
Link Failure Recovery

for MPLS Networks with Multicasting

A Thesis

Presented to

the faculty of the School of Engineering and Applied Science

University of Virginia

In Partial Fulfillment

of the requirements for the Degree

Master of Science

Computer Science

by

Yvan Pointurier

August 2002

Approvals

This thesis is submitted in partial fulfillment of the requirements for the degree of

Master of Science

Yvan Pointurier

Approved:

Jörg Liebeherr (Advisor)

Stephen D. Patek (Chair)

Mäıté Brandt-Pearce

Accepted by the School of Engineering and Applied Science:

Richard W. Miksad (Dean)

August 2002

Abstract

Link failures are a common cause of service disruption in computer networks. When

a link of a network fails, all communications which were using the failed link are tem-

porarily interrupted. Techniques have been engineered to alleviate the consequences

of hardware failure in a network by rerouting traffic from the failed link to other links.

When performed by low communication layers, rerouting is fast but expensive as ad-

ditional hardware is needed. On the other hand, it is possible to reroute traffic at

higher layers using software mechanisms, but such solutions prove to be slow. More-

over, most rerouting schemes are not optimized for multicasting applications such as

teleconferencing where one sender can send data to several receivers.

The Internet is a datagram packet switching network where data is carried in

IP packets. Recently, Multiprotocol Label Switching (MPLS) has been devised to

carry IP packets over virtual circuits, thus combining the advantages of datagram

packet switching and virtual circuit switching. In this thesis, we devise a solution to

protect multicast communications in MPLS networks from a link failure. We present

i

ii

a graph algorithm which selects a backup path in a multicast routing tree that carries

multicast traffic. The backup path aims at minimizing the number of receivers of the

multicast routing tree that are dropped from the communication if a single link of

the tree fails. We present MPLS multicast Fast Reroute, a new mechanism for MPLS

networks which reroutes traffic over a backup path when a link of the multicast

routing tree fails. We provide an implementation of MPLS multicast Fast Reroute

on PC routers running the Linux operating system. We experimentally show that

MPLS multicast Fast Reroute can repair multicast routing trees in less than 50 ms,

making link failures unnoticeable to all end users.

Acknowledgements

First, I would like to thank here my advisor Dr Jörg Liebeherr, who gave me the

opportunity to work on an this research problem, did not fail in trusting in my

commitment, and patiently accepted to review hundreds of pages of the different

versions of this thesis. Of course, this work would not have been possible without the

support of his full research group, the Multimedia Networks Group (MNG). Working

as a member of the MNGroup has truly been enjoyable.

I also do not forget that my presence here has been made possible by my former

institution, the French Engineer School “Ecole Centrale de Lille”, which does not let

many students leave to the USA to pursue graduate studies.

Last but not least, thanks to my parents who have always been dedicated to my

academic success.

iii

Contents

1 Introduction 1

1.1 Switching technology . 2

1.1.1 Circuit switching . 2

1.1.2 Datagram packet switching 6

1.1.3 Virtual circuit packet switching 8

1.2 Virtual circuit packet switching with IP 10

1.2.1 IP-over-ATM . 11

1.2.2 MPLS . 12

1.3 Multicast . 19

1.3.1 Multicast routing tree structure 21

1.3.2 Multicast with IP . 24

1.3.3 Multicast with ATM . 27

1.3.4 Multicast with MPLS . 28

1.4 Contributions of this thesis . 30

2 Resilience and protection in networks 34

2.1 Overview of rerouting . 36

2.2 Protection at the MAC and physical layers: self-healing rings 39

2.3 Network layer protection . 44

2.4 MPLS Unicast Fast Reroute . 45

2.5 Multicast fault recovery . 48

iv

Contents v

3 A multicast routing tree repair algorithm 51

3.1 Problem modeling . 52

3.2 Maximization of the resilience of a tree with a single backup path . . 63

3.2.1 Main algorithm . 64

3.2.2 Incremental version . 69

3.3 Complexity analysis . 73

3.3.1 Computation of the metrics 74

3.3.2 General case . 77

3.3.3 Average case . 80

3.3.4 Worst case . 83

4 MPLS Multicast Fast Reroute 87

4.1 Overview . 87

4.2 Link failure and recovery detection 94

4.3 Failure and recovery notification . 99

4.4 Switchover and switchback . 103

5 Implementation 110

5.1 Multicast MPLS-Linux . 110

5.1.1 Unicast MPLS-Linux implementation 111

5.1.2 Multicast MPLS-Linux implementation 117

5.1.3 FIB management API . 121

5.2 The MulTreeLDP protocol . 126

5.2.1 Multicast Explicit Routing . 128

5.2.2 Link failure and recovery detection 136

5.2.3 Link failure and recovery notification 138

5.2.4 Switchover and switchback . 142

5.2.5 MulTreeLDP messages and TLV formats 144

6 Experiments 156

6.1 Hardware used for the experiments 157

Contents vi

6.2 Measuring MPLS multicast throughput 160

6.3 Measuring link failure and recovery detection times 167

6.4 Measuring link failure and recovery notification times 175

6.5 Measuring the tree repair time . 178

6.5.1 Measuring the service interruption time due to a link failure . 179

6.5.2 Observing duplicate packets on the tree when a failed link is
repaired . 182

7 Conclusion 195

7.1 Contributions . 196

7.2 Directions for future work . 198

List of Figures

1.1 Circuit switching . 3

1.2 Datagram packet switching . 7

1.3 Virtual circuit packet switching . 9

1.4 Position of the MPLS stack in the network protocol stack 13

1.5 MPLS forwarding . 14

1.6 Nested MPLS domains . 17

1.7 Label distribution modes . 18

1.8 Multicast achieved through unicast 20

1.9 Shortest path trees . 22

1.10 Center-based multicast routing tree 23

1.11 Pre-planning backup paths in a multicast routing tree 25

1.12 MPLS multicast routing tree . 32

2.1 Rerouting overview and terminology 36

2.2 SONET self-healing ring: Unidirectional Path-Switched Ring architec-
ture . 41

2.3 SONET self-healing ring: Bidirectional Link-Switched Ring architecture 41

2.4 Intelligent Protection Switching with a Resilient Packet Ring 43

2.5 Unicast Fast Reroute mechanism . 46

3.1 Network and multicast group model 52

3.2 Link failure rate weight . 55

3.3 Protection of a tree from a link failure on the protected path with a
backup path . 59

vii

List of Figures viii

3.4 Weight w and metrics tdrop and adrop for all links of a sample tree . 60

3.5 Proof of the algorithm . 67

3.6 Tree topology modification after a node leaves or joins a multicast group 69

3.7 Computation of Rd(A,B) . 75

3.8 Worst case for Algorithm 1 . 83

3.9 Worst case for Algorithm 2 . 85

3.10 Worst case for Algorithm 3 . 85

4.1 Multicast Label Switching Path examples 89

4.2 Overview of MPLS multicast Fast Reroute 92

4.3 Link failure detection mechanism . 96

4.4 Link failure detection time probability density function 97

4.5 Link repair detection mechanism . 98

4.6 Link repair detection time probability density function 99

4.7 Failure notification mechanism . 101

4.8 Backup label mappings . 104

4.9 Path followed by packets sent by J after switchover 105

4.10 Duplicate packets during switchback 109

5.1 Processing of a packet in the MPLS layer with MPLS-Linux unicast . 114

5.2 Processing of a packet in the MPLS layer with MPLS-Linux multicast 114

5.3 Mixed L2/L3 forwarding implementation 121

5.4 General format of a MulTreeLDP message 127

5.5 Description of a tree in a file and in a Explicit Route Tree TLV . . . 130

5.6 Advertisement of a multicast routing tree 133

5.7 Link failure and recovery detection probe format 137

5.8 Failure and recovery notification process 141

5.9 Switchback and switchover . 143

5.10 MulTreeLDP header . 145

5.11 FEC TLV format . 146

5.12 FEC element format . 146

List of Figures ix

5.13 Label TLV format . 147

5.14 IPv4 node TLV format . 147

5.15 Explicit Route Tree TLV format . 148

5.16 New Branch TLV format . 148

5.17 End Branch TLV format . 149

5.18 Explicit Route Hop TLV format . 149

5.19 Routers TLV format . 150

5.20 Explicit Route Request message format 150

5.21 Explicit Backup Route Request message format 151

5.22 Label Request message format . 152

5.23 Backup Label Request message format 152

5.24 Label Mapping message format . 153

5.25 Backup Label Mapping message format 153

5.26 Link Failure Notification message format 154

5.27 Link Recovery Notification message format 155

6.1 The Indra testbed . 158

6.2 Setup of the network used during the experiments 159

6.3 Topology of the network used to measure the performance of the MPLS-
Linux multicast implementation . 161

6.4 Experimental setup for determining the link failure and recovery de-
tection times . 168

6.5 Experimental distribution of the link failure detection time 171

6.6 Experimental distribution of the link recovery detection time 172

6.7 Experimental distribution of the link recovery detection time (adjusted
model). 173

6.8 Experimental setup for determining the link failure and recovery noti-
fication delays . 176

6.9 Experimental distribution of the node notification delay 178

6.10 Switchover and switchback in the multicast routing tree setup on our
testbed . 179

6.11 Experimental distribution of the repair time 182

List of Figures x

6.12 Traffic received by PC5 when the tree sustains a failure and a recovery
(packets of 8192 bytes) . 185

6.13 Traffic received by PC6 when the tree sustains a failure and a recovery
(packets of 8192 bytes) . 186

6.14 Switchover on PC5 (packets of 8192 bytes) 187

6.15 Switchover on PC6 (packets of 8192 bytes) 188

6.16 Switchback on PC5 (packets of 8192 bytes) 189

6.17 Switchback on PC6 (packets of 8192 bytes) 190

6.18 Traffic received by PC5 when the tree sustains a failure and a recovery
(packets of 1024 bytes) . 191

6.19 Traffic received by PC6 when the tree sustains a failure and a recovery
(packets of 1024 bytes) . 192

6.20 Switchback on PC5 (packets of 1024 bytes) 193

6.21 Switchback on PC6 (packets of 1024 bytes) 194

List of Tables

5.1 MPLS-Linux unicast instructions overview 112

5.2 Implementation of the three MPLS operations with the five MPLS-
Linux instructions . 112

5.3 MPLS-Linux multicast instructions overview 117

5.4 Implementation of the multicast MPLS operations 119

5.5 The /proc files related to the MPLS FIB 122

5.6 Netlink functions and the corresponding C API used to set the MPLS
forwarding rules . 124

5.7 Details on the FIB manipulation API 125

6.1 IP addresses used in the Indra testbed 158

6.2 Multicast MPLS forwarding engine performance with UDP packets of
8192 bytes . 163

6.3 Multicast MPLS forwarding engine performance with UDP packets of
1024 bytes . 166

xi

1

Introduction

Many characteristics of switched communication networks are directly dependent on

how data is relayed over the wires. Early networks carried continuous bitstreams

over physical links in a technique called circuit switching, well suited to transmit

voice or real time data from a single sender to a single receiver (unicast communi-

cation). However, a physical link failure in circuit switching networks has dramatic

consequences leading to the interruption of all communications using the failed link.

Datagram packet switching networks like the Internet fix these drawbacks by cutting

data into small chunks called packets. In datagram packet switching networks, two

consecutive packets from the same communication are independently handled by the

network. Therefore, when a link fails, packets previously sent on the failed link can be

rerouted to avoid the failed link and communications are not interrupted. Datagram

packet switching networks are said to be resilient to link failures because link failures

are hidden to end-users. On the other hand, it is more difficult to manage end-to-

end flows of data in datagram packet switching networks than in circuit switching

networks due to the lack of a separate circuit for each flow.

1

1.1. Switching technology 2

Virtual circuit packet switching, deployed with X.25, Asynchronous Transfer Mode

(ATM), and more recently, with Multiprotocol Label Switching (MPLS), keeps the

advantages of both circuit and datagram packet switching by sending packets instead

of bitstreams over so-called virtual circuits (VC), but also suffers from the same lack

of resilience as circuit switching when a link fails. Moreover, techniques have been

designed to improve the resilience of unicast communications over datagram packet

switching networks, but they are not adapted to multicast communications where

one or several senders send traffic to several receivers. This thesis presents a new

technique to improve the resilience of multicast communications in virtual circuit

packet switching networks.

1.1 Switching technology

In the next three subsections, we present the three switching techniques used in

networks: circuit switching, datagram packet switching and virtual circuit packet

switching.

1.1.1 Circuit switching

Circuit switching is the transmission technology that has been used since the first

communication networks in the nineteenth century. In circuit switching, a caller

1.1. Switching technology 3

User 1

User 2

User 3

User 5

User 4

switch

link

circuit

Figure 1.1: Circuit switching. The two different bitstreams flow on two separate

circuits.

must first establish a connection to a callee before any communication is possible.

During the connection establishment, resources are allocated between the caller and

the callee. Generally, resources are frequency intervals in a Frequency Division Mul-

tiplexing (FDM) scheme or more recently time slots in a Time Division Multiplexing

(TDM) scheme. The set of resources allocated for a connection is called a circuit, as

depicted in Figure 1.1. A path is a sequence of links located between nodes called

switches. The path taken by data between its source and destination is determined

by the circuit on which it is flowing, and does not change during the lifetime of the

connection. The circuit is terminated when the connection is closed.

1.1. Switching technology 4

In circuit switching, resources remain allocated during the full length of a com-

munication, after a circuit is established and until the circuit is terminated and the

allocated resources are freed. Resources remain allocated even if no data is flowing

on a circuit, hereby wasting link capacity when a circuit does not carry as much

traffic as the allocation permits. This is a major issue since frequencies (in FDM) or

time slots (in TDM) are available in finite quantity on each link, and establishing a

circuit consumes one of these frequencies or slots on each link of the circuit. As a

result, establishing circuits for communications that carry less traffic than allocation

permits can lead to resource exhaustion and network saturation, preventing further

connections from being established. If no circuit can be established between a sender

and a receiver because of a lack of resources, the connection is blocked.

A second characteristic of circuit switching is the time cost involved when estab-

lishing a connection. In a communication network, circuit-switched or not, nodes

need to lookup in a forwarding table to determine on which link to send incoming

data, and to actually send data from the input link to the output link. Performing a

lookup in a forwarding table and sending the data on an incoming link is called for-

warding. Building the forwarding tables is called routing. In circuit switching, routing

must be performed for each communication, at circuit establishment time. During

circuit establishment, the set of switches and links on the path between the sender

and the receiver is determined and messages are exchanged on all the links between

1.1. Switching technology 5

the two end hosts of the communication in order to make the resource allocation

and build the routing tables. In circuit switching, forwarding tables are hardwired

or implemented using fast hardware, making data forwarding at each switch almost

instantaneous. Therefore, circuit switching is well suited for long-lasting connections

where the initial circuit establishment time cost is balanced by the low forwarding

time cost.

The circuit identifier (a range of frequencies in FDM or a time slot position in a

TDM frame) is changed by each switch at forwarding time so that switches do not

need to have a complete knowledge of all circuits established in the network but rather

only local knowledge of available identifiers at a link. Using local identifiers instead

of global identifiers for circuits also enables networks to handle a larger number of

circuits.

Traffic engineering (TE) consists in optimizing resource utilization in a network by

choosing appropriate paths followed by flows of data, according to static or dynamic

constraints [39]. A main goal of traffic engineering is to balance the load in the

network, i.e., to avoid congestion on links on a network while other links are under-

utilized. To achieve such goals, traffic engineering methods can vary from offline

capacity planning algorithms to automatic, dynamic changes. Since circuit switching

allocates a fixed path for each flow, circuits can be established according to traffic

engineering algorithms.

1.1. Switching technology 6

On the other hand, circuit switching networks are not reactive when a network

topology change occurs. For instance, on a link failure, all circuits on a failed link are

cut and communication is interrupted. Special mechanisms that handle such topolog-

ical changes have been be devised. Traffic engineering can alleviate the consequences

of a link failure by pre-planning failure recovery. A backup circuit can be established

at the same time or after the primary circuit used for a communication is set up, and

traffic can be rerouted from the failed circuit to the backup circuit if a link of the pri-

mary circuit fails. Circuit switching networks are intrinsically sensitive to link failures

and rerouting must be performed by additional traffic engineering mechanisms.

1.1.2 Datagram packet switching

Conceived in the 1960’s, packet switching is a more recent technology than circuit

switching which addresses a disadvantage of circuit switching: the need to allocate

resources for a circuit, thus incurring link capacity wastes when no data flows on a cir-

cuit. Packet switching introduces the idea of cutting data on a flow into packets which

are transmitted over a network without any resource being allocated. If no data is

available at the sender at some point during a communication, then no packet is trans-

mitted over the network and no resources are wasted. Packet switching is the generic

name for a set of two different techniques: datagram packet switching and virtual

circuit packet switching. Here, we give an overview of datagram packet switching.

1.1. Switching technology 7

User 1

User 2

User 3

User 5

User 4

router

link

packets

Figure 1.2: Datagram Packet Switching. Packets from a given flow are indepen-

dent and a router can forward two packets from the same flow on two different links.

Different from circuit switching, datagram packet switching does not require to

establish circuits prior to transmission of data and terminate circuits after the trans-

mission of data. The switches, called routers, have to make a lookup in the forwarding

table, called routing table, for each incoming packet. A routing table contains a map-

ping between the possible final destinations of packets and the outgoing link on their

path to the destination. Routing tables can be very large because they are indexed

by possible destinations, making lookups and routing decisions computationally ex-

pensive, and the full forwarding process relatively slow compared to circuit switching.

In datagram packet switching networks, each packet must carry the address of the

1.1. Switching technology 8

destination host and use the destination address to make a forwarding decision. Con-

sequently, routers do not need to modify the destination addresses of packets when

forwarding packets.

Since each packet is processed individually by a router, all packets sent by a host

to another host are not guaranteed to use the same physical links. If the routing

algorithm decides to change the routing tables of the network between the instants

two packets are sent, then these packets will take different paths and can even arrive

out of order. In Figure 1.2 for instance, packets use two different paths to go from

User 1 to User 5. Second, on a network topology change such as a link failure, the

routing protocol will automatically recompute routing tables so as to take the new

topology into account and avoid the failed link. As opposed to circuit switching, no

additional traffic engineering algorithm is required to reroute traffic.

Since routers make routing decisions locally for each packet, independently of

the flow to which a packet belongs. Therefore, traffic engineering techniques, which

heavily rely on controlling the route of traffic, are more difficult to implement with

datagram packet switching than with circuit switching.

1.1.3 Virtual circuit packet switching

Virtual circuit packet switching (VC-switching) is a packet switching technique which

merges datagram packet switching and circuit switching to extract both of their

1.1. Switching technology 9

User 1

User 2
User 3

User 5

User 4

switch

link

packets

virtual
circuit

Figure 1.3: Virtual circuit packet switching. All packets from the same flow use

the same virtual circuit.

advantages. VC-switching is a variation of datagram packet switching where packets

flow on so-called logical circuits for which no physical resources like frequencies or

time slots are allocated (see Figure 1.3). Each packet carries a circuit identifier which

is local to a link and updated by each switch on the path of the packet from its

source to its destination. A virtual circuit is defined by the sequence of the mappings

between a link taken by packets and the circuit identifier packets carry on this link.

This sequence is set up at connection establishment time and identifiers are reclaimed

during the circuit termination.

We have seen the trade-off between connection establishment and forwarding time

costs that exists in circuit switching and datagram packet switching. In VC-switching,

1.2. Virtual circuit packet switching with IP 10

routing is performed at circuit establishment time to keep packet forwarding fast.

Other advantages of VC-switching include the traffic engineering capability of circuit

switching, and the resources usage efficiency of datagram packet switching. Never-

theless, a main issue of VC-Switched networks is the behavior on a topology change.

As opposed to Datagram Packet Switched networks which automatically recompute

routing tables on a topology change like a link failure, in VC-switching all virtual cir-

cuits that pass through a failed link are interrupted. Hence, rerouting in VC-switching

relies on traffic engineering techniques.

In practice, major implementations of VC-switching are X.25 [70], Asynchronous

Transfer Mode (ATM [6]) and Multiprotocol Label Switching (MPLS [50]). The

Internet, today’s most used computer network, is entirely built around the Internet

Protocol (IP), which is responsible for routing packets from one host to another.

Because of the central role of IP in the Internet, we now discuss how ATM and

MPLS interact with IP.

1.2 Virtual circuit packet switching with IP

Protocols which route data from a node or hop to another hop between two end

hosts in a network are called network-layer or L3 protocols. In the Internet, the only

currently available network-layer protocol is IP, which comes in two flavors: IPv4

[59] makes use of 32-bit long addresses and IPv6 [22] uses 128-bit long addresses.

1.2. Virtual circuit packet switching with IP 11

We will mostly focus on IPv4 as IPv4 is the currently deployed version of IP in

the Internet. Because of the advantages of virtual circuit packet switching and the

growing popularity of IP, many Internet service providers send IP packets over virtual

circuits. Virtual circuit packet switching technologies that have been used in the

Internet backbones are ATM and, more recently, MPLS.

1.2.1 IP-over-ATM

ATM is a VC-switching technology which was standardized starting in the late 1980s.

ATM uses fixed-length payloads with a length of 48 bytes and a 5-byte header, yielding

53-byte long ATM cells. Among the 40 header bits of a cell, 28 are reserved to

identify the virtual circuit to which the cell belongs. The corresponding fields are

called VCI/VPI (Virtual Circuit Identifier/Virtual Path Identifier). The VCI/VPI

fields are updated at each switch.

A first issue that arises when trying to send IP packets over ATM virtual circuits

is the need for a definition of an encapsulation of IP packets in ATM cells, i.e., how

to put IP data inside ATM cells. Encapsulation is performed by an adaptation layer

(AAL) as defined in [6]. Moreover, most IP packets are too large to fit in a 53-byte

ATM cell. An IP header is at least 20 bytes long, and hosts cannot be coerced to

send IP packets of at most 53 bytes. Therefore, IP packets must be cut into smaller

pieces in a process called segmentation before they can be encapsulated and put in

1.2. Virtual circuit packet switching with IP 12

ATM cells. The last router on the path of IP packets must reassemble the fragments

to reconstitute the original IP packets. Segmentation and Reassembly (SAR) is a

complex and time consuming process.

Sending IP traffic over an ATM infrastructure proves to be complex [19]. Far from

solving the circuit interruption problem that arises on link failure with VC-switching,

IP over ATM introduces the aforementioned issues and requires additional hardware

as combined IP routers/ATM switches do not exist.

1.2.2 MPLS

Multiprotocol Label Switching (MPLS) is a comprehensive IP over virtual circuits

technology which has been specifically engineered to interface better with IP than

ATM. MPLS runs over many existing network hardware like Ethernet [38] or even

ATM and supports the forwarding of IP packets over virtual circuits. MPLS can be

implemented in IP routers.

In MPLS, each packet carries a virtual circuit identifier, called label, as a field of

a shim header inserted between the IP header and the MAC/link layer header of a

packet. A single packet can carry more than one shim header. The set of all headers

carried by a packet is called an MPLS stack. Figure 1.4 depicts a stack of MPLS

headers, and the position of the MPLS stack in the headers of a packet.

1.2. Virtual circuit packet switching with IP 13

IP, payload

Ethernet, ATM, ...

Label stack
"shim"

"shim"

MAC/Link
layer &

Hardware

Network
layer &
upper

...

label exp TTLb
o
s

label exp TTLb
o
s

"shim" label exp TTLb
o
s

Figure 1.4: Position of the MPLS stack in the network protocol stack. Shim

headers are inserted between the IP layer and the MAC or link layer. Each shim

header consists of four fields.

