pareto: Next we consider the situation where the packet
size distribution follows a Pareto law

Pr
(
Y > y

)
=

(
y0

y

)α

, y ≥ y0 .

The parameterα determines the decay of the tail of the
distribution, with smaller values ofα signifying a heavier
tail, while y0 determines the scale. We assume thatα > 1
so that the distribution has a finite mean and choosey0 =
(α− 1)/α so that

E(Y ) =
α

α− 1
y0 = 1 .

For the lower bound, we setb = 1/ρ and insert Eq. (3)
into Eq. (2) to obtain

log Pr
(
WH ≤ w

)
≤ −H

b

∫ (w+bn)/H

w/H

(
y0

y

)α

dy

→
n→∞

− (Hy0)α

b(α− 1)wα−1
.

Setting the right hand side equal tolog z and solving for
w yields for the quantiles

wH(z) ≥ (Hy0)α/(α−1)

(
b(α− 1)| log z|)1/(α−1)

. (7)

Thus, typical end-to-end delays show at least a power-
law growth in the number of nodes. The closerα is to 1,
i.e., the heavier the tail of the packet size distribution, the
more rapid the growth of the end-to-end delay with the
number of nodes. Note that even for large values ofα,
the Ω(Hα/(α−1)) growth observed for the Pareto packet-
size distribution always dominates theΘ(H log H) growth
observed for packet size distributions with exponential tails.

As for corresponding upper bounds on the end-to-end
delay, we note that the results from [13] can be applied
when α > 2. We suspect that the resulting delay bounds
may be rather pessimistic and are likely to grow with a
higher power ofH than actual delays. It is an open problem
to modify these techniques to obtain any end-to-end delay
bounds in the heavy-tailed regime1 < α ≤ 2. A second
problem is to find matching upper and lower bounds on
the delay for all values ofα that capture the exact scaling
behavior of the end-to-end delay.

Bernoulli: For our last example, we consider a packet-
size distribution that is deterministically bounded. Suppose
that there are two packet sizes,ymax > ymin > 0, where
large packets occur with some small frequencyp, i.e.,

Pr(Y = ymax) = p, Pr(Y = ymin) = 1− p .

The mean packet size is given by

E(Y ) = p ymax + (1− p) ymin .

We clearly have the deterministic bound on the end-to-end
delay

Hymin ≤ WH ≤ Hymax .

If we chooseb = 1/ρ−ymin, then the second supremum
in Eq. (2) is nonnegative, and we compute

Pr
(
WH ≤ w

)
≤

n−1∏

j=0

Pr
(
HY − bj ≤ w

)

≤ (1− p)#{j:w+bj<Hymax}

→
n→∞

(1− p)(Hymax−w)/b .



Solving for the quantiles provides the bound

wH(z) ≥ Hymax − b| log z|
| log(1− p)| . (8)

This demonstrates that the difference between typical de-
lays and the maximal delay given by the deterministic upper
bound remains bounded as the number of nodes becomes
large. In other words, typical delays on a long path are
essentially determined by the processing time of the largest
packets. This finding holds up for bounded packet-size
distributions in general.

IV. T HEO(H log H) UPPER BOUND

In this section we establish the validity of the
O(H log H) bound for the network from Figure 1. In
previous work [13], we derived anO(H log H) bound
for a network with fluid-flow EBB arrivals of through and
cross traffic. However, the lower bounds from the previous
section assume a packetized traffic model. Therefore, the
derivations of the upper bounds from [13] do not immedi-
ately apply, and must be adapted to the network at hand.

We start by recalling some key definitions from the
stochastic network calculus. Astatistical envelopefor an
arrival processA is a pair of functions, anenvelope function
G(t) and anerror functionε(σ) [13], [28], such that for any
0 ≤ s < t and anyσ ≥ 0

Pr(A(t)−A(s) > G(t− s) + σ) ≤ ε(σ) . (9)

The service given to a flow by a node or a network
is determined by several factors, including the capacity of
the node, the characteristics of cross traffic, the scheduling
algorithm, and packet size distribution. In the stochastic
network calculus, the service is described by a statistical
service curve, which gives a lower bound on the departures
in terms of the arrivals. Astatistical service curve[7], [13]
is a pair of functions, aservice curveS(t) and an error
function ε(σ), such that for anyt ≥ 0,

Pr(D(t) < A ∗ [S − σ]+(t)) ≤ ε(σ). (10)

Here, the min-plus convolutionf ∗ g of two functions is
given by

f ∗ g(t) = inf
s∈[0,t]

{
f(s) + g(t− s)

}
,

and [x]+ = max(x, 0) denotes the positive part of the
numberx. The service given to a flow on its entire path is
called anetwork service curve.