MPLS handles labels just like all other virtual circuit identifiers are handled in

other virtual circuit switching technologies. Consider an IP packet sent by host A to

host B in Figure 1.5. The packet is forwarded through an MPLS network or domain

between A and B. When a packet arrives at the first MPLS router, also called ingress

Label Edge Router (ingress LER) of the MPLS domain, the source and destination

IP addresses of the packet are analyzed and the packet is classified in a Forwarding

Equivalence Class (FEC). All packets within the same FEC use the same virtual

circuit, called Label Switched Path or LSP. Suppose a virtual circuit has already been

established for the FEC of the packet sent by A to B: then, the ingress LER inserts

or pushes an MPLS header on the packet (L1 in the Figure). Subsequent routers

1.2. Virtual circuit packet switching with IP 14

MPLS Domain

IP IP

LER LSR LERLSR
push L1 swap L1, L2 swap L2, L3 pop L3

A B

IP#L1 IP#L3IP#L2

Figure 1.5: MPLS forwarding. The ingress LER determines the FEC of packets

sent by A to B and pushes a label on the packets. Subsequent LERs swap labels.

The egress LER pops the label and outputs an IP packet with no MPLS header.

of the MPLS domain update the MPLS header by swapping the label (L1 against

L2, L2 against L3). Finally, the last router of the LSP, called egress LER, removes

or pops the MPLS header (L3 in the Figure), so that the packet can be handled by

subsequent MPLS-unaware IP routers or hosts.

MPLS routers push, swap and pop MPLS headers according to rules contained

in a forwarding table called Forwarding Information Base (FIB) that is distinct for

each MPLS router. The FIB can contain three different types of entries. A Next Hop

Label Forwarding Entry (NHLFE) contains the information necessary to forward a

packet for which a label has already been assigned. A NHLFE contains two pieces

1.2. Virtual circuit packet switching with IP 15

of information: the packet’s next hop address, and whether the MPLS header of

the packet must be swapped or popped. If the MPLS header of the packet must be

swapped, then the NHLFE also contains the new label of the packet. The Incoming

Label Map (ILM) contains the mappings between labels carried by incoming packets

and NHLFE entries. Last, the FEC-to-NHLFE (FTN) contains the mappings between

incoming packet FECs and NHLFE entries. MPLS routers use their FIB as follows.

Suppose a packet with no label arrives at an MPLS router. The MPLS router first

determines the FEC for the packet, then looks up in the FIB for the FTN that

matches the FEC of the packet. This FTN contains a label and a NHLFE which in

turn contains the next hop for the packet. The MPLS router pushes an MPLS header

that contains the label read in the FTN and forwards the packet according to the

information contained in the NHLFE. Now suppose that a labeled packet arrives at

an MPLS router. The MPLS router searches in the FIB for an ILM that matches

the label of the packet and reads the associated NHLFE. The NHLFE can either

indicate that the MPLS header must be swapped against a new label, or popped. In

the former case, the MPLS router swaps the MPLS header and forwards the packet

to the next hop specified in the NHLFE. In the latter case, the MPLS router pops

the label and forwards the packet to the next hop specified in the NHLFE.

MPLS headers are 32 bits long and labels take only twenty bits out of these

thirty-two bits, therefore leaving room for further information inside the header. The

1.2. Virtual circuit packet switching with IP 16

twelve remaining bits are used as follows. First, MPLS is designed to be able to take

into account Quality of Service (QoS), and three experimental (exp) bits have been

allocated to handle up to eight QoS classes. Second, MPLS allows hierarchical domain

nesting: when a packet enters an MPLS domain which is contained in another MPLS

domain, a new label is appended to the packet, which was already carrying one label.

This is referred to as label stacking. For instance, Figure 1.6 shows two nested MPLS

domains. A bottom of stack (bos) bit indicates whether a label is the last in the stack

or not. Finally, each MPLS router decrements an 8-bit Time To Live (TTL) field and

discards packets when the value of this field initially set by the ingress LER reaches

zero. The reason for this mechanism is to avoid packets from indefinitely looping in

case a circular virtual circuit is mistakenly created. The division of an MPLS header

into the four fields we have just described is summed up in Figure 1.4.

A main point of interest with FECs in a traffic engineering context is that they

support aggregation. All packets from different sources but entering the MPLS do-

main through the same LER, and bound to the same egress LER, can be assigned to

the same FEC and therefore the same virtual circuit. In other words, there is no need

to establish a new virtual circuit for each (source, destination) pair read in the head-

ers of incoming packets. Once an ingress LER has determined the FEC of a packet,

the ingress LER assigns a virtual circuit to the packet via a label number. Also, FEC

definitions can take into consideration IP packet sources in addition to destinations.

1.2. Virtual circuit packet switching with IP 17

MPLS Domain

MPLS nested
Domain

IPIP IPL1 IPL2 IPL2L3 IPL2L4 IPL2

Figure 1.6: Nested MPLS domains. In the inner MPLS domain, two labels are

stacked.

Two packets that enter the MPLS domain through the same LER and going to the

same destination can use different sets of links so as to achieve load balancing, that

is, put the same amount of traffic on all links hereby distributing the load of traffic

on each link. A FEC can also depend on additional parameters such as the Type of

Service bits of the IP header to provide differentiated services to IP traffic [23].

Establishing virtual circuits and mappings or bindings between FECs and labels

and building the FIB at each MPLS router is the responsibility of a signaling protocol.

The MPLS architecture [62] does not impose to use any specific signaling protocol.

The only requirement is that, on a given link and for a given LSP, labels are assigned

1.2. Virtual circuit packet switching with IP 18

a) Downstream
unsolicited

b) Downstream on
demand

Upstream node
for an FEC “a”

Upstream node
for an FEC “a”

Downstream node
for an FEC “a”

Downstream node
for an FEC “a”

Label binding for “a”
Label binding for “a”

Request for binding for “a”

Direction for flows in FEC “a” Direction for flows in FEC “a”

Figure 1.7: Label distribution modes. Downstream unsolicited and downstream

on demand label distribution modes.

by the downstream node and advertised to the upstream node. Two refinements

have been devised from this requirement, as shown in Figure 1.7. In downstream

unsolicited label distribution mode, a node recognizes that it is a downstream node

for a FEC and sends a label binding message to the upstream node for that FEC. The

downstream node decides by itself to send the binding message without any trigger

from the upstream node. Conversely, in downstream on demand mode, the upstream

node identifies that it needs a label binding message for a particular FEC and requests

that the downstream node sends this label binding message.

Although no label signaling protocol is imposed by the MPLS standards, only

two signaling protocols for MPLS have been developed. RSVP-TE [8] is based on

a resource reservation protocol for the Internet, RSVP [13], to which it adds the

1.3. Multicast 19

capability to advertise LSPs. Another protocol, LDP (Label Distribution Protocol

[3]), has been defined from scratch as a part of the MPLS design effort. An extension

to LDP, namely CR-LDP (Constraint Routing LDP [41]), adds important features

to LDP with respect to traffic engineering. One of the main improvements of CR-

LDP is the support of Explicit Routing, where a single node or an offline server which

precomputes paths can fully define and advertise LSPs. The differences between these

two signaling protocols are examined in [14].

MPLS is still a new technology. The need for a new VC-switching technology with

IP packets to replace IP over ATM has been identified in 1996 and standardization

of MPLS commenced in 1997 [62]. The standardization process is still continuing at

the time of this writing, and one of the big pieces of work that remains to be added

to this effort is multicasting.

1.3 Multicast

So far, we have concentrated on point-to-point communication or unicast, where a

single source is sending data to a single receiver. Many applications however require

that data be sent simultaneously to several receivers. The best example of such a

requirement is teleconferencing between a group of three or more people. When one

of the members of the group is speaking, his/her voice must be delivered to all other

group members: this is called point-to-multipoint communication, or multicast.

1.3. Multicast 20

A

Member of a
multicast group

Router

Portion of a link used for
unicast traffic between a and d

Portion of a link used for
unicast traffic between a and c

Portion of a link used for
unicast traffic between a and b

Remaining portion of a
link for other traffic

B

D

C

Figure 1.8: Multicast achieved through unicast. Member A sends the same data

three times to members B, C and D.

A simple solution to implement multicasting is to send the same data in turn to all

other members of the conference. In other words, point-to-multipoint communication

can be achieved through multiple point-to-point communications. However, such a

solution is expensive in terms of bandwidth utilization: the same information must

be sent n−1 times if the teleconference gathers n people, thus wasting bandwidth. In

Figure 1.8, A sends the same data three times, wasting two thirds of the bandwidth

on the leftmost link. A more efficient support of multicast in a network sets up a

1.3. Multicast 21

multicast routing tree, where the switches are the nodes of the tree and the links are

the edges of the tree. Each switch that is a bifurcation of the tree duplicates packets

to each outgoing link. By forwarding data on this tree structure and duplicating

data at intermediate nodes of the tree, the same information flows on each link of

the tree only once, hereby saving bandwidth. Multicast routing trees can be either

Shortest Path Trees or Core Based Trees. We review each of these structures in the

next subsection.

1.3.1 Multicast routing tree structure

In a shortest path tree structure, each possible source of a multicast group is the root

of a separate tree. The edges of the tree are network links, nodes are routers, and

leaves are members of the multicast group. If the group contains n possible sources,

then n trees must be built. A shortest path tree is obtained by computing the shortest

path (in terms of some link cost — usually the cost is one for each link) between the

source and each other group member. Figure 1.9 shows examples of shortest path

trees rooted at two different nodes in a multicast group of four nodes (Figure 1.9(a)).

The two shortest path trees do not use the same set of links, but all paths from node

A to other nodes (Figure 1.9(b)) and from node B to other nodes (Figure 1.9(c)) use

a minimum number of links.

In center-based or core based tree multicast, all participants are leaves of the same,

unique shared tree. All the traffic generated by the multicast group flows through a

1.3. Multicast 22

A

B

C

D

(c) Shortest Path Tree rooted at B(b) Shortest Path Tree rooted at A

A

B

C

D

(a) A communication network
and a multicast group of four

participants: A, B, C, D

A

B

C

D

Figure 1.9: Shortest path trees. This figure only shows the shortest path trees

rooted at A and B.

special node on this tree, called center or core, as shown in Figure 1.10. Contrary

to shortest path trees, the path between two group members is not guaranteed to be

the shortest. For instance, in Figure 1.10, data sent by node A uses five links before

reaching C when the shortest path between A and C is only three links long. It can

be shown that a particular core based tree, called Steiner Tree [30] is optimal in terms

of bandwidth utilization. However, it can also be proven that computing Steiner trees

is NP-hard [42]. A more thorough comparison between shortest path trees and core

based trees can be found in [68].

In Section 1.1, we discussed link failures with unicast traffic and explained that

traffic has to be rerouted to a different path to avoid a failed link. With datagram

1.3. Multicast 23

(a) A communication network
and a multicast group of four

participants: A, B, C, D

A

B

C

D A

B

C

D

Core

(b) A center-based tree

Figure 1.10: Center-based multicast routing tree. The multicast group shares a

single tree.

packet switching, rerouting is performed automatically online after a link fails while

traffic engineering techniques allow to pre-plan backup paths in circuit switching and

VC-switching. A multicast group member is dropped from a multicast group when

this member cannot reach or be reached by the core or source of the tree anymore.

In order to protect a multicast routing tree from any single link failure, it is possible

to pre-plan a different backup path between each group member and the source or

the core of a multicast routing tree. For instance, in Figure 1.11(a), a core-based

tree centered in C with three group members A, B and D is fully protected by three

pre-planned backup paths. If any single link in the tree fails, the connectivity between

1.3. Multicast 24

C and any dropped group member is restored by rerouting traffic over the backup

path between C and the dropped group member. However, pre-planning involves

additional computations, circuit advertising, and possibly resource reservation on the

backup path to make sure that the rerouted traffic will not overload the backup path.

Backup path pre-planning is therefore costly in terms of computations and bandwidth

reservation. Thus, it is desirable to limit the number of pre-planned backup paths

in a network. In Figure 1.11(b), we show how only two backup paths are required

to protect the multicast routing tree from any single link failure. If link (CA) fails,

traffic between A and C is rerouted over the leftmost backup path. If link (CB) fails,

then multicast traffic can still reach node C via B and the rightmost backup path.

The same backup path is also used when link (CD) fails, hereby keeping node D

reachable from any other member of the tree. Therefore, a single backup path can be

used to protect the multicast routing tree from different link failures.

1.3.2 Multicast with IP

Multicast with IP has been studied since 1988 [21] and a certain range of IP ad-

dresses (all addresses beginning with the four bits 1110, or, in dotted-decimal nota-

tion, 224.0.0.0 to 239.255.255.255) has been allocated for multicast communications.

An IP multicast address is an identifier for a multicast group. IP multicast is defined

for UDP only, an unreliable datagram oriented transport protocol.

1.3. Multicast 25

(a) Unicast rerouting
in a multicast tree

(b) Pre-planned rerouting in a
multicast tree when taking

into account the tree structure

C

B

D

A

B

D

CA

Bidirectional
backup path

Switch or
router

Bidirectional
link

Figure 1.11: Pre-planning backup paths in a multicast routing tree. It is

possible to protect the multicast routing tree with three group members from any

single link failure with only two pre-planned backup paths.

Since a multicast routing tree can span over the whole Internet, establishing a

multicast routing tree and then routing multicast packets is the main issue encoun-

tered by IP multicast. Another issue is that few routers are multicast-enabled in the

Internet. IP multicast is achieved with two protocols.

First, a signaling protocol like IGMP [20] [29] runs between end hosts and routers

and is responsible for managing host group membership. Multicast groups are open

and dynamic. To join a multicast group, a host needs to know the IP address of the

group and send an IGMP message to its next-hop router; on the other hand, a host

can leave a group at any time by sending the appropriate IGMP message.

1.3. Multicast 26

Second, multicast routing protocols run between routers to create and manage

multicast routing trees. Many multicast routing protocols have been designed in the

last decade. The Distance Vector Multicast Routing Protocol (DVMRP [67]) builds

source-rooted trees using a Distance Vector protocol, where each router is able to

determine the outgoing link of a packet based on local information only. MOSPF [48]

extends a unicast routing protocol, OSPF. MOSPF also builds source-rooted trees,

but because OSPF is a link-state routing protocol, each OSPF router knows the full

topology of the network. Thus, MOSPF can build shortest path trees using the well-

known Dijkstra shortest path algorithm [24]. One protocol uses core based trees: Core

Based Tree or CBT [9]. Finally, PIM [27] can build both types of trees. In multicast

groups that contain many receivers (PIM Dense Mode), PIM builds shortest path

trees. Conversely, with smaller groups (PIM Sparse Mode), PIM builds core based

trees.

Last but not least, IP routers are able to duplicate packets. Routers with three

or more links involved in a multicast routing tree must duplicate packets before they

can forward them simultaneously on several links.

Although IP multicasting is well defined and standardized, it is not widely de-

ployed in the Internet [26] mainly because of current multicast routing protocols

scalability issues. We now present how VC-switching technologies, ATM and MPLS,

support multicasting.

1.3. Multicast 27

1.3.3 Multicast with ATM

Three different approaches have been proposed to add multicast support to ATM. The

first one, the usage of point-to-multipoint virtual circuits to carry multicast traffic [2],

requires cell duplication by switches and a specific signaling protocol to advertise the

point-to-multipoint virtual circuits. In [32], the authors make a survey of the different

techniques available to duplicate cells with specific hardware. However, the current

standard ATM signaling protocol does not support point-to-multipoint virtual circuits

implemented in hardware [7]. Moreover, we have seen that ATM switches perform

Segmentation and Reassembly to fit IP packets into ATM cells. With AAL5 [36],

the main adaptation layer currently deployed in ATM networks, cells arriving at a

destination switch are identified solely by a virtual circuit number. ATM switches

that receive multicast cells have no means of knowing the origin of a cell. Therefore,

ATM switches cannot reassemble IP packets contained in cells from different sources

that have been interleaved by the ATM network [18].

The other two ATM multicast approaches emulate point-to-multipoint virtual

circuits with point-to-point virtual circuits [25]. In the multicast virtual circuit mesh

model, every member of a multicast group establishes a point-to-point virtual circuit

to every other member of the group. This approach is not scalable with the number of

multicast group members. Indeed, when a node wants to join or leave a group, every

group member must create or terminate a virtual circuit to the new member. Third,

1.3. Multicast 28

in the Multicast Server model (MCS), a centralized server is responsible for handling

multicast traffic. For instance, in LANE [65], all multicast traffic on an ATM network

is sent to a Broadcast and Unknown Server (BUS) which establishes a point-to-point

virtual circuit with all other members of the group. While MCS does not have the

scalability issue of mesh virtual circuits, the BUS is a single point of failure and can

become a bottleneck in the network.

The Multicast Address Resolution Server (MARS) architecture [5] implements

both mesh virtual circuits and MCS. With MARS, members of a multicast group

must contact a MARS server to join or leave a group. Then, the MARS server can

either act as an ARP server and let a joining host establish a point-to-point virtual cir-

cuit to all other group members, or act as the center of a core based tree and create a

unicast path to every member of the group in order to replace one point-to-multipoint

virtual circuit by several point-to-point virtual circuits. In summary, current imple-

mentations of multicast with ATM only emulate multicasting with unicast virtual

circuits and therefore do not have efficient multicast support.

1.3.4 Multicast with MPLS

Although MPLS natively supports multicasting in its design, MPLS multicast has

not been given a lot of attention and is still at the proposal stage [56] [71]. As a side

note, Alcatel stated to have an implementation running as early as 1999 [17]. This

1.3. Multicast 29

prototype of multicast over MPLS uses a proprietary signaling protocol or proprietary

extensions to an existing signaling protocol.

Multicast and unicast traffic require different types of processing from routers. For

instance, IP identifies multicast packets by looking at the multicast address range.

In MPLS, unicast and multicast packets have already been assigned a different type

code in the link-layer header [61]. Therefore, MPLS routers know whether a packets

is from a unicast or a multicast flow.

MPLS multicast is fundamentally different from ATM multicast. First, MPLS

routers do not need to perform Segmentation and Reassembly, thus the aforemen-

tioned frame interleaving issue does not exist in MPLS multicast networks. Second,

MPLS routers are mainly IP routers enhanced to support MPLS. The packet duplica-

tion mechanism that is implemented in IP routers to support IP multicast can be used

to duplicate MPLS packets. MPLS routers at the bifurcation of a multicast routing

tree duplicate packets and send copies of the same packet on different outgoing links.

Each copy of an incoming MPLS multicast packet is assigned a different label before

it is forwarded on an outgoing link. Furthermore, when a packet is duplicated, one

copy can be forwarded using MPLS (the label of the incoming packet is swapped

and the packet is sent to another MPLS router) and another copy can be sent using

IP (the label is incoming is popped and the packet is forwarded to an IP router).

Therefore, a multicast MPLS router can be at the same time a LSR and a LER for

the same multicast virtual circuit.

1.4. Contributions of this thesis 30

Each member of a multicast group can build a shortest path tree multicast LSP

to reach all other members. Alternatively, all members of a group can be leaves

of a common core based tree whose center can be any node of the network. A

signaling protocol performs multicast LSP establishment and termination, online or

offline. MPLS can rely on an IP multicast routing protocol to build the tree online,

and then create a multicast LSP that matches the IP multicast routing tree. The

other alternative is to have MPLS multicast LSPs built offline by a dedicated server.

This solution may be preferable in situations where substantial offline computing is

necessary. The dedicated server computes a multicast routing tree and uses signaling

protocol messages to advertise the multicast LSP. This particular form of routing

where a LSP is fully defined and advertised by a particular node is called Explicit

Routing. Explicit Routing is a traffic engineering technique which is a novelty of

MPLS over ATM. However, the main issue with MPLS multicast is that no signaling

protocol currently supports MPLS multicast virtual circuits (multicast LSPs).

1.4 Contributions of this thesis

Different from datagram switching, virtual circuit packet switching technologies like

MPLS require traffic engineering mechanisms to compute backup paths and to per-

form rerouting after a link has failed. In this thesis, we address the problem of fast

recovery of a multicast routing tree after a link failure.

1.4. Contributions of this thesis 31

Consider an MPLS network over which a multicast routing tree has been estab-

lished, as shown in Figure 1.12. An MPLS network receives traffic directly from

multicast hosts attached to MPLS routers, or from networks which simply relay mul-

ticast traffic from other multicast hosts. When a link of the multicast routing tree

fails, a certain number of multicast hosts accessing the tree directly or through other

networks are dropped from the communication. In this thesis, we present an algo-

rithm which aims at selecting one backup path in a given multicast routing tree to

improve the resilience of the tree for a single link failure. The backup path selected

by the algorithm minimizes the number of group members dropped from a multi-

cast communication on a single link failure. We provide a specification, complexity

analysis and implementation of the algorithm.

Our second contribution is the addition of multicast support to the Linux imple-

mentation of MPLS. A unicast implementation of MPLS is available for the Linux

operating system, but MPLS multicast is barely standardized and no implementation

is available at the time of this writing. We also provide the definition and imple-

mentation of the signaling protocol needed to establish multicast LSPs in an MPLS

network. Our signaling protocol implements Explicit Routing to establish multicast

LSPs. Any MPLS router or alternatively a dedicated server can establish mLSPs.

Our third contribution is the design and implementation of an MPLS multicast

rerouting mechanism, MPLS multicast Fast Reroute. MPLS multicast Fast Reroute

1.4. Contributions of this thesis 32

MPLS
Network

Network
Network

Network

Network

Other link

Link of a
multicast tree
Access link

MPLS Router

Router

Figure 1.12: MPLS multicast routing tree. In this example, multicast group

members are not represented and send multicast traffic over the tree established in

the MPLS domain via other networks.

is an extension to MPLS Fast Reroute [34], a unicast MPLS unicast rerouting mecha-

nism. We provide a description and the implementation of both the MPLS multicast

Fast Reroute mechanism itself and the signaling protocol extensions necessary to

support the rerouting mechanisms. Although our implementation of MPLS multi-

cast Fast Reroute runs over off-the-shelf Linux PC-routers, it can reroute multicast

traffic in less than 50 ms (without propagation delay) depending on the size of the

tree, thus making link failures unnoticeable to users of multicast applications like

teleconferencing.

1.4. Contributions of this thesis 33

The remainder of this thesis is structured as follows. In Chapter 2, we present

techniques to protect networks from link failures. These techniques range from mech-

anisms implemented in the physical layer to a traffic engineering mechanism specific

to MPLS unicast. In Chapter 3, we propose a graph algorithm that builds a particular

backup path that minimizes the number of group members dropped from a multicast

communication on a single link failure. In Chapter 4, we present MPLS Multicast

Fast Reroute, an extension to MPLS that implements rerouting in multicast routing

trees and makes use of the backup path computed in Chapter 3. In Chapter 5, we

show how to add multicast support to a unicast implementation of MPLS using PC

hardware and the Linux operating system. Then, we define the signaling protocol re-

quired to implement MPLS Fast Reroute, and describe our implementation of MPLS

Multicast Fast Reroute. In Chapter 6, we present experiments which show how MPLS

Multicast Fast Reroute compares with traditional rerouting techniques.

2

Resilience and protection in networks

Resilience refers to the ability of a network to keep services running despite a failure.

Failure can have many causes, and we will focus in this thesis on “fiber cuts” or “link

cuts”, which result in the loss of all traffic that is forwarded on a failed link. Link

cut is a common failure. For instance, in telephone networks, link cuts are the largest

cause of service interruption time. Indeed, in a study conducted from April 1992 to

March 1994, Kuhn [44] showed that cable cutting was the cause of 25% of telephone

networks downtime.

Resilient networks recover from a failure by repairing themselves automatically.

More specifically, failure recovery is achieved by rerouting traffic from the failed part

of the network to another portion of the network. Rerouting is subject to several

constraints. End-users want rerouting to be fast enough so that the interruption of

service time due to a link failure is either unnoticeable or minimal. The new path

taken by rerouted traffic can be either computed at the time failures occur or before

failures. In the second case, rerouting is said to be pre-planned. Compared with

recovery mechanisms that do not pre-plan rerouting, pre-planned rerouting mecha-

34

35

nisms permit to decrease interruption of service times but may require additional

hardware to provide redundancy in the network and consume valuable resources like

computational cycles to compute backup paths. The different techniques we present

in this chapter illustrate the trade-off between recovery speed and costs incurred by

pre-planning.

In this chapter, we review existing techniques that improve network resilience.

We first present an overview of rerouting and formalize the notion of total repair

time for a network that reroutes traffic after a link failure in Section 2.1. In Section

2.2, we describe lower (physical and MAC) layer rerouting techniques. Low layer

rerouting techniques rely solely on hardware and are therefore the fastest rerouting

techniques available. However, they also require expensive hardware redundancy.

We compare rerouting at lower layers with rerouting performed by the network layer

without pre-planning in Section 2.3. Network layer rerouting is purely implemented

in software and is therefore slower than lower layer rerouting. However, network layer

rerouting does not use pre-planning, hence saving costs in hardware and CPU cycles

compared with lower layer rerouting. Performing rerouting between lower layers and

the network layer with ATM or MPLS presents a trade-off between recovery speed

and pre-planning costs. In Section 2.4, we give an overview of MPLS Fast Reroute,

a unicast rerouting technique that takes advantage of this trade-off. As shown in

Section 1.3.1, taking the tree topology of multicast groups into account for routing

2.1. Overview of rerouting 36

Source Destination

Path
Switching

Node

Path
Merging

NodePrimary path

Backup path

X
Link failureA

B

C D

E F

Figure 2.1: Rerouting overview and terminology. Traffic between A and B on

the primary path is rerouted over the backup path when link (CD) fails.

purposes leads to cost savings in terms of computations and bandwidth. As a result,

techniques specifically designed for multicast traffic have been developed. We describe

these multicast rerouting techniques in Section 2.5.

2.1 Overview of rerouting

We present here general concepts and terminology concerning rerouting. Rerouting

is a technique that can be used in both Circuit Switching and Packet Switching

networks. When a link in a network fails, traffic that was using the failed link must

change its path in order to reach its destination: it is rerouted from a primary path to

a backup path. The primary and the backup path can be totally disjoint or partially

merged. Figure 2.1 presents an example where a source node A sends traffic to a

destination node F , and where a link on the primary path fails. In the remainder of

this section, we will refer to this example to illustrate rerouting. A complete rerouting

2.1. Overview of rerouting 37

technique consists in seven steps. The first four concern rerouting after a link has

failed to switch traffic from the primary to the backup path, while the last three

concern rerouting after the failed link has been repaired to bring back traffic to the

primary path.

First, the network must be able to detect link failures. Link failure detection can

be performed by dedicated hardware or software by the end nodes C and D of the

failed link. Second, nodes that detect the link failure must notify certain nodes in the

network of the failure. Which nodes are actually notified of the failure depends on the

rerouting technique. Third, a backup path must be computed. In pre-planned rerouting

schemes however, this step is performed before link failure detection. Fourth, instead

of sending traffic on the primary, failed path, a node called Path Switching Node

must send traffic on the backup path. This step in the rerouting process is called

switchover. Switchover completes the repairing of the network after a link failure.

When the failed link is physically repaired, traffic can be rerouted to the primary

path, or keep being sent on the backup path. In the latter case, no further mechanism

is necessary to reroute traffic to the primary path while three additional steps are

needed to complete rerouting in the former case. First, a mechanism must detect the

link repair. Second, nodes of the network must be notified of the recovery, and third

the Path Switching Node must send traffic back on the primary path in the so-called

switchback step.

2.1. Overview of rerouting 38

Consider a unicast communication. When a link of the path between the sender

and the receiver fails, users experience service interruption until the path is repaired.

The length of the interruption is the time between the instant the last bit that went

through the failed link before the failure is received, and the instant when the first

bit of the data that uses the backup path after the failure arrives at the receiver. Let

Tdetect denote the time to detect the failure, Tnotif the notification time, Tswitchover

the switchover time, and dij the sum of the queuing, transmission and propagation

delay needed to send a bit of data between two nodes i and j. Then, for the example

given in Figure 2.1, the total service interruption time for the communication Tservice

is given by:

Tservice = Tdetect + Tnotif + Tswitchover + (dBE + dEF)− (dDE + dEF). (2.1)

The quantity (dBE− dEF)− (dDE− dEF) does not depend on the rerouting technique

but rather on the location of the failure. Therefore, we define the total repair time

Trepair which only depends on the rerouting mechanism by

Trepair = Tdetect + Tnotif + Tswitchover. (2.2)

The total repair time is the part of the service interruption time that is actually spent

by a rerouting mechanism to restore a communication after a link has failed.

2.2. Protection at the MAC and physical layers: self-healing rings 39

2.2 Protection at the MAC and physical layers:

self-healing rings

A ring network is a network topology where all nodes are attached to the same set of

physical links. Each link forms a loop. In counter rotating ring topologies, all links

are unidirectional and traffic flows in one direction on one half of the links, and in the

reverse direction on the other half. Self-healing rings are particular counter rotating

ring networks which perform rerouting as follows. In normal operation, traffic is sent

from a source to a destination in one direction only. If a link fails, then the other

direction is used to reach the destination such that the failed link is avoided. Self-

healing rings require expensive specific hardware and waste up to half of the available

bandwidth to provide full redundancy. On the other hand, lower layer protection

mechanisms are the fastest rerouting mechanisms available as self-healing rings can

reroute traffic in less than 50 ms. In this section, we present four MAC and physical

rerouting mechanisms which all rely on a counter rotating ring topology: SONET

UPSR and BLSR Automatic Protection Switching, FDDI protection switching, and

RPR Intelligent Protection Switching.

SONET is a physical layer technology for optical transmission [11] [12]. In SONET,

protection with self-healing rings is called “Automatic Protection Switching” (APS

[10]) and comes in two flavors. The first one, Unidirectional Path-Switched Ring ar-

2.2. Protection at the MAC and physical layers: self-healing rings 40

chitecture (UPSR, see Figure 2.2), benefits from 1+1 protection. In 1+1 protection,

two rings are used. A source injects exactly the same traffic in reverse directions

on both rings. The destination receives the same data on each ring, but takes into

account traffic from one ring only. On link failure, the receiver detects the increase of

the bit error rate or the absence of traffic on one of the rings, and then decides to take

into account the traffic from the other ring. The SONET standards specify that the

service interruption time should not exceed 50 ms, which is low enough for the outage

to be unnoticeable by customers who participate in a live conversation where voice

is carried over a SONET network. While service recovery with this technique meets

the 50 ms goal, SONET UPSR requires a substantial amount of dedicated backup

resources as half of the links are used for path restoration purpose only.

The second protecting scheme, Bidirectional Link-Switched Ring architecture (BLSR,

see Figure 2.3), benefits from 1:1 protection. In 1:1 protection, every link can carry

both regular traffic and backup traffic at the same time and thus does not require

dedicated backup links. On a link failure, the node upstream of the failed link wraps

traffic from one ring to another ring in the reverse direction so that traffic still can

reach its destination. BLSR is as fast as Unidirectional Path-Switched protection

and does not waste as many resources, as there is no notion of dedicated primary and

backup link [11].

2.2. Protection at the MAC and physical layers: self-healing rings 41

SONET Add
Drop Multiplexer

SONET ring
(optic fibers)

Working path
(on working fiber)

Backup path
(on backup fiber)

source

destination

Figure 2.2: SONET self-healing ring: Unidirectional Path-Switched Ring

architecture. UPSR achieves 1+1 protection.

SONET add drop
multiplexer

SONET ring
(optic fibers)

Regular path
for traffic

Rerouted traffic on
link failure

Link failure

source

destination

Figure 2.3: SONET self-healing ring: Bidirectional Link-Switched Ring ar-

chitecture. BLSR achieves 1:1 protection.

2.2. Protection at the MAC and physical layers: self-healing rings 42

The MAC layer provides the means for IP to send packets over a local area net-

work. Fiber Distributed Data Interface (FDDI [4]) implements at the MAC layer a

protection mechanism that is similar to SONET BLSR. FDDI runs over dual counter

rotating rings. In normal operation, traffic is sent on one ring only. Like BLSR, FDDI

wraps paths when a link failure is detected and uses the second ring only as a backup

ring. Therefore, FDDI implements 1+1 protection and requires full link redundancy.

Resilient Packet Ring is a more recent MAC protocol designed to run on multiple

counter-rotating rings (see Figure 2.4(a)) [37]. In RPR, path protection is called

Intelligent Protection Switching (IPS). IPS can be viewed as an enhanced SONET

BLSR mechanism. Indeed, when a link failure occurs, traffic is first wrapped exactly

like SONET BLSR does (Figure 2.4(b)). The emitting node is notified of the failure

and changes the ring on which it sends traffic (Figure 2.4(c)). The new path taken by

packets is therefore shorter than the wrapped path, resulting in both shorter delays

for packets and a better utilization of the available resources.

The lower layer rerouting mechanisms are fast because the nodes that detect

the failure perform themselves instantaneously the switchover step, bypassing the

notification step. The total repair time is therefore reduced to the detection time

(Trepair = Tdetect).

2.2. Protection at the MAC and physical layers: self-healing rings 43

RPR switch

RPR ring

Link failure

Regular path
for traffic

Rerouted traffic
on link failure

(a) Normal path (b) Wrapped path

(c) Steered path

source

destination

source

destination

source

destination

Figure 2.4: Intelligent Protection Switching with a Resilient Packet Ring.

IPS is an enhancement of BLSR.

2.3. Network layer protection 44

2.3 Network layer protection

Packet switching networks like the Internet are inherently resilient to link failures.

Routing protocols [35] [46] [49] [57] [60] [63] take account for topology changes such

as a link failure and recompute routing tables accordingly using a shortest path algo-

rithm. When all routing tables of the network are recomputed and have converged,

all paths that were using a failed link are rerouted through other links. However, con-

vergence is fairly slow and takes usually several tens of seconds. Part of the reason for

this is that routing protocols use timers to detect link failure with coarse granularity

(1 second) making the Tdetect term in Equation 2.2 large compared with lower layer

rerouting mechanisms. Second, all routers in the network have to be notified of the

failure. Propagating notification messages is done in an order of magnitude of tens of

millisecond which makes Tnotif negligible compared with Tdetect. Indeed routers only

need to forward the messages with no additional processing. Finally routing tables

have to be recomputed before paths are switched. Recomputing routing tables im-

plies using CPU intensive shortest path algorithms which can take a time Tswitchover

of several hundred milliseconds in large networks.

In [1], the authors argue that it is possible to perform IP rerouting in less than

one second by shrinking the Tdetect and Tswitchover terms of Equation 2.2. First, they

propose to use subsecond timers to detect failures and decrease the value of the Tdetect

term. Second, they suggest that routing convergence is slow due to the obsolescence

2.4. MPLS Unicast Fast Reroute 45

of the shortest path algorithms employed in current routing protocols which would be

able to recompute routing tables at the millisecond scale if faster, more modern algo-

rithms were used. In summary, expected rerouting times in networks using modified

routing protocols are below one second, but the authors also argue that millisecond

network layer rerouting is achievable. However, implementation of those guidelines

requires major modifications in current routing algorithms and routers.

2.4 MPLS Unicast Fast Reroute

Rerouting at the MAC and physical layer is fast but requires dedicated hardware.

On the other hand, IP rerouting is slow but does not rely on any specific topology

and is implemented in every router over the Internet. MPLS, which is implemented

between the IP and MAC layers, supports rerouting mechanisms that provide a trade-

off between repair speed and deployment cost.

Several methods have been proposed to reroute unicast traffic in MPLS [58]. We

present here the fastest MPLS rerouting mechanism available, MPLS Fast Reroute

[34]. A slower, less complex mechanism can be found in [64]. A comparison of different

MPLS rerouting mechanisms can be found in [28].

Fast Reroute relies on pre-planning and requires that a backup path is computed

and advertised before a link failure can be repaired. Figure 2.5 illustrates unicast Fast

2.4. MPLS Unicast Fast Reroute 46

Ingress LER Egress LERPSL PML
(a) (b) (c) (d)

(e)

(f)

(g) (h)

(i)

Incoming traffic Outgoing traffic

Backup
path

Primary
path

Notification
path

Link failure
Label Switching
Router (LSR)

U

Figure 2.5: Unicast Fast Reroute mechanism. When link (c) fails, the traffic

that flows from the ingress LER to the egress LER is rerouted from the primary path

to the backup path.

Reroute. Suppose traffic goes from the Ingress LER to the Egress LER of an MPLS

domain through the primary LSP (a, b, c, d, e), and that the backup LSP (f, g, h, i) has

already been set up. The first router of the backup path is called PSL (Path Switching

LSR), and the last router of the backup path is called PML (Path Merging LSR). If

link c fails, the router U upstream of c detects the failure and sends the packets whose

destination was the Egress router back to the Ingress router. When the first of those

packets reaches the PSL, the PSL knows that a failure has occurred. Alternatively,

U could send a notification message to the PSL to let it know of the failure. The PSL

then forwards on the backup path the packets coming back from U . This ensures that

no packet is lost after the fault is detected by U , during the notification step of the

2.4. MPLS Unicast Fast Reroute 47

rerouting mechanism. The switchover step is instantaneous as the PSL only needs to

start forwarding the packets coming from the Ingress LSR going to the Egress LSR on

the backup path instead of the primary path. A disadvantage of Fast Reroute is that

the packets sent during the notification step arrive out of order. Also, some packets

will cover up to three times the distance between the ingress and the egress router if

the PSL is the ingress node, the PML is the egress node, and the failed link is the

last link on the primary path before the PML. The major advantage of MPLS unicast

Fast Reroute, however, is that rerouting is fast and no packet is lost after the fault

is detected. When the failed link is physically repaired, node U sends a notification

message to the PSL which can send traffic back from the backup path to the primary

path in the switchback step. Switchback, like switchover, is instantaneous.

MPLS Fast Reroute is faster than IP rerouting but slower than MAC or physical

layer rerouting. Indeed, Fast Reroute saves the switchover step that is expensive in

IP rerouting, but does not get rid of the notification step as lower layer mechanisms

do. Detection can be performed as in SONET using dedicated hardware or like in

routing by sending probes over the link regularly. Detection times are expected to be

in the order of 1 to 100 milliseconds. Notification takes the same amount of time as

with network layer rerouting, that is, a few milliseconds. All in all, the repair time is

Tservice = Tdetect + Tnotif and is expected to be as fast as SONET [34].

2.5. Multicast fault recovery 48

2.5 Multicast fault recovery

Unicast rerouting mechanisms can protect multicast routing trees from link failures

by setting up a backup path from each group member to the core of a core based

tree or the source of a shortest path tree. Protecting multicast routing trees from

link failures requires to compute, advertise and reserve bandwidth for many unicast

backup paths, some of them possibly having links in common and therefore leading

to link capacity wastes if bandwidth is reserved on the backup paths. A few rerouting

mechanisms applicable to ATM or MPLS that take multicasting into account have

been proposed in the literature.

In [43], an algorithm that builds a primary and a backup tree at the same time

is presented. The algorithm minimizes the bandwidth that is used by the primary

and the backup paths. The algorithm selects in turn every member of the group,

starting with the source (in the case of shortest path trees) or center (in the case of

center-based trees). For each member, two disjoint paths from the source or center to

this member that respect certain resource availability properties are computed. One

path is inserted in the primary tree and the other in the backup tree. Bandwidth

used by the trees is minimized. However, since a backup path protects the tree for

all possible link failures, the total bandwidth that should be reserved for the backup

tree is the same as the bandwidth reserved for the primary tree. Similar algorithms

that do not take bandwidth utilization into consideration but also build a primary

and a backup tree simultaneously are discussed in [40] and [47].

2.5. Multicast fault recovery 49

In [69], the authors introduce an online mechanism able to repair ATM multicast

routing trees. When a failure occurs in an ATM multicast routing tree, the multicast

routing tree is split into two smaller trees, T1 and T2. One of these smaller trees T1

contains the source or center of the tree, and the other T2 is the tree rooted at the

switch S downstream of the failed link with regards to the source or center of the

tree. When S detects the link failure, S sends a failure notification message that

contains its unique switch identifier to all of its neighbors. Each neighbor forwards

in turn the notification message to its own neighbors and so on, thus flooding the

network with the notification message. The first switch S ′ of T1 that receives the

notification message replies to S in order to set up a backup path between itself and

S. A candidate backup path is the path taken by the notification message from S to

S ′, but any other path between S and S ′ can be chosen as a backup path. This backup

path is inserted in the multicast routing tree such that S becomes a downstream node

or child of S ′ in the reconfigured multicast routing tree. As expected, this mechanism

compares well compared with IP rerouting but poorly compared with SONET, since

the backup path is computed online instead of being pre-planned. According to the

simulations in [69], this mechanism can repair multicast routing trees in 400 ms. The

advantage of this ATM multicast routing tree rerouting mechanism is that it repairs

a tree with a single backup path.

2.5. Multicast fault recovery 50

Current multicast rerouting mechanisms protect multicast groups from any link

failure. As a result many backup paths must be computed, advertised and bandwidth

must be allocated for the backup traffic which will use the backup paths only on a

link failure. In this thesis, we consider the case where CPU and bandwidth resources

are sparse, and assume that only one backup path is deployed in a multicast routing

tree. In the next section, we develop an algorithm that computes this backup path.

3

A multicast routing tree repair algorithm

In this chapter, we propose an algorithm for rerouting multicast communications.

The presented algorithm presents a trade-off between resource requirements and the

level of protection when pre-planning rerouting. Given a network and a multicast

group, we compute a single, pre-planned backup path for the multicast routing tree

corresponding to the multicast group. The backup path is selected so that the number

of group members dropped from the multicast communication if a single link of the

network fails is minimized.

In Section 3.1, we model the network as a graph and the multicast group as a

tree. In Section 3.2, we propose a graph algorithm that aims at computing the afore-

mentioned backup path. Then, we propose extensions to our algorithm in order to

update a backup path computed prior to changes in the multicast group, e.g. joining

and leaving members. Finally, in Section 3.3, we determine the time complexity of

the algorithms in the average case and the worst case.

51

3.1. Problem modeling 52

MPLS Network To another
network or hostLER 1

LSR 1

LER 2

LER 3

LER 5

LSR 2

To another
network or host

To another
network or host

To another
network or host

LER 4 To another
network or host

Other link of the
MPLS network

Access link

Edge of ET and EN

Other edge of EN

Node of VT and VN

Other node of VN

a) A MPLS network and a multicast tree

LSR 3

Link of a
multicast tree

S

LER 1
LSR 1

LER 2

LSR 2

LER 5

LER 3

LER 4

b) Model

LSR 3

w>0

w>0

w=0

w>0

w>0

Figure 3.1: Network and multicast group model.

3.1 Problem modeling

The network considered in this chapter consists of a set of routers which can be either

Label Switching Routers (LSRs) or Label Edge Routers (LERs). The modeling process

is shown in Figure 3.1 for an example. Routers are connected by point-to-point links.

End-hosts are attached to LERs of the MPLS network either directly or via other

networks. Links between an LER of the considered network and an end-host or a

3.1. Problem modeling 53

router of another network are called access links. A multicast group is a set of hosts

which communicate together. Data that is sent by a multicast group member to a

multicast group is received by all other group members.

In this section, we model the network as a graph G = (V,E). The set V of the

vertices of the graph contains the routers (LSRs and LERs) of the network. The set

E of the edges of the graph contains the links of the network. Set E does not contain

the access links. All links are assumed to be bidirectional.

Further, we assume that a multicast communication has been established over

the network. Let T = (VT , ET) be the undirected link weighted tree which maps the

multicast routing tree of the multicast communication. The multicast routing trees

can be organized as a shortest path tree or a core based tree. In the case where the

multicast routing tree is a core based tree, we assume that the core is not a LER. We

denote by S the source of T if T is a shortest path tree or the core of T if T is a core

based tree. The set VT of the nodes of the tree contains the routers of the multicast

routing tree. The set ET of the links of the tree contains the links of the multicast

routing tree. Tree T is embedded in graph G and therefore VT ⊂ V and ET ⊂ E.

In a tree, the children of a node i are the nodes immediately downstream of i with

regards to S and the parent of i is the node immediately upstream of i with regards

to S. Let childi ⊂ VT be the set of the children of node i ∈ VT and parenti ∈ VT be

the parent of node i. Similarly, given a link l, let downl ⊂ ET be the set of the links

3.1. Problem modeling 54

immediately downstream of link l with regards to S. Let subT (i) = (VsubT (i), EsubT (i))

be the subtree of T with regards to S and which root is node i. Let lsubT (l) =

(VlsubT (l), ElsubT (l)) be the subgraph of T which contains node i upstream of l with

regards to S, link l, and the subtree rooted at the node j downstream of l with

regards to S. By definition, lsubT (l) = ({i} ∪ VsubT (j), {l} ∪ EsubT (j)) is a tree.

We define the weight wT,l of a link l ∈ ET as follows. Consider a node i ∈ VT and

link upi ∈ ET immediately upstream of i with regards to S. If i is a LER, wT,upi is the

number of multicast group members that send or receive multicast traffic via an access

link attached to node i. If i is a LSR, then let wT,upi = 0. LERs of the MPLS network

can learn the number of multicast hosts accessible via each access link by a signaling

protocol like IGMP v3 [16]. If the information on the number of multicast hosts

accessible via each access link is not available in the MPLS network, we set to “1”

the weight of the link upstream of each LER which sends or receives multicast traffic

for the considered multicast group via at least one of its access links. In summary,

link weights are assumed to be known at multicast routing tree establishment time.

We call a receiver a node immediately downstream of a link l with regards to S such

that wl 6= 0. Receivers are LERs which transmit multicast traffic to or from multicast

group members over an access link. A leaf of a tree T is a node i ∈ VT such that

childi = ∅. Let LT ⊂ VT be the set of the leaves of T . Note that all leaves are

receivers, but a receiver is not necessarily a leaf. Indeed, a LER that forwards traffic

3.1. Problem modeling 55

A

B

C
D

fCD=1

A

B

C
D

fCD=2

Access link

Link of the
multicast tree

Multicast host

Node of the
multicast tree

(a) (b)

Figure 3.2: Link failure rate weight. We consider that the failure of link CD when

fCD=1 and when two multicast hosts are attached to D is equivalent to the failure

of link CD when fCD=2 and when one multicast host is attached to D.

from the tree over access links can also forward the same traffic to LSRs or other

LERs of the tree before this traffic reaches an access link. In practice, such a LER

pops labels before sending packets over the access link and swaps labels before sending

packets to other routers of the MPLS domain. We introduced this capability as mixed

L2/L3 forwarding in Section 1.3.4. In Figure 3.1 for instance, LER 2 performs mixed

L2/L3 forwarding. If only one host is attached to LER 2 via the access link of LER 2,

then the weight of the link between LER 2 and LSR 2 is “1” while LER 2 is not a

leaf for tree T .

We assume that the only possible failure for a link is a link cut. When a link l

fails, it is removed from E. The failure rate Fl for a link l ∈ E is the average number

of failures per unit of time for link l. The Mean Time Between Failures (MTBF) of a

3.1. Problem modeling 56

link is the time that passes before the link fails. If the Mean Time Between Failures

MTBFl of a link l is known, then Fl = 1
MTBFl

. We assume that the failure rate

is known for each link of the network and that link failure rates are low enough to

consider that at most one link fails at any given time. We associate a positive link

failure rate weight fl to each link l ∈ E which is proportional to the link failure

rate, relatively to the failure rates of the other links of the network. For instance,

if the network is constituted by two different kinds of links, and if links of the first

kind fail twice as often as links of the second kind, then f = 2 for the links of the

first kind and f = 1 for the links of the second kind. In the case where failure rate

information is not available, we assume that the failure rate is the same for every link

in the network, i.e.:

∀l ∈ E, fl = 1.

If l ∈ ET fails, then tree T is split in two trees T1 and T2. Let T1 be the tree which

contains S and let T2 be the other tree. All multicast hosts attached to a LER of T2

are dropped from the multicast communication, and all LERs of T2 are dropped from

tree T . If LER i is dropped from T then wT,upi multicast hosts are dropped from the

multicast communication. In this thesis, we make the following design choice. We

consider that dropping twice a given number of hosts if a link with a given failure

rate fails (Figure 3.2(a)) is equivalent to dropping the given number of hosts if a link

with twice the failure rate fails (Figure 3.2(b)).