We say that an arrival process is EBB [14], if it satisfies a
constant-rate statistical envelope with an exponential error
function,

G(t) = rt , ε(σ) = Me−θσ , (11)

wherer, M , andθ are positive constants. Correspondingly,
we say that the service provided to a flow or an aggregate of

flows by a node or a network is EBB, if it admits a constant-
rate service curve with an exponential error function

S(t) = Rt , ε(σ) = Me−θσ , (12)

whereR, M , andθ are positive constants. These definitions
are equivalent to the characterization of arrivals and service
through moment-generating functions in [3]. The statistical
envelopeG will be called an EBB envelope, and the
statistical service curve will be called an EBB service curve.

An important example of EBB service is theleftover
service curve that is available to a flow at a node where
the arrivals from all other flows are EBB. More precisely,
consider a flow arriving to a workconserving server of
capacityC that uses a locally FIFO scheduling algorithm.
Assume that the aggregate arrivals from all other flows have
an EBB envelope as in Eq. (11) with parametersr, Mg, and
θg, and that the packet-size distribution of the flow under
consideration satisfies an exponential tail estimate

Pr(Y ≥ σ) ≤ Mpe
−θpσ .

Then it can be shown that for any choice ofR < C − r,
the flow receives an EBB service curve as in Eq. (12),
where the exponentθ = (θ−1

g + θ−1
p )−1 lies betweenθg/2

andθp/2 and the constantM can be bounded in terms of
the choice ofR and the other parameters. For fluid-flow
arrivals the formula for the leftover service curve reduces
to Theorem 3 of [13]; in the absence of cross traffic one
can takeR = C. We provide a proof sketch for tandem
networks as considered in Theorem 1 at the end of the
section.

Assume that each node in the tandem network from
Figure 1 has capacity at leastC, and that the arrivals
from each cross flow have EBB envelopes with identical
parametersr, M , and θ. Assume furthermore that the
through flow has an EBB envelope with a rater0 < C − r
and is either fluid-flow, or packetized with an exponentially
bounded packet size distribution. Since the flow receives a
EBB service at each node, the results from Section 4 of [13]
imply that end-to-end delay bounds satisfy

Pr(WH > w) ≤ HαM ′e−θ′w/H . (13)

where the constantsM ′ and θ′ depend on the parameters
of the flows but not onH, andα is a fixed positive power
(typically α ≤ 3). Setting the right hand side equal toz
and solving forw yields for the quantiles of the delay
distribution the bound

wH(z) = O(H log H) . (14)

We conclude this section by explicitly computing a delay
bound for the model considered in Theorem 1. We obtain
the EBB characterization of the compound Poisson process
from its moment-generating function

E
[
eθA(t)

]
= e

λθ
µ−θ t ,



see [27]. The Chernoff bound implies that Eq. (11) with

r =
λ

µ− θ
t , M = 1 (15)

defines a statistical envelope that satisfies Eq. (9).
We claim that at the service available to the flow at each

node is EBB with

S(t) = Ct, ε(σ) = ρe−µσ ,

whereρ = λ/(µC) is the load factor. To see this, note that
if B(t) > 0, thenD(t) = A(t) + C(t− t)− Y ∗(t), where
Y ∗(t) is the remaining workload of the packet being served
at time t. It follows from the memoryless property of the
exponential distribution that for eachσ ≥ 0

Pr
(
D(t) < A ∗ [S − σ]+(t)

)
= ρe−µσ ,

as claimed.
To construct the network service curve, we need to

choose two parameters, a time stepτ0 that is used for
discretization, and a small rateδ > 0 that is used to relax
statistical envelopes and service curves. At each node the
service curve is replaced by

S(t) = Ct, εs(σ) = ρeµCτ0e−µσ ,

which satisfies in addition to Eq. (10) that

Pr
(
D(t) < A ∗ [S − σ]+ (t + τ0)

)
≤ εs(σ) . (16)

From Theorem 1 of [13], we obtain the network service
curve

Snet(t) = (C − (H − 1)δ)t, εnet(σ) = H
ρeµCτ0

µδτ0
e−µσ/H ,

which again satisfies Eq. (16). The desired delay bound now
follows from Theorem 2 of [13]. After optimizing overτ0

and settingδ = (C − r)/H, we arrive at Eq. (13) with
α = 2,

M ′ = eρHθ/(µ+Hθ) C

C − r
,

θ′ =
(

r +
(C − r)

H

)
· µθ

µ + Hθ
.

V. NUMERICAL EXAMPLES

In this section we illustrate the upper and lower bounds
on the end-to-end delay by numerical examples. As in
Section III, we consider a tandem network ofH nodes,
each representing a FIFO server of a fixed capacityC,
with no cross traffic. Arrivals are packetized, and the pack-
ets Y1, Y2, . . . are independent and identically distributed
random variables. The service time of then-th packet
at each node is given byYn/C, i.e., it is identical at
each node along the path of the flow. Packets arrive at
times T1, T2, . . . , where the inter-arrival distancesXn =
Tn − Tn−1 are independent and identically distributed in
Example 1, and constant in Example 2.
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Fig. 2. End-to-end delaywH(z) as a function of the number of nodes
H for two values of the load factor. (quantilez = 1−10−6, link capacity
C = 100 Mbps, mean packet sizeµ−1 = 400 Bytes.)