3.1. Problem modeling 57

A path PN1,Np between two vertices N1 and Np of graph G is a sequence of vertices

(N1, N2, . . . , Np) such that ∀i ∈ [1..p − 1], (Ni, Ni+1) ∈ E and ∀i 6= j, Vi 6= Vj. We

denote by VPN1,Np
= {Ni|i ∈ [1..p]} the set of the nodes of PN1,Np and by EPN1,Np

=

{(Ni, Ni+1)|i ∈ [1..p− 1]} the set of the links of PN1,Np . In a tree T = (VT , ET),

there exists a unique path between any two nodes A,B ∈ VT . Therefore, there

exists a unique path PS,A between root S and node A on the one hand, and PS,B

between S and B on the other hand. Let node S ′A,B be the node Nq ∈ VT such

that PS,A = (S,N1, N2, . . . , Nq, Nr, . . . , A), PS,B = (S,N1, N2, . . . , Nq, Ns, . . . , B) and

Nr 6= Ns. Node S ′A,B is called the Least Common Ancestor (LCA) of A and B.

Definition 1 The Protected Path PPi,j is the unique path (N1, . . . , Np) between

nodes i, j ∈ VT such that:

N1 = i, Np = j and (∀i ∈ [1..p− 1], Ni ∈ VT ∧ (Ni, Ni+1) ∈ ET).

Definition 2 A Backup Path BPi,j is a path (N1, . . . , Np) between two nodes i ∈ VT

and j ∈ VT such that:

N1 = i, Np = j and (∀i ∈ [2..p−1], Ni ∈ (V \VT)∪{i, j}) and (∀i ∈ [1..p−1](Ni, Ni+1) ∈ E\ET).

While a protected path is unique, a backup path may not be unique for a given pair

of nodes. Backup paths protect trees from link failures by providing path redundancy.

A backup path and tree T are link disjoint so that the failure of a link in the tree

3.1. Problem modeling 58

does not prevent the backup path to reroute traffic. Similarly, a backup path and

tree T are vertex disjoint so as to avoid any interference between non-rerouted traffic

and rerouted traffic at any node of a backup path.

We now show that, given two nodes i and j of tree T , if a link of the protected

path PPi,j fails then it is possible to reroute traffic through a backup path BPi,j

without dropping any member of the multicast group. More formally, it is possible

to transform a tree where a link has failed into a new tree T ′ with the same total link

weight by appending the backup path to the original tree.

Claim 1 Given a tree T = (VT , ET), two nodes i, j ∈ VT , the protected path PPi,j, a

backup path BPi,j, and a link b ∈ EPPi,j , there exists a tree T ′ = (VT ′ , ET ′) such that

1. VT ′ = VT ∪ VBPi,j

2. ET ′ = {ET ∪ EBPi,j} \ {b}

3.
∑

l∈ET ′
wT ′,l =

∑
l∈ET

wT,l

Proof:

Let T1 = (VT1 , ET1) and T2 = (VT2 , ET2) be the two smaller trees that result from

the removal of link b in tree T . Trees T and T1 are rooted at node S. Assume without

loss of generality that j ∈ VT1 and i ∈ VT2 . Let i be the root of tree T2. Trees T1 and T2

are link and node disjoint therefore the graph T ′ = (VT ∪ VBPi,j , {ET ∪EBPi,j} \ {b})

3.1. Problem modeling 59

S

i

j

b

(a) Tree T, before failure of link b

w=1

w=1

w=1

w=1

w=0

w=0

(b) Tree T’, after failure of link b

S

i

j

w=1

w=0

w=1

w=1

w=1

w=0

T1

T2

Receiver

Backup path

Link from the
protected path

Other link

Other node

w=1

Weight of a link,
assuming one
multicast group
member per receiver.

Figure 3.3: Protection of a tree from a link failure on the protected path

with a backup path. When link b fails, multicast traffic that was using tree T is

rerouted to use tree T ′ so that no multicast group member is dropped.

which results from merging T1 and T2 via backup path BPi,j is a tree, hence (1)

and (2). Let S be the root of T ′. The sum
∑
l∈ET

wT,l is the total number of multicast

hosts attached to all LERs of T . Similarly, the sum
∑

l∈ET ′
wT ′,l is the total number of

multicast hosts attached to all LERs of T ′. Since VT ′ = VT ∪ VBPi,j = VT ∪ (VBPi,j \

{i, j}) and no multicast host is attached to a vertex of VBPi,j \ {i, j}, the numbers of

multicast hosts attached to any LER of T and T ′ are the same, hence (3). 2

On a link failure in tree T rooted at S, T is split into two trees T1 and T2 as

3.1. Problem modeling 60

S

(w , tdrop, adrop)

Link

Receiver

Other node

(1, 1, 1)
(1, 3, 6)

(1, 1, 1)

(1, 1, 1)(0, 3, 6)

(1, 1, 1)

(1, 1, 1)

(0, 2, 4)

Figure 3.4: Weight w and metrics tdrop and adrop for all links of a sample

tree. In this example, we assume that all seven links of the tree have the same

failure rate (∀l ∈ E, fl = 1) and that each receiver is attached to one multicast group

member.

described above and all receivers in T2 are disconnected from S. If a backup path

BPi,j is inserted in T (see Figure 3.3(a)), then when any link b from the protected

path PPi,j fails a new tree T ′ replaces T to carry multicast traffic and no receiver is

dropped (see Figure 3.3(b)), thus improving the resilience of the tree as defined in

the previous section.

Let tdropl be the number of hosts attached to receivers that are dropped from

tree T when link l ∈ ET fails and no backup path is set up. Since ElsubT (l) is the set

that contains at the same time link l and all links in the subtree of T rooted at the

3.1. Problem modeling 61

node immediately downstream of l with regards to S, then, by definition of tdropl:

tdropl =
∑

k∈ElsubT (l)

wk.

Similarly, we denote by adropl the number of hosts attached to receivers that are

dropped from the tree T on the single failure of link l or any link downstream of l

when no backup path is set up weighted by the link failure rates. By definition:

adropl =
∑

k∈ElsubT (l)

fk tdropk.

In Figure 3.4, we give the values of w, tdrop and adrop for all links on an example.

In the following, we use metric tdrop to formally define the resilience of a tree, and

metric adrop to speed up resilience computations.

We now introduce a formal definition for the resilience of a tree. We have seen

how a link failure partitions a tree T into two trees T1 and T2. If a backup path BPi,j

is set up in T , then according to Claim 1 it is possible to build a new tree T ′ such that

no receiver is dropped from the communication if any link from the protected path

PPi,j fails. Therefore the weighted number of receivers dropped from a multicast

communication using a tree protected by a backup path BPi,j on a single link failure

is:

Rd(i, j) = Rd(j, i) =
∑
k∈ET

k/∈EPPi,j

fk tdropk.

Moreover, assuming that no backup path is set up in T , the number of hosts

3.1. Problem modeling 62

dropped from a multicast communication on an single link failure is:

Rt =
∑
k∈ET

fk tdropk.

Quantity Rt is a constant that depends on the tree topology only whereas Rd also

depends on the end nodes i and j of the backup path BPi,j. Quantity Rt measures

the impact of a link failure on a tree that is not protected by any backup path, while

Rd measures the impact of a link failure on a tree where a backup path is set. The

difference between these two quantities is the number of hosts not dropped from the

communication after traffic is rerouted over the backup path.

Definition 3 The resilience of a tree T = (VT , ET) protected by a backup path between

nodes i, j ∈ VT is defined as:

R(i, j) = Rt −Rd(i, j).

In Chapter 2, we have defined the resilience of a network as the “ability of a network

to keep services running despite a failure”. Therefore, according to the definition

from Chapter 2, a tree protected by a backup path is resilient when a link failure in

the tree with the backup path set up leads to a low number of group members being

dropped from the communication. The metric R(i, j) measures how well a backup

path protects a multicast routing tree and thus matches the definition of the resilience

given in Chapter 2. The higher this metric, the more resilient the tree protected by

the backup path. A resilience is a number between 0 and Rt. A resilience of Rt

3.2. Maximization of the resilience of a tree with a single backup path 63

means that on any link failure in the tree, no multicast group member is dropped

from the multicast communication. On the other hand, a resilience of 0 implies that

the backup path does not prevent any group member from being dropped on any

single link failure.

Definition 4 A backup path BPA,B achieves optimal path protection in a tree T when:

Rd(A,B) = min
i,j∈VT

Rd(i, j).

According to Definition 3, R(i, j) = Rt−Rd(i, j) where Rt is a constant. Therefore

maximizing the resilience R(i, j) boils down to minimizing the quantity Rd(i, j). A

backup path which maximizes the resilience of a tree also achieves optimal path pro-

tection for the tree. In the next section, we propose an algorithm which aims at finding

a backup path that maximizes the resilience of a tree by minimizing quantity Rd.

3.2 Maximization of the resilience of a tree with a

single backup path

In this section, we present an algorithm that aims at determining the backup path

which maximizes the resilience of a tree. Finding the backup path itself is performed

by a shortest path algorithm. We introduce an incremental version of this algorithm

3.2. Maximization of the resilience of a tree with a single backup path 64

that takes into account modifications of a tree which models a multicast group where

hosts can leave and join dynamically.

3.2.1 Main algorithm

We suppose here that no backup path has been previously computed for tree T . Our

algorithm (see Algorithm 1) proceeds as follows. We first compute the tdrop and

adrop metrics for each link of the tree, and preprocess the tree so as to speed up

further Least Common Ancestor (LCA) computations required to compute metrics

Rd. Then, we compute in turn Rd for all pairs of nodes constituted by a leaf of the tree

and another node of the tree. We denote by (A,B) the pair of nodes of the tree which

minimizes the set of the metrics Rd previously computed. A shortest path algorithm

computes the backup path between A and B. If the shortest path algorithm fails to

find a backup path, then no backup path achieves optimal path protection in tree T .

Claim 2 If Algorithm 1 returns a backup path then this backup path maximizes the

resilience of T .

Proof:

Suppose that metrics adrop and tdrop are known for each link of the tree (lines 1

to 3). We first prove by contradiction that at least one end node of a backup path

3.2. Maximization of the resilience of a tree with a single backup path 65

which minimizes Rd is a leaf of T . Suppose the end nodes i and j of a backup path

that minimizes Rd are known and that, by contradiction, i is not a leaf of T .

Let k ∈ childi (see Figure 3.5). Then:

Rd(i, j) = K + adropik

and:

Rd(k, j) = K +
∑

h∈childk
adropkh

where K is the part of metric Rd that is common to Rd(i, j) and Rd(k, j). More

specifically, K takes into account all link failures except for link (i, k) and for all links

downstream of node k with regards to root S. Since:

adropik = fik tdropik +
∑

h∈childk
adropkh

then:

Rd(k, j) < Rd(i, j)

therefore the pair of nodes (i, j) does not minimize Rd, which contradicts the hypoth-

esis. Therefore, at least one of the end nodes A and B of the backup path BPA,B

which maximizes the resilience of T is a leaf. We call A the end node that is a

leaf. The other end node B has no such restriction and may or may not be a leaf.

By construction of nodes A and B in lines 5 to 8, a backup path between A and

B minimizes Rd and thus maximizes the resilience of the tree. The backup path is

computed in line 9 using a shortest path algorithm between A and B over the graph

3.2. Maximization of the resilience of a tree with a single backup path 66

Algorithm 1 Computation of the optimal backup path that maximizes the resilience
of a tree T in a graph G.

FIND OPTIMAL BACKUP PATH(tree T, graph G)

1. for each l ∈ ET do

2. compute tdropl and adropl;

3. endfor

4. Preprocess T (build auxiliary trees) to speed up the computations of Least
Common Ancestors;

5. for each pair (Y, Z) ∈ LT × VT |Y 6= Z do

6. compute Rd(Y, Z);

7. endfor

8. Find the pair of nodes (A,B) such that Rd(A,B) = min
Y ∈LT
Z∈VT
Y 6=Z

Rd(Y, Z);

9. Compute shortest path between A and B in graph G′ = ((V \VT)∪{A,B}, E \
ET);

G′ = ((V \ VT) ∪ {A,B}, E \ET) so that the backup path and the tree are node and

edge disjoint. 2

Definition 5 A near-optimal backup path BPA,B is a backup path such that:

Rd(A,B) = min
i,j∈VT

BPi,j exists

Rd(i, j).

If no optimal backup path is found, then it is possible to extend Algorithm 1 to

find a near-optimal backup path. The extended algorithm (see Algorithm 2) proceeds

as follows. As in Algorithm 1, metrics tdrop and adrop are computed for all links of

the tree and T is preprocessed to speed up LCA computations in lines 1 to 4.

3.2. Maximization of the resilience of a tree with a single backup path 67

j

k

BP(i, j)
BP(k, j)

i

Link of tree ET

Node of VT

Tentative Backup Paths

Part of T between i and j
(not fully represented)

Figure 3.5: Proof of the algorithm. It can be shown that Rd(j, k) < Rd(j, i).

Using a recursion, we show that at least one of the end nodes of the backup path

must be a leaf.

For any pair of nodes nk ∈ VT × VT , the value of the metric Rd does not depend

on the order of the nodes of the pair, and is zero if both nodes of the pair are the

same. Therefore, in a graph which contains |VT | nodes, there is a total number of

Npairs = |VT |(|VT |−1)
2

possible pairs of end nodes for a backup path.

In lines 5 to 7 of Algorithm 2, metrics Rd are computed for all Npairs pairs of

nodes in the tree as defined above and the set of these metrics is ordered from the

lowest to the highest in line 8. In lines 9 to 13, considering in turn each pair of nodes

from the ordered set previously defined and starting from the pair of nodes which

minimizes the set of metrics Rd, a shortest path algorithm computes the backup path

between the two nodes of the pair until a backup path is found. As with optimal

3.2. Maximization of the resilience of a tree with a single backup path 68

Algorithm 2 Computation of the near-optimal backup path.

FIND NEAR OPTIMAL BACKUP PATH(tree T, graph G)

1. for each l ∈ ET do

2. compute tdropl and adropl;

3. endfor

4. Preprocess T (build auxiliary trees) to speed up the computations of Least
Common Ancestors;

5. for each pair (Y, Z) ∈ VT × VT |Y 6= Z do

6. compute Rd(Y, Z);

7. endfor

8. Define the sequence of pairs of nodes (n0, n1, . . . , nNpairs) such that
∀k ∈ [0..Npairs], nk ∈ VT × VT and ∀i ≤ j, Rd(ni) ≤ Rd(nj);

9. i:=0;

10. repeat

11. Compute shortest path between the nodes of pair ni in graph
G′ = ((V \ VT) ∪ {A,B}, E \ ET);

12. i:=i+1;

13. until a backup path is found

backup paths, a near-optimal backup path is not guaranteed to exist. More precisely,

since Algorithm 2 considers in turn all possible pairs of nodes of the tree and tries

to find a backup path between these two nodes until a backup path is found, if no

near-optimal backup path exists for tree then no backup path at all exists for the tree.

For instance, in the case where V = VT and E = ET , no optimal nor near-optimal

backup path can be found for T .

3.2. Maximization of the resilience of a tree with a single backup path 69

Other node

Receiver

Link

S

Node C leaves the
group

Node C joins the
group

S

C

D

Figure 3.6: Tree topology modification after a node leaves or joins a mul-

ticast group. Links and nodes are removed or added downstream of node D with

regards to S when node C leaves or joins the group.

3.2.2 Incremental version

Multicast group members can join or leave a multicast group at all time, making

multicast groups and trees dynamic. When the topology of a tree is modified, it is

possible to avoid rerunning all of Algorithm 1 to compute a new backup path. We

assume here that a backup path has been established between two end nodes A and

B for a tree T with Algorithm 1. We propose Algorithm 3 to handle topological

modifications in a multicast routing tree T .

When a node C leaves (or joins) a multicast group, a certain number of nodes

and links are removed from (or added to) the multicast routing tree. Consider the

path PC,S in tree T . Let D be the first node on PC,S that is either a LER or has

more than one child in T . Therefore, when C leaves (or joins) the multicast group, all

3.2. Maximization of the resilience of a tree with a single backup path 70

Algorithm 3 Computation of the optimal backup path in a graph G that maximizes
the resilience of a tree T ′ resulting from a modification downstream of node D in tree
T with regards to the root S of T .

UPDATE BACKUP PATH(tree T, graph G, node D)

1. for each l ∈ EPD,S do

2. compute tdrop′l;

3. endfor

4. for each pair (Y, Z) ∈ LT × VT |Y 6= Z do

5. update Rd(Y, Z);

6. endfor

7. (A,B) := (Y, Z) ∈ LT × VT |Rd(Y, Z) = min
Y ∈LT
Z∈VT
Y 6=Z

Rd(Y, Z);

8. Compute shortest path between A and B in graph G′ = ((V \VT)∪{A,B}, E \
ET);

links and nodes except D of the path PC,D are removed from (or added to) the tree

as shown in Figure 3.6. We denote by T ′ the modified tree and tdrop′ the modified

metrics tdrop of T ′. If tdropl is the value of metric tdrop for link l in T , then tdrop′l

is the value of metric tdrop for link l in T ′. According to the definition of tdrop, if a

topology modification occurs downstream of D with regards to S, then the values of

the metrics tdrop for links upstream of D with regards to S only are changed.

Algorithm 3 proceeds as follows. First, metrics tdrop are recomputed for links on

the path between nodes D and S in lines 1 to 3. Then, in lines 4 to 6, the metrics

Rd are updated for all pairs of nodes of tree T ′. Let R′d(i, j) be the new value of the

3.2. Maximization of the resilience of a tree with a single backup path 71

metric Rd taken between nodes i and j in tree T ′. It is possible to compute R′d(i, j) in

T ′ using the value of Rd(i, j) in T and therefore avoid doing all computations again.

For instance, if Definition 3 is used to compute the metrics Rd and R′d, then, when C

leaves the group:

Rd(i, j) =
∑

k∈ET \EPPi,j
fk tdropk

=
∑

k∈EPC,D\EPPi,j
fk tdropk

+
∑

k∈EPD,S \EPPi,j
fk tdropk

+
∑

k∈ET \(EPPi,j∪EPC,D∪EPD,S)
fk tdropk.

Since all nodes of PC,D are removed from the tree when C leaves the group, neither

i nor j can be between C and D. Therefore:

∑
k∈EPC,D\EPPi,j

fk tdropk =
∑

k∈EPC,D

fk tdropk.

If we call l the first link on the path from D to C, then the expression above can

be further simplified:

∑
k∈EPC,D

fk tdropk = adropl

and thus:

Rd(i, j) = adropl

+
∑

k∈EPD,S \EPPi,j
fk tdropk

+
∑

k∈ET \(EPPi,j∪EPC,D∪EPD,S)
fk tdropk.

3.2. Maximization of the resilience of a tree with a single backup path 72

Furthermore:

R′d(i, j) =
∑

k∈ET ′\EPPi,j
fk tdrop

′
k

=
∑

k∈EPC,D\EPPi,j
fk tdrop

′
k

+
∑

k∈EPD,S \EPPi,j
fk tdrop

′
k

+
∑

k∈ET ′\(EPPi,j∪EPC,D∪EPD,S)
fk tdrop

′
k

= 0

+
∑

k∈EPD,S \EPPi,j
fk tdrop

′
k

+
∑

k∈ET ′\(EPPi,j∪EPD,S)
fk tdropk.

Consequently:

R′d(i, j) = Rd(i, j)− adropl +
∑

k∈(EPD,S \EPPi,j)

fk(tdrop
′
k − tdropk). (3.1)

Similar expressions are available in the case where C joins a group. Therefore,

instead of completely recomputing all metrics R′d, it is possible to compute the new

metrics R′d by substracting from the old metrics Rd a value of the metric adrop and

adding products fk(tdrop
′
k − tdropk) for links k of a path of a tree. When all metrics

Rd are updated, a backup path is computed in lines 7 to 8 using a shortest path

algorithm between the two nodes of the pair which maximizes the set of all metrics

Rd as in Algorithm 1.

3.3. Complexity analysis 73

Algorithm 3 is able to handle the modification of a multicast routing tree incurred

by any leaving or joining node. In the case where a node is leaving the multicast

group, and where this node is not an end node of the backup path computed for

the tree topology prior to the modification, a trivial alternative to Algorithm 3 is

available to handle the modification. This alternative merely consists in leaving the

formerly computed backup path unchanged. Obviously, the unchanged backup path

is not guaranteed to be optimal anymore, but no further computation is required to

update the backup path. Therefore, to reduce the amount of computations required

to update a backup path on a tree topology change, it is possible to set a threshold on

the number of modifications of the multicast routing tree and not update the backup

path until this threshold is reached. Then, Algorithm 3 can be used to recompute

the backup path.

3.3 Complexity analysis

In this section, we first present a fast computation method for the metric Rd based on

an expression forRd derived from its definition, and methods to compute metrics tdrop

and adrop. Second, we give a general expression for the complexity of Algorithms 1,

2 and 3. Then, we give a complexity analysis in both the average case and worst case

of a tree embedded in a network for all three algorithms.

3.3. Complexity analysis 74

3.3.1 Computation of the metrics

Algorithm 1 is articulated around the computation of several metrics. In line 6 of

Algorithm 1, metric Rd is computed between two nodes of T . It is possible to compute

Rd between two nodes with the definition given in Section 3.1. In Claim 3 we derive

a new expression for Rd which makes use of the adrop metrics. Computing the adrop

metrics for all links of the tree and then computing a value for Rd between two

nodes in the tree is faster than computing Rd using the definition. We postpone the

discussion on the gain in time complexity incurred by this method until Section 3.3.3.

Claim 3 Let A,B ∈ VT and S ′ = S ′A,B. Then

Rd(A,B) =
∑

i∈VPPA,B

∑
j∈childreni
j /∈VPPA,B

adrop(i,j)

︸ ︷︷ ︸
(1)

+
∑

k∈EPS,S′

fk tdropk

︸ ︷︷ ︸
(2)

+
∑

i∈VPS,S′
i6=S′

∑
j∈childreni
j /∈VPS,S′

adrop(i,j)

︸ ︷︷ ︸
(3)

.

(3.2)

Proof:

We prove Claim 3 using a partitioning of ET . Let A,B ∈ VT . We assume that a

backup path has been established between nodes A and B. A partitioning of ET is

3.3. Complexity analysis 75

S

A

B

S'

ET
1\EPP(A, B)

ET
2

ET
3

Receiver

Other node

Other
branch

Branch from the
protected path

Figure 3.7: Computation of Rd(A,B).

(E1
T , E

2
T , E

3
T) with:

E1
T = EsubT (S′),

E2
T = EPS,S′ ,

E3
T = ElsubT (l)|l ∈ ET ∧ parentl ∈ VPS,S′ ∧ parentl 6= S ′ ∧ l /∈ EPS,S′ .

Let E = ET \ EPPA,B . By definition of S ′, EPPA,B ⊂ E1
T therefore a partitioning

of E is (E1
T \ EPPA,B , E2

T , E
3
T) as shown in Figure 3.7. According to the definition of

Rd:

Rd(A,B) =
∑
k∈E

fk tdropk.

3.3. Complexity analysis 76

Thus, using the partitioning of E:

Rd(A,B) =
∑

k∈E1
T \EPPA,B

fk tdropk

+
∑

k∈E2
T

fk tdropk

+
∑

k∈E3
T

fk tdropk

=
∑

i∈VPPA,B

∑
j∈childreni
j /∈VPPA,B

∑
l∈lsubT (i,j)

fl tdropl

+
∑

k∈EPS,S′
fk tdropk

+
∑

i∈VPS,S′
i6=S′

∑
j∈childreni
j /∈VPS,S′

∑
l∈lsubT (i,j)

fl tdropl

When injecting the definition of adrop in the last line, the equation becomes:

Rd(A,B) =
∑

i∈VPPA,B

∑
j∈childreni
j /∈VPPA,B

adrop(i,j) +
∑

k∈EPS,S′

fk tdropk +
∑

i∈VPS,S′
i6=S′

∑
j∈childreni
j /∈VPS,S′

adrop(i,j).

2

The computation method for Rd we have presented requires the knowledge of the

metrics adrop and tdrop, and computations of Least Common Ancestors. Each of the

metrics adrop and tdrop can be computed for all links of T prior to any evaluation of

Rd (lines 1 to 3 in Algorithm 1) with the following recursive relations:

tdropl =

wl if the node downstream of l with regards to S is a leaf,(∑
i∈downl

tdropi

)
+ wl otherwise.

3.3. Complexity analysis 77

for tdrop and:

adropl =

fl tdropl if the node downstream of l with regards to S is a leaf,(∑
i∈downl

adropi

)
+ fl tdropl otherwise.

for adrop.

In [33] the authors show that it is possible to determine a Least Common Ancestor

for any pair of nodes in a tree in constant time after a linear preprocessing of T . This

tree preprocessing is performed in line 4 of Algorithm 1.

3.3.2 General case

We now analyze the time complexity of Algorithms 1, 2 and 3 in the general case.

Let N = |V | be the number of vertices of the graph G, n = |VT | be the number of

nodes of the tree T . The number of links in T is |ET | = n − 1. Let ` = |LT | be the

number of leaves of the tree.

Consider Algorithm 1. In lines 1 to 3, the metrics tdrop and adrop are computed

for every link of T . Computing each metric for all links of the tree can be performed

in linear time with the recursive formula given in Section 3.3.1. Therefore, the time

complexity of lines 1 to 3 is O(n).

In line 4, tree T is preprocessed so as to speed up further LCA computations.

After the tree preprocessing, it is possible to determine the LCA of any pair of nodes

3.3. Complexity analysis 78

in constant time. A linear tree preprocessing algorithm is proposed in [33], hence a

time complexity of O(n) for line 4.

Nodes A and B are determined in lines 5 to 8 by computing the metric Rd between

a leaf and another node. Thus, O(`n) metrics Rd have to be computed and compared.

Computing Rd with Definition 3 involves the addition of products between link failure

rate weights and tdrop metrics for all links of the tree except on the path between

two nodes, hence a complexity of O(n). The complexity of lines 5 to 8 is thus O(`n2)

if Rd is computed with its definition. If Rd is computed with the expression from

Equation 3.2, then three terms must be added. Term (1) involves to determine the

LCA S ′ of a pair of nodes and the addition of metrics adrop for links downstream

of vertices of the protected path between the two nodes for which Rd is computed.

Determining a LCA is performed in constant time as already stated and at most all

n metrics adrop are added in Term (1), hence a time complexity of O(n) to compute

Term (1) of Equation 3.2. Term (2) involves the addition of products between f and

tdrop metrics for all links on the path between S ′ and root S. Since a path can be

up to n links long, the time complexity for computing Term (2) of Equation 3.2 is

O(n). Same as Term (1), Term (3) requires the addition of up to n terms hence a

time complexity of O(n). In summary, computing a single metric Rd between two

leaves can be done in time O(n) with either the definition or the method previously

introduced, and the time complexity of lines 5 to 8 is also O(`n2) in the general case.

3.3. Complexity analysis 79

Last, line 9 computes a backup path between two vertices in a graph of N − n

edges. Classic Dijkstra’s shortest path algorithm [24] solves this problem in time

O((N − n) log(N − n)).

Overall, the time complexity of Algorithm 1 is:

O(n) +O(n) +O(`n2) +O((N − n) log(N − n)) = O(`n2 + (N − n) log(N − n)).

Since ` = O(N) and n = O(N), an upper bound for the complexity of Algorithm 1

is O(N3).

Now consider Algorithm 2. Lines 1 to 7 of Algorithms 1 and 2 are identical. In

line 8, metric Rd is determined for Npairs = O(n2) nodes, then the set of all these

metrics is sorted. Since computing a metric Rd takes time O(n) and sorting a set

of size n2 takes time O(n2 log(n2)) = O(n2 log(n)), the time complexity of line 8

of Algorithm 2 is O(n2n + n2 log(n)) = O(n3). In lines 9 to 13, a shortest path is

computed for up to Npairs pairs of nodes, thus the time complexity of lines 9 to 13 is

O(n2(N − n) log(N − n)). Overall the time complexity of Algorithm 2 is:

O(n) +O(n) +O(n3) +O(n2(N − n) log(N − n)) = O(n3 + n2(N − n) log(N − n)).

Since n = O(N), an upper bound for the complexity of Algorithm 2 is O(N3 log(N)).

Finally, consider Algorithm 3. The maximum length for a path in a tree of n

nodes is n thus the time complexity of lines 1 to 3 is O(n). In lines 4 to 6, `n metrics

Rd are updated. Updating a single metric Rd has a time complexity of O(n) hence

3.3. Complexity analysis 80

a time complexity of O(`n2) for lines 4 to 6. In line 7, the minimum of a set of

Npairs is determined in time O(n2) and in line 8 a shortest path is computed in time

O((N − n) log(N − n)). Therefore, the complexity of Algorithm 3 is:

O(n) +O(`n2) +O(n2) +O((N − n) log(N − n)) = O(`n2 + (N − n) log(N − n)).

Since n = O(N), an upper bound for the complexity of Algorithm 3 is O(N3). Al-

though Algorithms 1 and 3 have the same asymptotic time complexity, Algorithm 3

is faster than Algorithm 1 as Algorithm 3 most of the metric computations do need

not to be recomputed and updating Rd for a pair of node is requires fewer operations.

In the next sections, we show that the time complexity of Algorithm 1 in the

average case is O(N2 log(N)) and give a worst case example where the upper bound

O(N3) is reached. We present similar results for Algorithms 2 and 3.

3.3.3 Average case

The height of a tree is the maximum number of edges on the path between the root S

of the tree and any leaf. We consider as the average case a tree T with height log n,

where the number of children of any node of the tree is bounded by a constant k and

where the number of leaves is bounded by n (` = Θ(n)).

First, consider Algorithm 1. The computations performed in lines 1 to 4 are the

same as in the general case, hence a complexity of O(n). In lines 5 to 8, metric

3.3. Complexity analysis 81

Rd must be computed between each of the ` leaves and all other nodes. Therefore

O(`n) = O(n2) metrics Rd must be computed. Suppose we use the definition to

compute Rd. Computing Rd involves the addition of products between f and tdrop

metrics for all n links of the tree except those on the protected path between A

and another leaf. Therefore, n − 2 log(n) products have to be added hence a time

complexity of O(n− 2 log(n)) = O(n) to compute each of the n− 1 metrics Rd, and

a complexity of O(n3) for lines 5 to 8 of Algorithm 1. This is the same result as in

the general case.

Now suppose that we use the method presented in Section 3.3.1 to compute Rd

between two nodes Y and Z of T . First, part (1) of Equation 3.2 requires the addition

of at most k terms for each vertex on the protected path PPY,Z for which Rd is

computed. A protected path consists of at most 2 log(n) vertices, thus complexity

of Term (1) is O(2k log(n)) = O(log(n)). Second, the number of links on the path

from S ′A,B to S is at most log(n). Determining an LCA S ′ is done in constant time

as previously stated therefore part (2) of Equation 3.2 has a complexity of O(log(n)).

Third, Term (3) involves the addition of at most k metrics for each link of the path

between S and S ′, hence a time complexity of O(k log(n)) = O(log(n)) for Term (3)

of Equation 3.2. Overall, the time complexity of the computation of all metrics Rd

performed by lines 5 to 8 of Algorithm 1 is O(n2)(O(log(n))+O(log(n))+O(log(n))) =

O(n2 log(n)), instead of O(n3) if the definition of Rd was used.

3.3. Complexity analysis 82

The last step of Algorithm 1 computes a shortest path between two nodes in a

graph with (N − n) edges. The classic Dijkstra’s shortest path Algorithm [24] solves

the problem in time O((N − n) log(N − n)).

All in all, the complexity of Algorithm 1 is:

O(n)+O(n)+O(n2 log(n))+O((N−n) log(N−n)) = O(n2 log(n)+(N−n) log(N−n)).

Note that if we used the definition of Rd to compute all metrics Rd in lines 5 to 8 then

the complexity of Algorithm 1 would be O(n3 + (N − n) log(N − n)), which justifies

a posteriori why we introduced an alternate method to compute Rd in Section 3.3.1.

Now consider Algorithm 2. We have shown above that the time complexity of

lines 1 to 7 is O(n2 log(n)). Computing and sorting the set of all Rd metrics in

line 8 takes time O(n2 log(n)). Computing all possible backup paths takes time

O(n2(N − n) log(N − n)), hence the time complexity of Algorithm 2 in the general

case:

O(n2 log(n)+n2 log(n)+n2(N−n) log(N−n)) = O(n2 log(n)+n2(N−n) log(N−n)).

Last, consider Algorithm 3. The length of the path between D and S is log(n) thus

computing metrics tdrop′ in lines 1 to 3 is done in time O(log(n)). The size of the set

EPD,S \EPPi,j is log(n) therefore updating a metric Rd takes time O(log(n)). Updating

all the metrics Rd takes time O(n2 log(n)) (lines 4 to 6). In line 7, determining a

minimum of Npairs values takes time O(n2). In line 8, a shortest path is computed

3.3. Complexity analysis 83

S

Edge of ET
w and Ew

Other edge of Ew

Node of Vw

Other node of VT
w

Leaf of VT
w

Figure 3.8: Worst case for Algorithm 1. With this topology, the complexity of

Algorithm 1 reaches the higher bound O(N3).

in time O((N − n) log(N − n)). The time complexity of Algorithm 3 in the average

case is:

O(log(n))+O(n2 log(n))+O(n2)+O((N−n) log(N−n)) = O(n2 log(n)+(N−n) log(N−n)).

All three Algorithms 1, 2 and 3 are faster in the average case than in the general

case. In the next section, we determine the worst case for each algorithm.

3.3.4 Worst case

Consider Algorithm 1. The general expression for its time complexity is O(`n2 +

(N − n) log(N − n)). The upper bound O(N3) can be reached only when ` = Θ(N)

and n = Θ(N). Consider the graph Gw = (Ew, V w) and the tree Tw = (Ew
T , V

w
T)

3.3. Complexity analysis 84

depicted in Figure 3.8. Suppose that all links from the tree have the same relative

failure probability and the same weight w = 1. Tree Tw has n = N+1
2

= Θ(N) links

and ` = N−1
2

= Θ(N) leaves.

Lines 1 to 4 take time O(n) = O(N) to complete. Then, `n = N2−1
4

= O(N2)

metrics Rd must be computed to determine A and B. Computing each metric Rd

takes time O(N). Indeed, in this case the protected path between a leaf Y ∈ LT and

any node Z ∈ VT is reduced to PPA,Z = (Y, S, Z). Term (1) of Equation 3.2 is the

sum of the metrics adrop for all links of the tree except the two links of the protected

path, hence a complexity O(N − 2) = O(N) for Term (1). Since S = S ′, Terms (2)

and (3) of Equation 3.2 are equal to zero. In this case, using the alternate method

to compute each metric Rd is as complex as using the definition of Rd. Complexity

of lines 5 to 8 is O(N2N) = O(N3). Determining the shortest path in this graph is

performed in time O(N log(N)).

In summary, in this case the complexity of Algorithm 1 is O(N3). We have shown

that N3 was an upper bound for the complexity of Algorithm 1, and presented a case

where this bound was attained.

We now show that the upper bound O(N3 log(N)) can be attained for Algorithm 2.

The general expression of the time complexity is O(n3 + n2(N − n) log(N − n)).

Consider the network and the tree depicted in Figure 3.9. The tree is disconnected

from the other nodes of the network and therefore Algorithm 2 computes a backup

3.3. Complexity analysis 85

S

Edge of ET
w and Ew

Other edge of Ew

Node of Vw

Other node of VT
w

Leaf of VT
w

Figure 3.9: Worst case for Algorithm 2. With this topology, the complexity of

Algorithm 2 reaches the higher bound O(N3 log(N)).

S

D C

S

D

Node C leaves
the group

Edge of ET
w and Ew

Other edge of Ew

Node of Vw

Other node of VT
w

Leaf of VT
w

Figure 3.10: Worst case for Algorithm 3. With this topology, the complexity of

Algorithm 3 reaches the higher bound O(N3).

path between all possible pairs of nodes of the tree before failing to find a backup

path. Since n = Θ(N), the time complexity of Algorithm 2 in this particular case is

O(N3 log(N)).

3.3. Complexity analysis 86

Last, we show that the upper bound O(N3) can be attained for Algorithm 3.

Consider Figure 3.10 where node C leaves the group. The path between S and C is

such that |EPS,C | = Θ(n) and D is located in the middle of this path. After C leaves

the group we have ` = Θ(N) and n = Θ(N). Then, `n = Θ(N2) metrics Rd must

be recomputed. The path between D and S has Θ(N) links thus for any two nodes

i and j such that i, j /∈ EPD,S the size of the set EPD,S \ EPPi,j is Θ(N). There are

Θ(N2) such pairs of nodes. According to Equation 3.1, updating one metric Rd takes

time O(n) = O(N). Therefore, updating all metrics Rd takes time O(N3). In this

case, the time complexity of Algorithm 3 is O(N3).

4

MPLS Multicast Fast Reroute

In this chapter, we describe MPLS multicast Fast Reroute, a rerouting mechanism

adapted to protect multicast routing trees from single link failures. MPLS multi-

cast Fast Reroute extends the unicast MPLS Fast Reroute mechanism presented in

Chapter 2. MPLS multicast Fast Reroute makes it possible to repair a multicast

routing tree if a single link of the so-called protected path fails by rerouting traffic

on a pre-planned backup path. This rerouting mechanism uses the same components

as MPLS unicast Fast Reroute. A backup path must first be established in a mul-

ticast routing tree. Then, when a node detects a link failure or recovery, it sends a

notification message to the Path Switching LERs (PSLs, see Section 2.4) that per-

forms either switchover of switchback. MPLS multicast Fast Reroute assumes that

multicast routing trees are core based trees.

4.1 Overview

Before we give an overview of the multicast extensions to MPLS Fast Reroute, we

introduce multicast LSPs (mLSPs), which are the multicast counterpart to unicast

87

4.1. Overview 88

Label Switching Paths. Different from other virtual circuit switching techniques like

ATM, MPLS is able to create virtual circuits that map multicast routing trees without

the need of establishing a distinct virtual circuit between a particular node and all

multicast hosts of a multicast group.

A multicast LSP (mLSP) is a point-to-multipoint MPLS virtual circuit. Packets

are forwarded on mLSPs the same way as they are forwarded on unicast LSPs, except

that they can be duplicated by MPLS routers and forwarded on several links. Like

unicast LSPs, mLSPs are virtual circuits. Therefore, a mLSP must be established

before a multicast communication can actually take place and terminated when the

communication is over. Such tasks are performed by a signaling protocol. In MPLS

networks, LSPs are associated with FECs. Packets that enter an MPLS network are

assigned to a FEC and all packets from the same FEC entering in the network via the

same ingress LER are forwarded on the same LSP. The FEC associated to a multicast

LSP is the IP address of the multicast group whose traffic is carried by the mLSP.

In Section 1.3, we introduced the notion of shortest path tree and core based tree.

Consider Figure 4.1(a) which depicts a shortest path tree spanning over an MPLS

network. The source of the tree is A. Node A receives traffic from other networks

(not represented) and sends this traffic over the multicast routing tree. Leaves of

the tree, B and C, receive the multicast traffic sent by A over the tree. A shortest

path tree is mapped by a unidirectional LSP where label mappings are established

4.1. Overview 89

(b) Unidirectional
multicast LSP

A
D

C

B

1

2

3

Link

Node (LSR)

Multicast LSP

1 Label mapping

Node (LER)

(a) Logical topology: Shortest
Path Tree with source A

A D

B

C

MPLS
network

(c) Logical topology: Core
Basted Tree with core D

A D

B

C

MPLS
network

(d) Bidirectional
multicast LSP

A
D

C

B

1

2

3

4

5
6

Figure 4.1: Multicast Label Switching Path examples.

on each link of the tree in a single direction. For instance, the mLSP represented

in Figure 4.1(b) maps the shortest path tree. Suppose that node A receives packets

that must be forwarded over the tree. Node A pushes label “1” on the packets and

forwards these packets to D. Node A is an ingress LER of the mLSP. Then, node D

4.1. Overview 90

duplicates the packets and swaps the label of one of the two copies first with label

“2”, then with label “3”. Node D forwards the packets labeled “2” to B and the

packets labeled “3” to C. Node D is therefore a LSR of the mLSP. Node B pops

labels from packets labeled “2” coming from D and node C pops labels from packets

labeled “3” coming from D. Nodes B and C are egress LERs of the mLSP.

On the other hand, core based trees allow any multiple sources to send data to

the members of a multicast group. It is possible to map a core based tree of n

sources with n unidirectional mLSPs. Each of the unidirectional mLSPs would map

a tree rooted at one of the n different sources. However, the main advantage of core

based trees is that a single tree is shared by all sources. We introduce the notion of

bidirectional mLSP where label mappings are established on each link of the tree in

both directions, assuming that all links of the tree are bidirectional. For instance,

consider the core based tree represented in Figure 4.1(c), where node D is the core

and nodes A, B, C are the sources . This core based tree is mapped by the single

bidirectional mLSP represented in Figure 4.1(d). Node A pushes label “1” on packets

bound to the multicast group. Node D swaps label “1” against labels “2” and “3” and

forwards packets labeled “2” to B and packets labeled “3” to C. Node B pops label

“2” and node C pops label “3”. If node B is a source of the multicast group, then

when node B needs to send packets to the multicast group it pushes label “4” on the

transmitted packets. Node D swaps label “4” against labels “5” and “3”, and node

4.1. Overview 91

A pops label “5” while C pops “3”. If node C is a source of the multicast group,

node C pushes label “6” on packets bound to the group, node D swaps label “6”

against labels “5” and “2”, node A pops label “6” and node B pops label “2”. Since

A, B and C both push and pop labels for packets of the bidirectional mLSP, they

are ingress and egress LERs at the same time. Node D is a LSR of the bidirectional

mLSP. In the remainder of this thesis, we only consider core based trees mapped by

bidirectional mLSPs.

We now give an overview of MPLS Multicast Fast Reroute, the multicast exten-

sion to the MPLS Fast Reroute mechanism described in Section 2.4. We discuss an

example that illustrates each step of MPLS Multicast Fast Reroute. The example is

illustrated in Figure 4.2.

MPLS multicast Fast Reroute is a pre-planned rerouting mechanism. This means

that a backup path is computed and advertised before rerouting is performed. A

backup path is computed with Algorithm 1 presented in Chapter 3. However, the

choice of the algorithm and the rerouting mechanism are orthogonal. In the following,

we do not make any assumption on how the backup path is computed. We continue

to use here the notations introduced in Chapter 3.

Consider the tree rooted at S mapped by the bidirectional mLSP depicted in

Figure 4.2(a). A backup path BPA,B has been computed between nodes A and B

and the protected path PPA,B is constituted by links AD, DC, CS ′, S ′H and HB.

4.1. Overview 92

(d) Recovery detection and notification

B

C

A D

S’

S’

(b) Failure detection and notification

(c)

A

B

C

D

Node (LSR)

Link

Failure

Node (LER)

E

F

G

H

J

E

F

G

J

H

(e) Switchback

S’
A

B

E

F

G

H

J

(c) Switchover

B

C

A D

S’

E

F

G

J

H

(a) Original topology with a preplanned backup path

S’=S
A

B

C

D

E

F

G

H

J
Notification
message

Multicast LSP

Backup path

Figure 4.2: Overview of MPLS multicast Fast Reroute.

Node S ′ is defined as the Least Common Ancestor of A and B with regards to S. In

this example, since S belongs to the protected path between A and B, then S ′ = S.

4.1. Overview 93

MPLS multicast Fast Reroute can repair the multicast routing tree if any of these

five links fails. Failure is detected by the end nodes of the failed link. All nodes

of a multicast routing tree regularly send probe messages on each of their outgoing

links. Each node also listens to such probe messages. If a node stops receiving probe

messages on a link, then this node considers that the link has failed.

If a link fails, such as link CD in Figure 4.2(b), then both nodes C and D detect

the failure of link CD. Then, both nodes C and D send failure notification messages

which are propagated through the tree (Figure 4.2(b)). All nodes of the tree are

notified of the link failure. When the end nodes A and B of the backup path receive

failure notification messages, they perform switchover by merging the backup path

in the mLSP (Figure 4.2(c)). A new mLSP results from the merging of the backup

path and the mLSP that mapped the multicast routing tree before the failure. This

new mLSP maps the multicast routing tree described in Claim 1 of Chapter 3. Nodes

now forward packets over the new mLSP and no LER is dropped from the tree. We

introduced the notion of Path Switching LSR (PSL) in Section 2.4 in the context

of MPLS unicast Fast Reroute. In MPLS multicast Fast Reroute, since mLSPs are

bidirectional, both nodes at the end of the backup path are PSLs. Indeed, node A

forwards traffic coming from the LERs A, F and G over the backup path, therefore

A is a PSL, and node B forwards traffic coming from the LERs B, E and J over the

backup path, therefore B is also a PSL.

4.2. Link failure and recovery detection 94

When nodes C and D resume receiving probes over the previously failed link CD,

they detect that the failed link has been repaired. Then C and D send link recovery

notification messages which are propagated through the multicast routing tree (Fig-

ure 4.2(d)). When nodes A and B receive those messages, they perform switchback by

stopping forwarding packets over the backup path (Figure 4.2(e)). After switchback

is completed, the multicast routing tree is exactly the same as the original multicast

routing tree that was in use before the failure occurred (Figure 4.2(a)).

In the next sections, we describe the steps of MPLS multicast Fast Reroute: link

failure and recovery detection, link failure and recovery notification, and switchover

and switchback.

4.2 Link failure and recovery detection

To detect link failure or recovery, nodes regularly send small messages called probes

on all the links on which they send traffic, and listen for probes on the links from

which they receive traffic. In the context of bidirectional mLSPs, nodes actually send

and listen for probes on each link they are attached to. Probes are small messages

that take a low percentage of the bandwidth of the link on which they are sent. In

our implementation (see Chapter 5), we send small UDP messages with a payload of

4 bytes.

4.2. Link failure and recovery detection 95

A link failure must be detected as early as possible in order to keep the total

repair time low. To do so, probes should be sent at a high frequency. However, since

detecting a link failure triggers traffic switchover, link failures should not be detected

when a link has not actually failed. We call Tp the period used by nodes to send

probes. A probe can be detected as missing while a link has not failed in two cases.

First, due to delay jitter, a delayed probe may be considered as missing. Second,

since probes are sent as UDP messages, a lost probe is not retransmitted. Therefore,

a single lost probe should not be interpreted as a consequence of a link failure.

We consider that a link has failed only when several probes are missing in se-

quence. Let the beat checking number n ≥ 2 be the number of probes that must be

missing before a node reports a link failure. The failure detection time Tfdetect is the

time between the instant at which a link fails and the instant at which a node that

receives probes via this link considers that the link has failed. We now determine

the distribution of the failure detection time. Suppose node C is sending probes to

node D as shown in Figure 4.3. At time t = 0, C sends the last probe before link

CD fails. Link CD fails at time T1. Time T1 is uniformly distributed between 0 and

Tp. Every period nTp, node D checks whether it received at least one probe from

C. Since the sender of probes at node C and the receiver of probes at node D are

not synchronized, the time T2 at which D checks and records the presence of the last

probe sent by C is uniformly distributed between 0 and nTp. Node D detects the

4.2. Link failure and recovery detection 96

time

Node C

Node D

time

Last probe
before failure

0 Tp 2Tp

Link CD
fails

T1

D checks the number of probes it
received from C (on this Figure, n=2)

T2

T3

Tfdetect

D detects the
failure

n Tp

Figure 4.3: Link failure detection mechanism. Node C starts sending probes

with period Tp at time 0, node D starts checking the number of probes it received

from C every period nTp at time T2. Link CD fails at time T1 and D detects the

failure at time T3. The failure detection time is Tfdetect = T3 − T1.

failure at time T2 + nTp since no probe is received between t = T2 and t = T2 + nTp.

Therefore the time T3 at which the failure is detected is uniformly distributed between

nTp and 2nTp. The failure detection time Tfdetect is given by T3−T1. The distribution

of Tfdetect is represented in Figure 4.4.