A. Example 1

We consider the scenario from Theorem 1. Packets arrive
to the network as a Poisson process. The link capacity is
given by C = 100 Mbps, and the average size of packets
is µ−1 = 400 Bytes [29]. For a given load factorρ, we
determine the arrival rate byλ = ρµC.

We focus on quantileswH(z) where z = 1 − ε is
very close to1. To simulatewH(z), we start with an
empty network and run the simulations until108 packets
have completed service at nodeH, storing the 100 largest
observed values of the end-to-end delay at each node. We
use the smallest of these values as our estimate for the
z-quantile of the end-to-end delay.

In Figure 2 we show the end-to-end delay bounds as a
function of the number of nodesH in the network, when the
load factor is low (ρ = 0.1) and high (ρ = 0.9). The figures
illustrate the quantitative relationship between the upper
and lower bounds and the simulations. Note that values of
the delays, both bounds and simulations, are quite similar at
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Fig. 3. End-to-end delaywH(z) as a function of the load factorρ
(path lengthH = 25 nodes,z = 1 − 10−6, C = 100 Mbps, µ−1 =
400 Bytes.)

low and high load factors. For the chosen range ofH, which
is already larger than typical routes in a packet network, the
graphs appear to grow linearly. This indicates that, for path
lengths encountered in practice, a linear growth of delays
may be a suitable heuristic, and that analytical models that
show a linear growth can be justified.

In Figure 3 we evaluate the delays for fixed path length
(H = 25) as the load factorρ approaches one. In order to
capture the blow-up of the delays asρ → 1, we use a loga-
rithmic scale on the vertical axis. In addition to the bounds
and the simulations, we include Vinogradov’s asymptotic
formula for the average end-to-end delay (2H| log(1− ρ)|
asρ → 1) [22]. The simulations show a significant increase
in the end-to-end delay only at values of the load factor
well above90%. Vinogradov’s result captures the blow-up
as ρ → 1 rather well, even though it applies to the mean
rather than thez-th quantile, but has no useful relationship
to the simulations for smaller values ofρ. On the other
hand, the upper and lower bounds correctly predict the
order of magnitude of the delays seen in the simulations
at values of the load factorρ < 0.9, but the lower bound
fails to capture the blow-up, while the upper bound over-
estimates the rate of blow-up. Thus, the upper and lower
bound capture the scaling of delays asH → ∞ but may
become loose asρ → 1.

B. Example 2

In this example we illustrate the impact of the packet
size distribution on lower bounds for the median of the
end-to-end delays (that is, we setz = 0.5). We consider
three different packet-size distributions: An exponential
distribution (µ = 1), a heavy-tailed Pareto distribution with
α = 1.5 andy0 = 1/3, and a Bernoulli distribution where a
small fractionp = 0.1 of packets has sizeymax = 2 while
the remaining packets have sizeymin = 0.8889. We use
the lower bounds in Eq. (6), Eq. (7) and (8) for varying
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Fig. 4. Lower bounds for the median of the end-to-end delay for different
packet size distributions as a function of the number of nodes. (z = .5,
C = 1, ρ = 0.75, mean packet size 1, packet spacing1/ρ).

number of nodesH and fixed load factorρ = 0.75. For
the purpose of comparison, we use dimensionless variables,
where the link capacity isC = 1, the average packet size is
E(Y ) = 1, and the distance between consecutive packets is
1/ρ = 4/3. Also included in the plot is the expected value
of the pure processing time.

Figure 4 shows that different packet size distributions
give rise to fundamentally different scaling behavior. The
upper curve shows the power-law growth of the end-to-end
delay of the Pareto distribution; here, the power isα/(α−
1) = 2. The middle curve shows the sightly superlinear
Θ(H log H) growth of the delay bounds for the exponential
packet-size distribution. For the Bernoulli distribution, we
observe linear scaling, caused by the linear growth of the
worst-case delay. Note that the growth rate lies well above
the average rateE(Y ) = 1 and is determined by the
maximum packet lengthymax = 2.

VI. CONCLUSIONS

We have shown that in a network with exponentially
bounded arrivals and service, and where each packet main-
tains the same service time at each traversed node, end-
to-end delays grow asΘ(H log H) with the number of
nodes. This is quite different from the knownΘ(H) scaling
obtained when service at nodes is statistically independent.
We proved a lower bound for delays in a tandem network
without cross traffic where packets arrive according to a
Poisson process and have exponentially distributed service
times. The Θ(H log H) scaling of delays followed by
adapting a previously obtainedO(H log H) upper bound
to a packetized arrival description. TheΘ(H log H) bounds
remain valid in networks with cross traffic and with differ-
ent packet-size distributions, so long as all arrival processes
satisfy suitable exponential bounds. An open question is
whether there are scenarios with purely fluid-flow arrivals



where delays grow asΩ(H log H). We believe this to
be the case, but suspect it may require to analyze rather
subtle correlations between the arrivals from cross flows at
different nodes.
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