There is a trade-off between the speed of the failure detection and the accuracy

of the detection, i.e., the ability of the nodes to detect failures only when a link has

failed. Low values of n may lead to a high number of false failure detection. Since

4.2. Link failure and recovery detection 97

Tfdetect

Probability
density

pnT
1

(n-1)Tp n Tp (2n-1)Tp 2n Tp

Figure 4.4: Link failure detection time probability density function. The

probability density function of the difference Tfdetect = T3 − T1 is obtained with a

convolution of T1 and T3.

the link failure detection time is comprised between (n− 1)Tp and 2nTp, high values

of n yield long times before link failures are reported.

The same probing mechanism can be used to detect the repair of a link. When a

link is reported as failed, its two end nodes keep trying sending probes with period

Tp. When one of these two nodes receives such a probe, then the link is detected

as repaired. Different from link failure detection where a single missing probe is not

enough for an end node to infer that a failure has occurred, the arrival of the first

probe on a link previously reported as failed indicates the recovery. For instance,

suppose that node C sends a probe on link CD time T1 after link CD has been

repaired as shown in Figure 4.5. Since node C tries to send probes every period Tp,

T1 is uniformly distributed between 0 and Tp. Node D detects the repair as soon as it

4.2. Link failure and recovery detection 98

time

Node C

Node D

time

First probe
after repair

0 Tp

Repair of
link CD

T1

-Tp

Node D detects the
repair as soon as it
receives the probe

C sends a
probe to D

C cannot
send a

probe to D

Figure 4.5: Link repair detection mechanism. Link CD is repaired at time t = T1

and node C sends a probe at time t = 0. Node D detects the link repair as soon as

it receives the probe, thus the repair detection time is Trdetect = T1.

receives a probe, thus the recovery detection time Trdetect to detect the repair is equal

to T1 and is uniformly distributed between 0 and Tp (Figure 4.6).

The average value of Tfdetect is T fdetect = 3n−1
2
Tp and the average value of Trdetect

is T rdetect = Tp
2

. Using millisecond timers on the nodes that perform failure or repair

detection, it is possible to detect the failure or the repair of a link in a few milliseconds

or tens of milliseconds depending on n.

4.3. Failure and recovery notification 99

Trdetect

Probability
density

pT
1

Tp0

Figure 4.6: Link repair detection time probability density function. Trdetect is

uniformly distributed between 0 (a probe is sent immediately after the link is repaired)

and Tp (a probe is sent time Tp after the link is repaired).

4.3 Failure and recovery notification

When a link failure or recovery is detected, the PSLs must be notified of the failure or

recovery so that they can perform switchover or switchback. The nodes that detect

the failure or recovery are responsible for notifying the PSLs. We successively consider

link failure and recovery in a multicast routing tree.

As explained in Chapter 3, when a link fails the multicast routing tree is split in

two trees. For instance, if nodes C and D detect the failure of link CD as illustrated

in Figure 4.2(b), the original multicast routing tree is split into one tree rooted at C

and one tree rooted at node D. These two trees are represented in Figure 4.7. Each

of the two nodes that detect the failure sends out a signaling protocol link failure

notification message to each of their children. This notification message contains in

4.3. Failure and recovery notification 100

its payload the IP address of the interface that ends the failed link. Nodes that

receive a link failure notification send in turn link failure notification to their children

until all leaves of the two trees previously defined are reached. When a node sends a

link failure notification message, it does not change the IP address contained in the

payload of the message such that all nodes which receive the message know which

link has failed. For instance, in Figure 4.7, D sends a link failure notification to F , G

and A. The notification message sent by D contains the IP address of the interface

of node D that ends link CD. Node C sends a link failure notification to nodes E

and S ′. The notification message sent by C contains the IP address of the interface of

node C that ends link CD. Upon reception of the notification, S ′ sends a link failure

notification to H which in turn sends link failure notifications to J and B.

All nodes of the original multicast routing tree are notified of the failure. In

particular, if the failed link is on the protected path protected by a backup path,

then the PSLs for the backup path are both notified of the link failure. Each PSL

contains a list of the IP addresses of the interfaces that end links of the protected

path. When a PSL receives a link failure notification message, it checks that the IP

address contained in the payload of the notification message matches an IP address of

its internal list. If such is the case, then the PSL must perform switchover. Otherwise,

the failed link is not on the protected path protected by the PSL and the PSL does

not perform switchover.

4.3. Failure and recovery notification 101

A

D
F

G

C
E

S’

B
H

J

Node (LSR)

Node (LER)

Link of the tree

Notification
message

Failed link

Figure 4.7: Failure notification mechanism. After failure of link CD, the original

multicast routing tree is split into two trees, one rooted at C and one rooted at D.

Nodes C (resp. D) sends a link failure notification message on the tree for which it

is the root. The failure notification messages are propagated on both trees until all

leaves are reached.

When a link repair is detected, we use the exact same mechanism to propagate

the repair information. Only the type of message used changes, i.e. signaling protocol

link recovery notification messages are used. Messages contain the IP address of the

interface of the repaired link. In our example, when link CD is repaired, then node

D sends a link recovery notification message to F , G and A which contain the IP

address of the interface of D that ends the recovered link. Node C sends a link

recovery notification message to S ′ which contain the IP address of the interface of

C that ends the recovered link. Node S ′ sends a link recovery notification message to

4.3. Failure and recovery notification 102

H, which sends link recovery notification messages to J and B. If a backup path has

been established and if the link that has been repaired is part of the protected path,

then the end nodes of the backup path perform switchback.

The failure notification time is the time between the instant at which a failure is

detected and the instant at which both PSLs are notified of the failure. Likewise, the

recovery notification time is the time between the instant at which a link repair is

detected and the instant at which both PSLs are notified of the recovery. Since the

notification mechanism is the same for link failure and link recovery, failure notifica-

tion time and recovery notification time are the same. We call notification time and

we note Tnotif the common value for failure notification time and recovery notification

time. If we denote by Tnnotif the time taken by a node to send and process a notifi-

cation message (node notification delay), and if the protected path of the multicast

routing tree consists of l links, then the recovery time is bounded by:

Tnotif ≤ lTnnotif .

Using 100 Mbits/s Ethernet hardware, the node notification delay is in the order

of 1 millisecond. Therefore, it takes a few milliseconds to notify the PSLs after a link

failure has been detected.

4.4. Switchover and switchback 103

4.4 Switchover and switchback

Switchover consists in merging the backup path with the mLSP that maps the original

multicast routing tree (before link failure). After switchover is performed, traffic flows

on a new mLSP. On the other hand, switchback restores the original mLSP by ceasing

to send traffic over the backup path.

Let us consider the backup label mappings that need to be advertised before a

multicast routing tree can be repaired. Consider a multicast routing tree and the

mLSP that has been established for the multicast routing tree. In the following, we

will refer to the label mappings that define this mLSP as “original label mappings”.

We establish two series of new mappings for the backup path as follows. First, label

mappings are established on the path between A and S ′ viaB. Second, label mappings

are established on the path between B and S ′ via A. Therefore, backup mappings are

established on all links of the backup path in both directions, and on all links of the

protected path in a single direction. Consider the example network in Figure 4.8(a).

We show these additional backup mappings for this network in Figure 4.8(b). With

both mappings from the original mLSP and these additional mappings, two new

unidirectional mLSPs are defined (Figure 4.8(c)). For instance, suppose B sends a

packet on the backup path using the new backup label mapping. Node K forwards

the packet to A which forwards the packet to D, still using backup label mappings.

Node D duplicates the packet and sends a copy to C using a backup label mapping,

4.4. Switchover and switchback 104

S’
A

B

C

D

E

F

G

H

J

K

Node (LSR)

Node (LER)

Link of the tree

Link of the backup path

Backup label mapping

Regular label mapping

B
H

J

S’

K

A

S’

F
G

K

A

B

C

D

E

(b) New backup label mappings

(c) Trees over which the PSLs send traffic after switchover

(a) Regular topology with a preplanned backup path

S’
A

B

C

D

E

F

G

H

J

K

Figure 4.8: Backup label mappings.

4.4. Switchover and switchback 105

Figure 4.9: Path followed by packets sent by J after switchover.

one copy to F and one copy to G using original label mappings. When C receives

the packet, it forwards the packet to both S ′ using a backup label mapping and to E

using an original label mapping. Node S ′ does not forward packets that use backup

label mappings and come from a link of the protected path to another link of the

protected path. We will explain why when we focus on switchback.

Switchover is performed as follows: when a PSL is notified of a link failure, it

forwards all the packets it receives on the backup path using the backup mapping.

Suppose for instance that link CD fails. The PSLs A and B perform switchover

and the backup path is merged with the original multicast routing tree, yielding a

new, repaired multicast routing tree. Suppose J sends a packet on the new multicast

routing tree. The packet reaches nodes H, S ′, C, E and B using original label

mappings. When B receives the packet, it forwards the packet on the backup path

4.4. Switchover and switchback 106

as described above, except that D does not forward the packet to C. We show the

path followed by packets sent by J after switchover in Figure 4.9.

If a second link of the protected path fails, then the PSLs are notified of the

second link failure and ignore it. The repaired multicast routing tree is split into two

trees and the multicast group is partitioned. We do not consider the case where only

one direction of a link fails, since links are assumed to be bidirectional and a failure

generally affects both directions.

Both PSLs do not perform switchover simultaneously. When a link fails, a mul-

ticast routing tree is split into two smaller subtrees TA and TB. Suppose TA is the

subtree that contains PSL A and TB is the subtree which contains PSL TB (see Fig-

ure 4.9). After the link failure and before A and B are notified of the failure, traffic

sent by nodes from TA cannot reach nodes of TB and traffic sent by nodes from TB

cannot reach nodes of TA. Suppose A is notified of the failure and performs switchover

before B. After A has performed switchover and before B has performed switchover,

traffic sent by nodes of TA can reach nodes of TB but conversely traffic sent by nodes

of TB cannot reach nodes of TA. After both PSLs have performed switchover, no node

is dropped from the multicast routing tree. Switchover consists in a change in the

MPLS forwarding table of the LSRs, thus switchover is almost instantaneous. The

total time to repair the tree is therefore Trepair = Tfdetect+Tnotif ≈ Tfdetect. The order

of magnitude of Trepair is a few tens of milliseconds.

4.4. Switchover and switchback 107

We now discuss the switchback mechanism. When a node detects a link failure, it

stops forwarding traffic over the failed link. When this node detects the link repair,

it sends out notification messages as explained in Section 4.3 and resumes forwarding

traffic over the repaired link. When a PSL is notified that a failed link is repaired,

it stops forwarding traffic over the backup path. Like switchover, switchback is not

performed simultaneously by both PSLs. After the link repair detection and before

A and B are notified of the link recovery, when a node sends a packet then all other

nodes receive two copies of this packet. Consider for example Figure 4.10 and suppose

that nodes C and D have detected the repair of link CD and that neither A nor B

have performed switchback. When J sends a packet to the multicast group, node H

duplicates the packet and sends one copy to S ′ (Figure 4.10(a)) and the other copy

to B (Figure 4.10(b)). We now follow the path of the first copy. Node S ′ forwards

it to C which forwards the packet to both node E and, since the repair of link CD

has been detected, node D. Node D forwards the packet to F , G and A. Node A

has not performed switchback thus it forwards the packet to K. The packet then

reaches B. Node B forwards the packet to H, which forwards the packet to J and

S ′. Node S ′ does not forward the packet coming from a link of the protected path

(link S ′H) to another link of the protected path (link S ′C), thus the packet is not

forwarded to C. If the packet was forwarded to C, then it would loop on the path

formed by the protected and the backup paths. Now consider the second copy of the

packet made by H after H receives the packet from J . Node H forwards the packet

4.4. Switchover and switchback 108

to B which forwards the packet over the backup path to A via K. Node A sends the

packet to D which forwards the packet to F and G. Since the repair of link CD has

been detected, D also sends the packet to C, C forwards the packet to E and S ′.

Node S ′ does not forward the packet to H and breaks the loop. Therefore, during

this transient period, all nodes receive duplicate copies of all packets. When only

one PSL, for instance A, has performed switchback then traffic from nodes of TA is

delivered twice to the nodes of TA and only once to the nodes of TB, and traffic from

nodes of TB is delivered twice to the nodes of TA and only once to the nodes of TB.

When the second PSL performs switchback then no node is forwarded on the backup

path anymore and traffic is forwarded on the original mLSP as before the link failure.

We define the time Trepairback to switch traffic back on the original tree as the time

between the instant at which the failed link is repaired and the instant at which both

PSLs have performed switchback. Therefore Trepairback = Trdetect + Tnotif . During

the time Trepairback, certain links must carry twice the same data, possibly leading to

congestion. If the traffic that uses the mLSP before switchback represents less than

50% of the capacity of the links that is allocated to the mLSP then no congestion will

occur and nodes will simply receive the same packets twice. It is up to the application

layer to drop the redundant packets. On the other hand if traffic that flows on the

mLSP before switchback represents more than 50% of the capacity of the links that is

allocated to the mLSP then the mLSP will be congested and packets will be dropped.

4.4. Switchover and switchback 109

(a) Path followed by one of the copies of
a packet sent by J, forwarded by H to S’

(b) Path followed by the other copy of a
packet sent by J, forwarded by H to B

AS’

B

C

D

E

F

G

H

J

K

S’ A

B

C

D

E

F

G

H

J

K

Figure 4.10: Duplicate packets during switchback. When a failed link is repaired

and switchback has not been performed, all nodes receive two copies of the packets

sent by any node. In this example, all nodes receive two copies of a packet sent by J .

However, since Trdetect < Tfdetect the time during which congestion may occur is

smaller than the interruption of service due to link failure. Moreover congestion that

may be caused by switchback is very limited in time (a few milliseconds) and therefore

does not prevent the network from functioning properly.

In this chapter, we have exposed the principles of MPLS multicast Fast Reroute.

Implementing this mechanism requires the ability to advertise a mLSP and the backup

path mappings. Second, the probing and notification mechanisms must be imple-

mented. Finally, nodes must perform switchover or switchback when they are notified

to. In the next chapter, we present an implementation of all these mechanisms.

5

Implementation

In this chapter, we present the implementation of multicast MPLS for Linux and

multicast MPLS Fast Reroute. First, in Section 5.1, we discuss an implementation of

MPLS multicast for the Linux operating system. We have added multicast support to

a previously existing implementation of MPLS for Linux, which formerly supported

unicast only. To our knowledge, our implementation is the only MPLS multicast

implementation available in the public domain. In Section 5.2, we present a new sig-

naling protocol, MULticast TREe rEpair Label Distribution Protocol (MulTreeLDP).

MulTreeLDP runs on top of our implementation of MPLS multicast to support multi-

cast Label Switched Path (mLSP) establishment and implements the MPLS multicast

Fast Reroute mechanism from Chapter 4.

5.1 Multicast MPLS-Linux

MPLS-Linux is a recent implementation of MPLS for PCs running the Linux oper-

ating system [51]. MPLS-Linux is freely modifiable under the GNU license [31] and

conforms to the MPLS specifications [61] [62]. Other MPLS implementations for PCs

110

5.1. Multicast MPLS-Linux 111

have been proposed in the past [54] [55], but are not maintained by their authors.

Thus, we chose to implement our multicast rerouting mechanism on PCs running

MPLS-Linux. MPLS-Linux does not support multicast forwarding, therefore we aug-

mented MPLS-Linux with multicast capabilities. Before we explain how we extended

MPLS-Linux, we provide a background on the existing MPLS-Linux implementation

for unicast.

5.1.1 Unicast MPLS-Linux implementation

MPLS-Linux is implemented as a layer between Ethernet and IP. Ethernet is a MAC

layer protocol which encapsulates IP packets in frames. In Section 1.2.2, we gave an

overview of the three operations that MPLS routers can perform on packets (push,

swap and pop) and we described the Forwarding Information Base (FIB) which con-

tains the rules according to which MPLS routers forward packets. We now describe

how the MPLS operations and the FIB are implemented in MPLS-Linux.

MPLS-Linux defines five instructions to implement shim header pushing, swapping

and popping. Each of these instructions can be applied to IP packets or Ethernet

frames in the MPLS layer as they are being processed by the Linux kernel. We give an

overview of these five instructions in Table 5.1 and we describe how they implement

the three MPLS operations in Table 5.2. The PUSH instruction adds an MPLS shim

header to a packet which comes from the IP layer. The SET instruction passes an IP

5.1. Multicast MPLS-Linux 112

Instruction Input layer Output layer Description
PUSH IP MPLS Adds a shim header to an IP packet.
SET MPLS Ethernet Passes an MPLS unicast packet to an

Ethernet interface.
POP Ethernet MPLS Removes a shim header from an Ether-

net frame.
FWD MPLS MPLS Calls PUSH for a packet coming from POP.
DLV MPLS IP Passes an MPLS packet to the IP layer.

Table 5.1: MPLS-Linux unicast instructions overview. MPLS-Linux unicast

implements the three MPLS operations (push, swap, pop) with five different instruc-

tions.

MPLS Operation Corresponding sequence of instructions in MPLS-Linux
push PUSH, SET
swap POP, FWD, PUSH, SET
pop POP, DLV

Table 5.2: Implementation of the three MPLS operations with the five

MPLS-Linux instructions.

packet with a shim header from the MPLS layer to the Ethernet layer and tells the

Ethernet layer on which Ethernet interface the MPLS packet should be forwarded.

Together, the PUSH and SET instructions implement the MPLS “push” operation. The

POP instruction removes the shim header of a packet that comes from the Ethernet

layer. Packets processed by POP must be subsequently processed by either FWD or

SET. The FWD instruction takes as an input a packet processed by POP and calls the

PUSH instruction. Together, the POP, FWD, PUSH and SET instructions implement the

MPLS “swap” operation. We will see in the remainder of this section why this FWD

5.1. Multicast MPLS-Linux 113

instruction is made necessary to swap labels. Last, the DLV instruction takes as an

input a packet processed by POP and passes it to the IP layer. The POP and DLV

instructions implement the MPLS “pop” operation.

We now describe the implementation of the FIB in MPLS-Linux. In MPLS-

Linux, the FIB is split into three tables: the MPLS input and output tables, and the

IP routing table. MPLS-Linux defines a Forwarding Equivalence Class (FEC) with

a prefix and a prefix length. A prefix is a 32-bit IP address and a prefix length is

a number comprised between 1 and 32. A packet with destination IP IPd matches

the FEC P/Plen constituted by the prefix P and the prefix length Plen if and only if

the first Plen bits of IPd and P are the same. A requirement of MPLS-Linux is the

presence in the IP routing table of a specific entry for each FEC that is defined at an

MPLS ingress LER. It is not possible to define a FEC if no matching entry exists in

the routing table. Indeed, MPLS-Linux relies on the IP routing table to determine

the FEC of an IP packet. In MPLS-Linux, IP routing table entries are extended and

contain FEC to Next Hop Label Forwarding Entry (FTN) mappings in addition to

the IP routing information. Both the MPLS input and output table contain Next

Hop Label Forwarding Entries (NHLFEs), while the MPLS input table implements

the Incoming Label Map (ILM).

Consider Figure 5.1(a) which shows how a shim header is pushed on an incoming

Ethernet frame by an ingress LER. The Ethernet layer of the LER receives a frame

5.1. Multicast MPLS-Linux 114

FEC match ?

NHLFE: PUSH SET

protocol
0x0800

protocol
0x8847

input table output table

routing table

FTN

Ethernet

MPLS

IP

NHLFE: PUSH SET

protocol
0x8847

protocol
0x8847

input table output table

routing table

POP FWD

ILM

Routing table match ?

protocol
0x8847

protocol
0x0800

input table output table

routing table

POP DLV

a) At an ingress LER b) At a LSR c) At an egress LER

Figure 5.1: Processing of a packet in the MPLS layer with MPLS-Linux

unicast.

FEC match ?

NHLFE: PUSH MSET

protocol
0x0800

protocol
0x8848

input table output table

routing table

FTN

Ethernet

MPLS

IP

NHLFE: PUSH MSET

protocol
0x8848

protocol
0x8848

input table output table

routing table

POP MFWD MFWD

ILMs
NHLFE: PUSH MSET

Routing table match ?

protocol
0x8848

protocol
0x0800

input table output table

routing table

POP DLV

a) At an ingress LER b) At a LSR c) At an egress LER

Figure 5.2: Processing of a packet in the MPLS layer with MPLS-Linux

multicast.

with a protocol field in the Ethernet header set to 0x0800, which is the protocol code

for IPv4. The Ethernet layer passes the incoming frame to the IP layer. The MPLS

router searches for an entry in the IP routing table to make the routing decision, but

since this entry matches a FEC it has been modified so that the packet is passed to

5.1. Multicast MPLS-Linux 115

the MPLS layer instead of being routed by the IP layer. The additional information

contained in the IP routing table is a FTN, that is, a pointer to an MPLS output table

entry. This output table entry is a NHLFE that contains two instructions. A PUSH

instruction defines the label number of the packet, and a SET instruction defines on

which interface the packet should be sent on. The MPLS layer adds at the beginning

of the packet an MPLS header which contains the label found in the NHLFE, and

passes the packet to the Ethernet layer. The Ethernet layer generates a frame with

the protocol field set to the code assigned to MPLS unicast packets (0x8847) and

sends the frame over the wire.

Consider now Figure 5.1(b) which shows how a label is swapped by a LSR. The

Ethernet layer of the LSR receives a frame with a protocol field in the Ethernet

header set to 0x8847. Since 0x8847 is the code assigned to MPLS unicast packets

encapsulated in Ethernet frames, the Ethernet layer passes the frame to the MPLS

layer of the LSR. The MPLS layer searches in the MPLS input table for the entry

that matches the label embedded in the shim header of the packet. The input table

implements the ILM and tells the MPLS layer what to do with the packet. The input

table entry contains two instructions. The POP instruction tells the LSR to remove

the MPLS header, and the FWD instruction points to an entry of the MPLS output

table. This entry in turn contains two instructions: the PUSH instruction contains the

new label for the packet and tells the LSR to add a shim header on the packet with

5.1. Multicast MPLS-Linux 116

this new label, while the SET instruction tells the LSR on which Ethernet interface the

packet should be sent. The Ethernet layer then builds a frame with a protocol field

of 0x8847 and sends it over the wire. By definition, the NHLFE tells an MPLS router

whether a header must be popped or swapped. In MPLS-Linux the SWAP operation is

implemented by successively popping and pushing a shim header, and the instructions

required to pop an push a label are located in each of the MPLS tables. In this case,

the NHLFE is contained at the same time in the input table and the output table.

Last, consider Figure 5.1(c) which shows how a label is popped by an egress LSR.

The Ethernet layer of the LSR receives a frame with a protocol field in the Ethernet

header set to 0x8847 and therefore passes the frame to the MPLS layer. The MPLS

input table entry that matches the label of the packet contains two instructions. The

POP instruction tells the LER to remove the shim header from the packet, and the DLV

instruction tells the LER to pass the packet to the IP layer where it will be processed

like any other IP packet. In this case, the NHLFE is fully contained in the input

table entry and tells the packet to pop the shim header.

Labelspaces define the scope of forwarding rules. If two interfaces of the same

MPLS router belong to the same labelspace, then they apply the same set of for-

warding rules to MPLS packets. For example, if interfaces “2” and “4” are part of

the same labelspace, then two packets with the same label arriving one on interface

“2” and the other on interface “4” will follow the same forwarding rule. On the other

5.1. Multicast MPLS-Linux 117

Instruction Input layer Output layer Description
MSET MPLS Ethernet Passes an MPLS multicast packet

to an Ethernet interface.
MFWD MPLS MPLS Calls PUSH for a multicast packet

coming from POP.

Table 5.3: MPLS-Linux multicast instructions overview. MPLS-Linux multi-

cast extensions require two additional instructions to forward multicast packets.

hand, if multiple interfaces do not belong to the same labelspace then the incoming

MPLS packets follow different forwarding rules. In our implementation, we do not

use labelspaces and for each Ethernet interface we set the labelspace to be equal to

the interface index assigned by the kernel.

5.1.2 Multicast MPLS-Linux implementation

Unicast MPLS-Linux provides five instructions to implement MPLS headers header

operations. In order to support multicasting, we added two new instructions MSET and

MFWD inside the kernel implementation of MPLS-Linux. Table 5.3 gives an overview

of these two new instructions.

A first difference between MPLS unicast and MPLS multicast lies in the protocol

number in the Ethernet frames. The value of the protocol number is 0x8847 for

MPLS unicast and 0x8848 for MPLS multicast. When a frame that contains an

MPLS multicast packet is transmitted by the Ethernet layer, the protocol number

should be set to the correct value in the Ethernet header. This is done with the new

5.1. Multicast MPLS-Linux 118

MSET instruction which replaces the unicast SET instruction when an MPLS router

forwards multicast packets. On the other hand, frames received by the Ethernet

layer with a multicast MPLS protocol number should be processed by the MPLS

layer rather than the IP layer. The Linux kernel API defines the dev add pack()

instruction to associate Ethernet protocol numbers with upper layer handlers. For

instance, the protocol number 0x0800 is associated with the IP layer handler so that

the Ethernet layer passes to the IP layer the frames that contain IP packets. We

wrote the handler that redirects MPLS multicast packets to the MPLS layer.

Second, different from MPLS unicast, in MPLS multicast the MPLS layer must

be able to duplicate packets. MPLS multicast forwards the same incoming packet

to several interfaces. We define the new MPLS operation mswap (multicast swap)

on MPLS headers. When an MPLS packet shim header is mswapped, the packet is

duplicated and the shim header of each copy of the packet is swapped against a new

one. Then, each copy of the packet is sent on a different interface. We implement the

mswap operation with the POP and PUSH instructions, and the use of the new MFWD

and MSET instructions are described in Table 5.4.

We have has designed the new MFWD (Multicast FWD) instruction as a replace-

ment for FWD. While an input table entry can contain only one FWD instruction in

unicast MPLS-Linux, several MFWD instructions can be placed in a single MPLS input

table entry in our MPLS-Linux extensions. The MFWD instruction supports packet du-

5.1. Multicast MPLS-Linux 119

MPLS Operation Corresponding sequence of instructions in MPLS-Linux
push PUSH,MSET
mswap POP , MFWD, PUSH, MSET

MFWD, PUSH, MSET
...
MFWD, PUSH, MSET

pop POP, DLV

Table 5.4: Implementation of the multicast MPLS operations. The new in-

structions MFWD and MSET replace FWD and SET.

plication. If an MPLS input table entry contains n MFWD instructions, then incoming

packets are duplicated n−1 times using a software mechanism provided by the kernel

API. Each MFWD instruction points to a different MPLS output table entry. Each of

the n copies of the packet is processed according to the contents of the MPLS output

table entries pointed by one of the MFWD instructions. Therefore, the MPLS layer can

push a different shim header on each copy of the packet and forward it on a different

interface.

Figures 5.2(a), 5.2(b) and 5.2(c) respectively show how shim headers are pushed,

mswapped and popped for multicast MPLS packets. In Figure 5.2(a), the only differ-

ence between pushing a shim header on an MPLS unicast packet and pushing a shim

header on an MPLS multicast packet lies in the protocol number in the Ethernet

frame. The MPLS layer uses the MSET instruction instead of the SET instruction in

the MPLS output table when pushing shim headers on MPLS multicast packets. In

Figure 5.2(b), we illustrate how multicast packets are forwarded on several interfaces

5.1. Multicast MPLS-Linux 120

at the same time. The MPLS input table contains a POP instruction and two MFWD

instructions for incoming packets. The MPLS layer first removes the MPLS shim

header of each incoming packet. Then, it duplicates the packet in order to get two

copies of the packet. The first MFWD instruction points to an entry in the MPLS output

table which contains a PUSH and a MSET instruction. A shim header is pushed on the

first copy of the packet and the Ethernet layer sends the corresponding frame over the

wire via the interface specified by the MSET instruction. The second MFWD instruction

points to a different entry in the MPLS output table which contains another PUSH and

another MSET instruction. A shim header containing a different label is pushed on the

second copy, and the corresponding Ethernet frame is sent using another interface.

In Figure 5.2(c), we show how MPLS routers pop shim headers from MPLS multicast

packets. There is no difference with popping the shim header of an MPLS unicast

packet, except for the protocol number in the Ethernet header of incoming frames.

Last, our implementation supports mixed L2/L3 forwarding. The concept of

mixed L2/L3 forwarding has been introduced in Section 1.3.4 and refers to the ability

of a router to forward a multicast packet both with an IP and an MPLS mechanism.

We perform mixed L2/L3 forwarding by using in the same MPLS input table entry

one or several MFWD instructions to forward the packet with an MPLS mechanism, and

a DLV instruction to forward the packet with an IP forwarding mechanism. Mixed

L2/L3 forwarding support is illustrated in Figure 5.3. Incoming MPLS packets are

5.1. Multicast MPLS-Linux 121

duplicated by the MPLS layer. One copy remains in the MPLS layer and the other

copy is passed to the IP layer.

Routing table match ?

protocol
0x8848

protocol
0x0800

input table output table

routing table

Ethernet

MPLS

IP

POP MFWD DLV

PUSH MSET

protocol
0x8848

ILM

Figure 5.3: Mixed L2/L3 forwarding implementation. The same incoming

packet is passed to both the IP layer and the Ethernet layer by the MPLS layer. The

shim header of the copy of the packet that remains in the MPLS layer is mswapped

and the packet is passed to the Ethernet layer, while the copy of the packet that is

sent to the IP layer is routed by the IP layer and can either be sent to the Ethernet

layer, or be delivered to the transport layer of the MPLS router.

5.1.3 FIB management API

Our implementation provides an API to let user processes modify the FIB of MPLS

routers. In MPLS-Linux, the FIB is located inside the Linux kernel. Therefore the

5.1. Multicast MPLS-Linux 122

File Contents
/proc/net/mpls labelspace Mapping between physical interfaces and labelspaces.
/proc/net/mpls fec FEC mappings.
/proc/net/mpls in Input table.
/proc/net/mpls out Output table.

Table 5.5: The /proc files related to the MPLS FIB. All files are in text format.

implementation of MPLS-Linux requires that a user program communicates with the

Linux kernel.

The three communication channels between user programs and the kernel provided

by Linux are ioctl system calls, netlink sockets, and the /proc file system. MPLS-Linux

uses netlink sockets and the /proc file system to access the FIB. Netlink is a datagram

oriented socket based interface between the kernel and user programs. The assigned

domain for netlink sockets is PF NETLINK. The netlink API provides functions to

encapsulate and decapsulate information in netlink datagrams which have a specific

format. Users can send and receive information encapsulated in netlink datagrams

to the kernel via the classic socket calls send and recv. The /proc file system is a

virtual filesystem where files contain information used by the kernel. MPLS-Linux

uses certain files of the /proc filesystem (see Table 5.5) to represent the FIB in human-

readable text format. Our implementation uses solely the netlink communication

interface to communicate with the kernel [53].

MPLS-Linux provides four functions to manipulate the FIB. These functions can

either create or remove entries in these tables. The function send nhlfe() creates an

5.1. Multicast MPLS-Linux 123

entry in the MPLS output table if called with parameter RTM NEWNHLFE, and deletes

an entry in the MPLS output table when called with RTM DELNHLFE. The function

send xc() binds or unbinds an entry in the input table to an entry in the output

table. Therefore, since NHLFE are implemented in both the input and output tables,

NHLFE are created or deleted using combinations of send nhlfe() and send xc().

A mcast field in the message sent by send nhlfe() specifies whether the NHLFE

refers to unicast or multicast packets. The function send ilm() manages the ILM

by creating or deleting entries in the MPLS input table. The function send ftn()

creates or deletes FTN mappings in the IP routing table. We added the function

send mc() to create and delete mappings between an entry in the MPLS input table

and several entries in the MPLS output table. MPLS forwarding rules are created

with the netlink functions described above. However, a single forwarding rule such as

“push unicast label 10” requires to send two netlink messages: a NHLFE and a FTN

must be created via send nhlfe and send ftn. To assist users in creating forwarding

rules, we provide a C API, which is described in Tables 5.6 and 5.7. This simple API

simplifies the creation of MPLS forwarding rules by hiding to the user the crafting of

complex netlink messages and the call of the netlink functions.

5.1. Multicast MPLS-Linux 124

MPLS
Operation

Instructions Netlink functions called C API

push
(unicast)

PUSH,
SET

send ftn

send nhlfe with mcast=0
push label(),
remove push label()

push
(multicast)

PUSH,
MSET

send ftn

send nhlfe with mcast=1
push label(),
remove push label()

swap POP, send ilm swap label(),
remove swap label()PUSH,

SET,

}
send nhlfe

FWD send xc

mswap POP, send ilm mswap label(),
remove mswap label()PUSH,

MSET,

}
send nhlfe

MFWD send mc
pop POP,

DLV

}
send ilm

pop label(),
remove pop label()

Table 5.6: Netlink functions and the corresponding C API used to set the

MPLS forwarding rules. The C API simplifies the creation and removal of MPLS

forwarding rules.

5.1. Multicast MPLS-Linux 125

MPLS C API function Description
Operation
push push label(int ifindex, Push a header with label

label id on packets of the FEC
fec prefix/fec len that are to
be transmitted on interface
ifindex towards next hop.

struct in addr

next hop,

u int label id,

struct in addr

fec prefix,

u char fec len)

remove push label(int ifindex, Remove a rule created with
push label().u int label id)

swap,
mswap

swap label(u int

in label id,

Swap a header with label
in label id of packets that are
to be transmitted on interface
in labelspace against a header
containing label out label id

and forward the packets on the
interface indexed by
out if index towards
out next hop.

int

in labelspace,

u int

out label id,

int

out if index,

struct in addr

out next hop)

remove swap label(u int

in label id,

Remove a rule created with
swap label().

int

in labelspace,

u int

out label id,

int

out if index)

pop pop label(u int label id, Pop headers containing label
label id of packets arriving via
an interface that belongs to
labelspace labelspace.

int labelspace)

remove pop label(u int label id, Remove a rule created with
pop label().int labelspace)

Table 5.7: Details on the FIB manipulation API. The C API hides to the user

the crafting of complex netlink messages and the calls of the netlink functions.

5.2. The MulTreeLDP protocol 126

5.2 The MulTreeLDP protocol

In this section, we describe MulTreeLDP, our signaling protocol for label distribution

of multicast LSPs (mLSPs). Two signaling protocols have been developed for MPLS

unicast, TE-RSVP [8] and LDP/CR-LDP [3] [41]. Neither supports multicasting,

nor have they been implemented for Linux. Unlike RSVP-TE, CR-LDP has been

specifically designed for MPLS, thus it is easier to engineer multicast extensions for

CR-LDP than for RSVP-TE.

Our MulTreeLDP signaling protocol is a new label distribution protocol which con-

forms to the requirements of the MPLS architecture [62]. The MulTreeLDP protocol

is different from CR-LDP, however we kept the CD-LDP message formats, making it

possible to envision a merging of MulTreeLDP with CR-LDP. MulTreeLDP defines

three different categories of messages. Advertisement messages create label mappings

and LSPs. Link failure and recovery detection messages are used to detect the fail-

ure or the recovery of links attached to interfaces of an MPLS router. For proper

MulTreeLDP operation, advertisement and notification messages must be delivered

reliably and in-order. To satisfy this requirement, we chose TCP (port 2646) as the

transport protocol for these messages. On the other hand, a link failure or repair

needs to be detected as early as possible and TCP retransmission timers would in-

crease the detection time. Therefore, link failure and recovery detection messages run

over UDP (port 2646).

5.2. The MulTreeLDP protocol 127

MulTreeLDP header

Message header

TLV 1

...

TLV n

Figure 5.4: General format of a MulTreeLDP message. MulTreeLDP messages

carry information in the TLV objects.

All MulTreeLDP routers listen for advertisement and notification messages on

TCP port 2646. When a router needs to send a MulTreeLDP message to another

router, it opens a new connection on port 2646 of the destination router. MulTreeLDP

advertisement and notification messages consist of a MulTreeLDP header, a message

header, and a series of Type-Length-Value (TLV) objects as illustrated in Figure 5.4.

A TLV is a 3-tuple which contains the type of the message, the length of the value

field, and a value field.

Our implementation of MulTreeLDP consists of three threads. The main thread

handles all advertisement and notification messages. On reception of an advertise-

ment message, the main thread can modify the FIB of the router and send other

MulTreeLDP messages in accordance with the MulTreeLDP protocol described in

the remainder of this section. The main thread can also perform switchback and

switchover when it receives notification messages. The second and the third threads

detect failures between a router and its neighbors in the multicast routing tree. The

5.2. The MulTreeLDP protocol 128

second thread sends link failure and recovery detection messages to every neighbor

of a router while the third thread listens for these messages. In the remainder of this

chapter, we describe the MulTreeLDP signaling protocol.

5.2.1 Multicast Explicit Routing

We now describe how MulTreeLDP supports multicast Explicit Routing. Explicit

Routing is the technique which enables any node in a network to set up a LSP. This

path is usually computed offline. MPLS uses Explicit Routing for traffic engineering

purposes but so far no support for multicast routing trees has been defined. Mul-

TreeLDP defines messages and procedures that enable Explicit Routing for core based

trees. Our implementation can easily be modified to support shortest path trees. We

denote by S the core of the tree.

First we explain how a user can provide the description of a multicast routing

tree that is understandable by MulTreeLDP. Users must write in a configuration file

the multicast routing tree description before MulTreeLDP establishes the mLSP that

maps the multicast routing tree. Multicast routing tree description files contain IP

addresses separated by a “,” symbol, a “(” symbol, a “)” symbol or a combination

of these three symbols. We next describe the rules for describing multicast routing

trees.

Trees must be described depth-first, starting from S. The IP address chosen for a

router is the address of the interface via which packets would arrive if they were sent

5.2. The MulTreeLDP protocol 129

by S over the multicast routing tree. The IP address of any interface of S can be used

for S. A “,” separates the IP addresses of two consecutive routers if the only router

downstream of the first router of the expression with regards to S is the second router

of the expression. If a router has several children in T , then all subtrees of this router

are successively described in the configuration file. The descriptions of the subtrees are

put between a “(” and a “)” symbol and the description of the first subtree follows im-

mediately the IP address of the parent router. Subtrees are described using the above

rules recursively. Let us take an example to illustrate the rules. Consider Figure 5.5

and tree TA rooted at A. The configuration file first contains any IP address of A.

This IP address can be either 10.0.1.1 or 10.0.2.1. We arbitrarily choose 10.0.1.1

as the address that describes S and write this address in the configuration file. Node

S has two children B and D, therefore two subtrees TB and TC of TA originate from a

child node of S. We put the description of these subtrees in brackets. The first subtree

TB is constituted by node B only. If packets are sent from S to B then they arrive at

B via the interface associated with IP address 10.0.1.2. Therefore TB is described

by (10.0.1.2). The second subtree TC is the subtree of TA rooted at C. Node C has

only one child D so the description of TC will start with (10.0.2.2,10.0.3.2. Then

D has three children E, F and G that are leaves of the tree, hence TC is described by

(10.0.2.2,10.0.3.2(10.0.4.2)(10.0.5.2)(10.0.6.2)). Consequently the con-

figuration file for TA contains:

10.0.1.1(10.0.1.2)(10.0.2.2,10.0.3.2(10.0.4.2)(10.0.5.2)(10.0.6.2)).

5.2. The MulTreeLDP protocol 130

Contents of a configuration
file that describes tree t A:

A

B

C

D

E

G

tree tA:

B
C

A

E
F

D

Payload of the ER-Tree TLV for tree t A:

ER-Hop host 10.0.1.1
NEW BRANCH
ER-Hop host 10.0.1.2
END BRANCH
NEW BRANCH
ER-Hop host 10.0.2.2
ER-Hop host 10.0.3.2
NEW BRANCH
ER-Hop host 10.0.4.2
END BRANCH
NEW BRANCH
ER-Hop host 10.0.5.2
END BRANCH
NEW BRANCH
ER-Hop host 10.0.6.2
END BRANCH
END BRANCH

10.0.1.2

10.0.1.1

10.0.2.2

10.0.2.1
10.0.3.2

10.0.3.1

10.0.4.1

10.0.4.2

10.0.5.2
10.0.5.1

10.0.1.1(10.0.1.2)(10.0
.2.2,10.0.3.2(10.0.4.2)
(10.0.5.2)(10.0.6.2))

F

10.0.6.1

10.0.6.2 G

Figure 5.5: Description of a tree in a file and in a Explicit Route Tree TLV.

Node A is the core of the tree.

We now explain how MulTreeLDP builds the bidirectional mLSP that maps a

multicast routing tree described in a tree configuration file. Any computer can estab-

lish an explicit mLSP. For example, a multicast routing tree can be computed by a

computer offline and this computer can establish the mLSP. The computer responsi-

ble for establishing the tree first parses the configuration file. The computer creates

an Explicit Route Hop TLV for each IP address found in the file, a New Branch TLV

for each “(” symbol and an End Branch TLV for each “(” symbol. Then the com-

puter responsible for establishing the mLSP creates an Explicit Route Tree TLV that

contains all Explicit Route, New Branch and End Branch TLVs it has created in the

order their corresponding entries were parsed in the file. In Figure 5.5, we show the

5.2. The MulTreeLDP protocol 131

contents of the Explicit Route Tree TLV (ER-Tree TLV) for the example developed

in the previous paragraph. Also the computer creates a FEC TLV which contains the

IP multicast address of the group for which we want to create the mLSP. Finally the

computer sends an Explicit Route Request message that contains the Explicit Route

Tree TLV and the previously created FEC TLV to the router designated by the IP

address of the first Explicit Route Hop TLV. This IP address is the address of one of

the interfaces of the core of the tree. The size of a multicast routing tree established

with MulTreeLDP is limited by the maximum size of a TCP datagram.

Each child of the core is the root of a subtree of the multicast routing tree. When

the core receives the Explicit Route Request message, it extracts the tree topology

from the contents of the message. The core of the multicast routing tree builds a

new Explicit Route Tree TLV that contains the description of one of these subtrees

for each of its children. Then the core sends a Label Request Message that contains

one of the Explicit Route Tree TLVs to the corresponding child. When a node B

receives a Label Request Message from a node A, it performs two actions. First, B

sends a label mapping to A. Node B chooses a label, creates the corresponding Label

TLV and sends to A a Label Mapping message that contains the Label TLV. Because

the mLSP that maps the multicast routing tree is bidirectional, node B that sent

the Label Mapping message also sends a Label Request message to A. The Explicit

Route Tree TLV sent in this message contains only the IP address of the interface

5.2. The MulTreeLDP protocol 132

of A on the link between A and B. Node A replies with a Label Mapping message.

At that point, a bidirectional LSP is established between A and B, or in this case

the core and one of its children. Second, for each child C of B, B builds an Explicit

Route Tree TLV that contains the description of the subtree rooted at C and sends a

Label Request Message that contains this Explicit Route Tree TLV to C. The mLSP

formerly created between the core and its children is thus expanded until all leaves

of the tree are reached. When all leaves of the tree are reached, the mLSP maps the

entire multicast routing tree.

As an example, consider the tree depicted in Figure 5.6(a). Figures 5.6(b), (d), (f),

(g), (h), (j), (l) depict the MulTreeLDP messages exchanges in the MPLS network

while Figures 5.6(c), (e), (g), (i), (k), (m) depict the expansion of the mLSP that

maps the multicast routing tree after a message exchange. Suppose node A receives

a Label Request message that contains the Explicit Route Tree TLV presented in

Figure 5.5. Node A sends a Label Request message to nodes B and C (Figure 5.6(b)).

Both messages contain an Explicit Route Tree TLV. The Explicit Route Tree TLV

that is sent to B contains the IP address 10.0.1.2 of B. The Explicit Route Tree

TLV that is sent to C describes the subtree of the multicast routing tree that is

rooted at node C: 10.0.2.2,10.0.3.2(10.0.4.2)(10.0.5.2)(10.0.6.2). At that

point no label mapping is established yet as shown in Figure 5.6(c). Then, nodes

B and C send a Label Mapping message to A (Figure 5.6(d)). The portions of

5.2. The MulTreeLDP protocol 133

A

B

C

D

E

G

A

B

C

D

E

G

A

B

C

D

E

G

A

B

C

D

E

G

A

B

C

D

E

G

A

B

C

D

E

G

A

B

C

D

E

G

A

B

C

D

E

G

A

B

C

D

E

G

A

B

C

D

E

G

A

B

C

D

E

G

A

B

C

D

E

G

A

B

C

D

E

G

MPLS Router

Physical link

MultreeLDP Label Request
message

Portion of a multicast LSP(a)

(b) (c)

(d) (e)

(f) (g)

(h) (i)

(j) (k)

(l) (m)

MultreeLDP Label
Mapping message

F

F F

F F

F F

F F

F F

F F

Figure 5.6: Advertisement of a multicast routing tree.

5.2. The MulTreeLDP protocol 134

the mLSP that correspond to the label mapping established after A receives the

Label Mapping messages from B and C are shown in Figure 5.6(e). Also, node C

sends to D a Label Request message that contains the Explicit Route Tree TLV

which contains the description the subtree of the multicast routing tree rooted at

D: 10.0.3.2(10.0.4.2)(10.0.5.2)(10.0.5.2). In Figure 5.6(f), nodes B and C

send a Label Request message to A in order to establish the second direction of the

portions of the mLSP between B and A on the one hand, and between C and A on the

other hand. The Label Request message sent by B to A contains the Explicit Route

Tree TLV 10.0.1.1 and the Label Request message sent by C to A contains the

Explicit Route Tree TLV 10.0.2.1. Node D sends a Label Request message to E, F

and G. The Label Request message sent to E contains the Explicit Route Tree TLV

10.0.4.2, the Label Request message sent to F contains the Explicit Route Tree TLV

10.0.5.2, and the Label Request message sent to G contains the Explicit Route Tree

TLV 10.0.6.2. Node D also sends a Label Mapping message to C and establishes

the portion of the mLSP from C to D as shown in Figure 5.6(g). In Figure 5.6(h),

node A sends a Label Mapping message to B and C and a bidirectional mLSP is

established between A and B on the one hand, and A and C on the other hand.

Node D sends a Label Request message to C to establish the other direction of the

part of the mLSP between C and D. The Label Request message sent by D to C

contains the Explicit Route Tree TLV 10.0.3.1. Nodes E, F and G send a Label

Mapping message to D and the three corresponding mLSP portions are established.

5.2. The MulTreeLDP protocol 135

The new mLSP portions are depicted in Figure 5.6(i). In Figure 5.6(j), node C sends

a Label Mapping message to D. The part of the mLSP between C and D becomes

bidirectional (Figure 5.6(k)). Nodes E, F and G send a Label Request message to C.

In Figure 5.6(l), D replies to E, F and G with Label Mapping messages to establish

a bidirectional mLSP between D and E, D and F , and D and G. The mLSP that

maps the multicast routing tree is complete (Figure 5.6(m)).

Backup path establishment is very similar to mLSP establishment, except that

unidirectional mLSPs are created instead of bidirectional mLSPs. When a computer

wants to advertise a backup path, it sends a Backup Route Request message to each

of the end nodes of the backup path. This message contains the FEC TLV that

corresponds to the FEC of the protected multicast routing tree, the Explicit Route

Tree TLV that corresponds to the backup path as described in Section 4.4, and a

Routers TLV. Since a path can be viewed as a tree where every node has only one

child, we kept the format of the Explicit Route Tree TLV to describe a backup path.

Therefore the Explicit Route Tree TLV contains Explicit Route Hop TLVs only. The

routers TLV contains all the IP addresses of MPLS routers interfaces on the protected

path. Then, the node that receives the Backup Route Request message removes the

first hop from the Explicit Route Tree TLV and sends a Backup Label Request message

to the next hop of the backup path. The Backup Label Request message contains the

new Explicit Route Tree TLV and the FEC TLV of the protected tree. When a node

5.2. The MulTreeLDP protocol 136

receives a Backup Label Request message, it sends another Backup Label Request

message to the next hop of the backup path after it has removed a Explicit Route

Hop TLV from the Explicit Route Tree TLV which describes the backup path. Also,

this node sends a Backup Label Mapping message to the sender of the Backup Label

Request message. The Backup Label Mapping message contains a Label TLV. At

that point a label mapping is established in one direction between the first node and

the second node of the backup path. Other mappings are established similarly with

exchanges of Backup Label Request and Backup Label Mapping messages.

The process we have described establishes a LSP that maps only one direction of

a backup path. Using the notations of Section 4.4, this path is for instance the path

between PSL A and node S ′ via the backup path. In order to establish the second

direction, the node that sent the Backup Route Request message needs to send a

Backup Route Request message to the other end of the backup path. This second

Backup Route Request message describes the reverse direction of the backup path,

that is, the path between PSL B and node S ′ via the backup path.

5.2.2 Link failure and recovery detection

Link failure and recovery detection is implemented with two threads. Consider an

MPLS router A. Every period Tp, the first thread of A sends a probe to each of its

neighbors on UDP port 2646. A node of the MPLS network can be an neighbor for

5.2. The MulTreeLDP protocol 137

01234567890123456789012345678901

1 2 3

Probe number

Figure 5.7: Link failure and recovery detection probe format. Probes have

been kept as small as possible in order to decrease the failure or recovery detection

time.

A with regards to several multicast routing trees. In that case, A sends only one

probe every period Tp to this multiple neighbor. Router A maintains a counter per

neighbor and increments this counter by “1” every period nTp and puts the value of

this counter in the probes. This counter value is the only payload of a probe (see

Figure 5.7).

The second thread listens for probe messages on UDP port 2646. Every period nTp

(n ≥ 2), the second thread checks the number of received probes for each neighbor.

If this number is zero, then the link from A to its neighbor has failed. Router A has

detected a link failure and sends link failure notification messages using the mechanism

described in Section 5.2.3. Router A internally records the link failure. When router

A receives a probe on a link recorded as failed, it immediately sends link recovery

notification messages using the mechanism described in Section 5.2.3.

The payload of the probes is not used in our implementation of MulTreeLDP but

can be used in future work for probe numbering to dismiss reordered or duplicate probes.

5.2. The MulTreeLDP protocol 138

5.2.3 Link failure and recovery notification

When a node detects a link failure or a link recovery, it must notify the two PSLs

of the mLSP of the event so that they can perform either a switchover in case of a

link failure on the protected path or a switchback in case of a link recovery on the

protected path. A node that detects the failure or recovery may be a LSR or LER

for several mLSPs and does not know which routers are the PSLs for each of these

mLSP, therefore it must notify all routers of each mLSP of the failure or recovery.

Suppose a node detects a link failure using the link failure detection mechanism

presented in Section 5.2.2. After the link has failed, the node creates an IPv4 node

TLV which contains the IP address of the interface on which the failed link is con-

nected. The node then considers in turn each link from which it receives traffic,

except the failed link. For each of these links, it builds a list of the labels of packets

for flows forwarded from the considered link to the failed link. Then the node sends

a Link Failure Notification message that contains the IPv4 node TLV and a Label

TLV per label in the aforementioned list on all links except the failed link. When a

node receives a Link Failure Notification message, it knows that all outgoing packets

that are labeled with a label of the list embedded in the Link Failure Notification

message will eventually be dropped due to the failed link. A node which receives a

Link Failure Notification message acts as if the link through which it received the

message had failed and builds a list of incoming labels for packets that are forwarded

5.2. The MulTreeLDP protocol 139

on this link. This node sends on every link, except the link through which it has been

notified of the failure, a Link Failure Notification message which contains a Label

TLV for each label of the list and the same IPv4 node TLV as the one it received

in the Link Failure Notification message. The failure notification information is thus

propagated by each node that detects the failure to all routers of all mLSPs that use

the failed link.

Consider, for instance, the multicast routing tree topology from Figure 5.8(a) and

the mLSP that maps the tree in Figure 5.8(b). Suppose that the link BC between

nodes B and C fails. Figure 5.8(c) shows the Failure Notification process. Both B

and C detect the failure. Before the failure, node B forwards packets labeled with “2”

on link BC. Those packets are the packets labeled with “1” coming from A, and the

packets labeled with “3” coming from D. The IP address of the interface of B at the

failed link is 10.0.1.2. Therefore, B sends a Link Failure Notification message with

an IPv4 node TLV containing the IP address 10.0.1.2 and the Label TLV for label

“1” to A, and a Link Failure Notification message with an IPv4 node TLV containing

the IP address 10.0.1.2 and the Label TLV for label “3” to D. When D receives the

Link Failure Notification message from B, it knows that the packets forwarded with

label “3” will eventually reach the interface with IP address 10.0.1.2 and then will be

dropped. Node D forwards packets with label “5” coming from node F on link FD

with label “3”. Therefore, D sends a Link Failure Notification message with an IPv4

5.2. The MulTreeLDP protocol 140

node TLV containing the IP address 10.0.1.2 and the Label TLV for label “5” to F .

On the other end of the failed link, node C also detects the failure. Before the failure,

node D forwards packets with label “14” coming from node E on link BC with label

“12”. The IP address of the interface of C at the failed link is 10.0.1.1. Therefore,

C sends a Link Failure Notification message with an IPv4 node TLV containing IP

address 10.0.1.1 and the Label TLV for label “14” to E. At this point, all nodes of

the mLSP are notified of the link failure. If the mLSP is protected by a backup path,

then the end nodes of the backup path must perform a switchover.

There is no difference between the link recovery notification and link failure noti-

fication processes except in the type of the messages used. Indeed, the link recovery

notification process uses Link Recovery Notification messages to notify the other nodes

of mLSP whose traffic was forwarded on the recovered link before the failure. On the

example illustrated by Figure 5.8(c), suppose that the formerly failed link BC is re-

paired. Nodes B and C detect the recovery with the mechanism described in Section

5.2.2. Node B sends a Link Recovery Message to node A with the IPv4 node TLV

containing the IP address 10.0.1.2 and a Label TLV for label “1”, and a Link Re-

covery Message to node A with the same IPv4 node TLV and a Label TLV for label

“3” to D. When it receives the Link Recovery Notification message from B, D sends

a Link Recovery notification message to F which contains the same IPv4 node TLV

again and a Label TLV for label “5”. Node C also detects the link recovery and sends

5.2. The MulTreeLDP protocol 141

(a) Logical topology

(b) Multicast label mappings (c) Notification messages contents

A B

D

C10.0.1.1

10.0.1.2

E

F

1

2

3

4

5

11

12

13

14

15

F(10.0.1.1: 14)

F(10.0.1.2: 1)

F(10.0.1.2: 3)

F(10.0.1.1: 5)

F(10.0.1.1: 14)

4

Link failure

mLSP and mapping

Failure Notification message: link
attached to interface with IP 10.0.1.1
failed and packets labeled 14 used the
failed link before the failure

Node

Figure 5.8: Failure and recovery notification process.

Link Recovery notification message to E which contains the IPv4 node TLV for the

IP address 10.0.1.1 and a Label TLV for label “14”. At this point all nodes of the

mLSP are notified of the link recovery. If the mLSP is protected by a backup path,

then the end nodes of the backup path must perform a switchback.

5.2. The MulTreeLDP protocol 142

5.2.4 Switchover and switchback

Consider a mLSP protected by a backup path and the associated protected path of

the backup path. A PSL of a mLSP must perform switchover when itself detects the

failure of a link of the protected path or when it is notified of the failure of a link

of the protected path. Likewise, a PSL of a mLSP must perform switchback when

it detects the recovery of a link of the protected path or when it is notified of the

recovery of a link of the protected path.

When a node receives a Link Failure Notification message or detects the failure of

a link attached to one of its interfaces, it first checks if it is a PSL for a mLSP that

uses the failed link. PSLs are nodes which receive a Backup Route Request message.

Backup Route Request messages contain the list of the interfaces that end a link of the

protected path. We call failed interface the IP address contained in the IPv4 Node

TLV of the Link Failure Notification message if the PSL received such a message,

or the IP address of the interface at the failed link if the PSL itself detected the

failure. If the failed interface matches one of the addresses previously received in the

Router TLV of a Backup Route Request message, the PSL knows that one link on the

protected path has failed and must perform a switchover. The switchover consists of

modifying the MPLS forwarding tables of the LSRs and is performed instantaneously

on each of the LSRs. Tables are changed such that all incoming traffic from the

protected mLSP is forwarded also on the backup path.

5.2. The MulTreeLDP protocol 143

(a) Multicast tree
topology

Switchover

Switchback

(b) mLSP and backup LSP
adjacent to node D when no link
of the protected path has failed

(c) mLSP and backup LSP
adjacent to node D when a link
of the protected path has failed

B BF F

C C

D D

A B

D

C E

F

Node

Link failure

Backup link

Backup path mapping

Other link of the
multicast tree

Mapping of the mLSP

13 1315 15

3 35 5

14 14

Figure 5.9: Switchback and switchover. Modification of the forwarding tables at

a PSL.

Consider, for example, Figure 5.9(a). Nodes C and D are the PSLs for the tree

represented as solid lines protected by the backup path represented in dotted lines.

The backup path consists of link CD and the protected path consists of links BC

and BD. We study the behavior of PSL D on failure and recovery of link BC .

When link BC has not failed, D forwards traffic from F to B and from B to F as

shown in Figure 5.9(b) where only one direction of the backup path between C and

5.2. The MulTreeLDP protocol 144

D is represented. Packets coming from B with label “13” are forwarded to F with

label “15” and packets coming from F with label “5” are forwarded to B with label

“3”. Node C does not forward packets over the backup path (Figure 5.9(b)). When

D learns that it must perform switchover because a link of the protected path has

failed, D forwards packets with label “13” from B both to F using label “15” and

over the backup path to C using label “14”. Node D also forwards packets with label

“5” from F both to B using label “3” and over the backup path to C using label

“14” (Figure 5.9(c)). When node D learns it must perform switchback because the

failed link has been repaired, it stops forwarding packets over the backup path as in

Figure 5.9(b).

5.2.5 MulTreeLDP messages and TLV formats

The messages and TLVs in MulTreeLDP are similar to those in LDP and CR-LDP.

We indicate for each message or TLV whether it is a modified CR-LDP message which

has been amended or a new message. The general form of MulTreeLDP messages is a

MulTreeLDP header, followed by a message header and any number of TLV objects

(Figure 5.4). A TLV object itself consists of a TLV header which contains the type

and the length of the TLV, and a payload which contains the value of the TLV.

5.2. The MulTreeLDP protocol 145

MulTreeLDP header

01234567890123456789012345678901

1 2 3

Version Length

Unused

Figure 5.10: MulTreeLDP header.

The Version field is set to 0x1. The Length is the length in bytes of the Mul-

TreeLDP message, version and length fields of the MulTreeLDP message excluded.

We now give the format of all TLVs and messages presented in this chapter. Mul-

TreeLDP TLVs and messages are compatible with CR-LDP. The “u” and “unused”

bits that appear in the MulTreeLDP TLV and messages formats correspond to CR-

LDP fields that are not used in MulTreeLDP.

5.2. The MulTreeLDP protocol 146

MulTreeLDP TLV formats

FEC TLV

01234567890123456789012345678901

1 2 3

u FEC TLV (0x0100) Length

FEC Element 1

FEC Element ...

FEC Element n

Figure 5.11: FEC TLV format.

01234567890123456789012345678901

1 2 3

Element type
Host Address

Length

Host Address (Multicast IPv4 Address)

Address Family

Figure 5.12: FEC element format.

The FEC TLV, of type 0x0100, is adapted from CR-LDP. A FEC is defined in

a FEC element by a prefix and a prefix length. For an IPv4 address like an IP

multicast group address, the LDP specification [3] requires that the element type field

is set to “2”, the Address Family to “1” and the Host Address Length to “4” which is

the number of bytes of the IP address. The host address is the IPv4 address of the

multicast group described by the FEC element.

5.2. The MulTreeLDP protocol 147

Label TLV

01234567890123456789012345678901

1 2 3

u Label TLV (0x0200) Length

Label

Figure 5.13: Label TLV format.

The Label TLV, of type 0x0200, is adapted from CR-LDP and contains a label

number.

IPv4 node TLV

01234567890123456789012345678901

1 2 3

u IPv4 Node TLV (0x0805) Length

IPv4 address

Figure 5.14: IPv4 node TLV format.

The IPv4 node TLV, of type 0x0805, is a new TLV and does not exist in CR-LDP.

It contains an IPv4 address and is used in the notification messages.

5.2. The MulTreeLDP protocol 148

Explicit Route Tree TLV

01234567890123456789012345678901

1 2 3

u
Explicit Route Tree TLV

(0x0900)
Length

New Branch TLV or End Branch TLV or ER Hop TLV - 1

New Branch TLV or End Branch TLV or ER Hop TLV - ...

New Branch TLV or End Branch TLV or ER Hop TLV - n

Figure 5.15: Explicit Route Tree TLV format.

The Explicit Route Tree TLV, of type 0x0900, is a new TLV and does not exist in

CR-LDP. It defines a multicast explicit route tree. A multicast routing tree definition

consists of New Branch TLVs (Figure 5.16), End Branch TLVs (Figure 5.17), and

Explicit Route Hop TLVs (Figure 5.18).

New Branch TLV

01234567890123456789012345678901

1 2 3

u New Branch TLV (0x0901) Length

Figure 5.16: New Branch TLV format.

The New Branch TLV, of type 0x0901, is a new TLV and does not exist in CR-

LDP. It has no payload and therefore the length field is set to “0”.

5.2. The MulTreeLDP protocol 149

End Branch TLV

01234567890123456789012345678901

1 2 3

u End Branch TLV (0x0902) Length

Figure 5.17: End Branch TLV format.

The End Branch TLV, of type 0x0902, is a new TLV and does not exist in CR-

LDP. It has no payload and the length field is set to “0”.

Explicit Route Hop TLV

01234567890123456789012345678901

1 2 3

u
Explicit Routing Hop TLV

(0x0801)
Length

Unused

IPv4 address

uE Prefix Length

Figure 5.18: Explicit Route Hop TLV format.

The Explicit Route Hop TLV, of type 0x0801, is adapted from CR-LDP. An Ex-

plicit Route Hop TLV contains the IP address in the IPv4 address field of an interface

of a router part of an multicast route tree. The Prefix Length field is set to “32”,

which is the number of bits of an IPv4 address. If the “E” bit is set then packets

received on this interface must be passed to the IP layer and the host can perform

mixed L2/L3 forwarding.

5.2. The MulTreeLDP protocol 150

Routers TLV

01234567890123456789012345678901

1 2 3

u Routers TLV (0x0910) Length

Explicit Routing Hop TLV - 1

Explicit Routing Hop TLV - ...

Explicit Routing Hop TLV - n

Figure 5.19: Routers TLV format.

The Routers TLV of type 0x0910 is a new TLV and does not exist in CR-LDP.

The Routers TLV contains a list of Explicit Route Hop TLV.

MulTreeLDP message formats

Explicit Route Request message

01234567890123456789012345678901

1 2 3

uExplicit Route Request (0x0411) Message Length

Unused

FEC TLV

Explicit Route Tree TLV

Figure 5.20: Explicit Route Request message format.

The Explicit Route Request message, of type 0x0411, is a new message and does

not exist in CR-LDP. Any router can send a route request message to initiate the

5.2. The MulTreeLDP protocol 151

creation of an Explicit Route Tree. The Explicit Route Request message must be

sent to the core of the tree. The FEC TLV (Figure 5.11) contains the definition of

the FEC for the advertised tree. The Explicit Route Tree TLV (Figure 5.15) contains

the definition of the tree.

Explicit Backup Route Request message

01234567890123456789012345678901

1 2 3

u Backup Route Request (0x0412) Message Length

Unused

FEC TLV

Explicit Route Tree TLV

Routers TLV

Figure 5.21: Explicit Backup Route Request message format.

The Explicit Backup Route Request message, of type 0x0412 is a new message and

does not exist in CR-LDP. Any router can send an Explicit Backup Route Request

message to initiate the creation of a backup path. This message has to be sent to the

first hop of the backup path. Two Explicit Backup Route Request messages must be

sent to establish a bidirectional backup path. The FEC TLV (Figure 5.11) contains

the definition of the FEC for the tree protected by the backup path. The Routers

TLV (Figure 5.19) contains the IP addresses of interfaces at the end of links of the

protected path. The Explicit Route Tree TLV (Figure 5.15) contains the definition

of the backup path.

5.2. The MulTreeLDP protocol 152

Label Request message

01234567890123456789012345678901

1 2 3

u Label Request (0x0401) Message Length

Unused

FEC TLV

Explicit Route Tree TLV

Figure 5.22: Label Request message format.

The Label Request message, of type 0x0401, is adapted from CR-LDP. A router

sends a Label request message to request a label mapping for a LSP defined in the

Explicit Route Tree TLV (Figure 5.15) associated to the FEC defined in the FEC

TLV (Figure 5.11).

Backup Label Request message

01234567890123456789012345678901

1 2 3

u Backup Label Request (0x0420) Message Length

Unused

FEC TLV

Explicit Route Tree TLV

Figure 5.23: Backup Label Request message format.

The Explicit Backup Route Request message, of type 0x0412, is a new message

and does not exist in CR-LDP. This message is the same as Label Request message,

except that the Explicit Route Tree TLV describes a backup LSP associated with the

FEC defined by the FEC TLV.

5.2. The MulTreeLDP protocol 153

Label Mapping message

01234567890123456789012345678901

1 2 3

u Label Mapping (0x0400) Message Length

Unused

Label TLV

Figure 5.24: Label Mapping message format.

The Label Mapping message, of type 0x0400, is adapted from CR-LDP. Label

Mapping messages are sent from downstream nodes to upstream nodes for a given

LSP. A Label Mapping message contains a label mapping in the Label TLV (Fig-

ure 5.13) for the LSP associated with the FEC defined in the FEC TLV (Figure 5.11).

Backup Label Mapping message

01234567890123456789012345678901

1 2 3

u Backup Label Mapping (0x0421) Message Length

Unused

Label TLV

Figure 5.25: Backup Label Mapping message format.

The Backup Label Mapping, of type 0x0421, is a new message and does not exist

in CR-LDP. This message is the same as the Label Mapping message, except that

the label in the label TLV refers to the backup path associated with the FEC defined

in the FEC TLV.

5.2. The MulTreeLDP protocol 154

Link Failure Notification message

01234567890123456789012345678901

1 2 3

u
Link Failure Notification

(0x0501)
Message Length

Unused

IPv4 node TLV

Label TLV 1

Label TLV ...

Label TLV n

Figure 5.26: Link Failure Notification message format.

The Link Failure Notification message, of type 0x0501, is a new message and does

not exist in CR-LDP. This message contains the IP address in the IPv4 node TLV

(see Figure 5.14) of an interface on which a failed link is attached. It also contains

a list of (incoming) labels in the Label TLVs (Figure 5.13) as explained in Section

5.2.3.

5.2. The MulTreeLDP protocol 155

Link Recovery Notification message

01234567890123456789012345678901

1 2 3

u
Link Recovery Notification

(0x0502)
Message Length

Unused

IPv4 node TLV

Label TLV 1

Label TLV ...

Label TLV n

Figure 5.27: Link Recovery Notification message format.

The Link Recovery Notification message, of type 0x0502, is a new message and

does not exist in CR-LDP. This message contains the IP address in the IPv4 node

TLV (see Figure 5.14) of an interface on which a recovered link is attached. It also

contains a list of (incoming) labels in the Label TLVs (Figure 5.13) as explained in

Section 5.2.3.

6

Experiments

In this chapter, we present the experiments that assess the performance of MPLS

multicast Fast Reroute. All experiments are performed on Linux PCs equipped with

Fast Ethernet network adapters. We successively evaluate the performance of all

components of MPLS multicast Fast Reroute. These components are MPLS-Linux

multicast, the link failure and recovery detection mechanisms, the link failure and

recovery notification mechanisms, and the switchover and switchback mechanisms. In

Section 6.1, we discuss the hardware used to conduct the experiments. In Section 6.2,

we assess the performance of MPLS-Linux augmented with our multicast extensions

by measuring the maximum throughput of data that can flow on a multicast LSP. We

compare this maximum throughput with the throughput achieved with MPLS unicast

and IP unicast. We show that MPLS-Linux with multicast support can fully exploit

the capacity of Fast Ethernet links. In Section 6.3, we evaluate the link failure and

recovery detection mechanisms. We simulate link failure and recovery by manually

enabling up and disabling down an interface attached to a link of a mLSP. Disabling

an interface is equivalent to physically cutting a link and enabling a disabled interface

156

6.1. Hardware used for the experiments 157

is equivalent to repairing a link. We measure the time required by the end nodes of

the link to detect the simulated failures and repairs. We show that the time to detect

a failure (Tfdetect) and the recovery (Trdetect) of a link conforms to the distributions

determined in Section 4.2, with an average value of a few tens of milliseconds. In

Section 6.4, we measure the node notification delay Tnnotif for notification messages.

We show that the node notification delay is close to 1 millisecond and therefore the

order of magnitude of the notification time Tnotif is a few milliseconds to tens of

milliseconds depending on the multicast routing tree topology. In Section 6.5, we

measure the total time to repair a multicast routing tree when a link fails. We send

traffic over a mLSP and monitor the packet arrivals at the receivers. We measure the

interruption time Trepair seen by the receivers when we simulate a link failure. We

compare Trepair with the sum of Tfdetect and Tnotif measured in the previous sections

and show that the network is repaired in less than the SONET requirement of 50 ms.

6.1 Hardware used for the experiments

We perform our experiments on a testbed of six identical Intel PCs PII-450 with

128MB of memory running Linux and MPLS-Linux with our multicast extensions

(see Figure 6.1).

The network topology is depicted in Figure 6.2. Each PC is equipped with five Fast

Ethernet adapters (100BaseTX). Only one interface of each PC, eth0, has Internet

6.1. Hardware used for the experiments 158

Figure 6.1: The testbed used for the experiments. Our testbed consists of 6

PC-routers and Fast Ethernet hardware.

Name eth1 eth2 eth3 eth4
PC1 N/A N/A N/A 10.0.4.2
PC2 10.0.23.2 N/A 10.0.3.2 10.0.4.1
PC3 10.0.21.2 10.0.2.2 10.0.3.1 10.0.20.1
PC4 10.0.23.1 10.0.22.2 N/A 10.0.20.2
PC5 N/A 10.0.2.1 N/A N/A
PC6 10.0.21.1 10.0.22.1 N/A N/A

Table 6.1: IP addresses used in the Indra testbed. The interfaces of Monitor

do not need to be assigned IP addresses to monitor the traffic on a link.

6.1. Hardware used for the experiments 159

eth4
10.0.4.2

eth4
10.0.4.1

eth3
10.0.3.2

eth1
10.0.23.2

eth3
10.0.3.1

eth1
10.0.23.1

eth2
10.0.2.2

eth2
10.0.2.1

eth2
10.0.22.2

eth2
10.0.22.1

eth4
10.0.20.2

eth4
10.0.20.1

eth1
10.0.21.2

eth1
10.0.21.1hub

hub

PC3

PC1 PC2

PC4

Monitor

PC5

PC6

Figure 6.2: Setup of the network used during the experiments. Monitor

does not participate actively in the experiments and only monitors traffic on the link

between PC2 and PC4 and on the link between PC4 and PC6.

access. This interface is not used during the experiments and is not represented in

Figure 6.2. All other interfaces are not connected to the Internet. On each of the

six PCs (PC1, PC2, PC3, PC4, PC5, PC6), we use up to four of the other interfaces

6.2. Measuring MPLS multicast throughput 160

(eth1, eth2, eth3 and eth4) to conduct our experiments. All links are full-duplex

point-to-point 100BaseTX Ethernet cables. Table 6.1 shows the IP addresses of the

interfaces.

In addition to the six PCs of the testbed, we use a seventh machine, “Monitor”, for

measurement purposes. Monitor has three interfaces. The first interface is connected

to the Internet and is not used in the experiments. The second interface is used

to capture the traffic on the link between PC2 and PC4 while the third interface is

used to capture the traffic between PC4 and PC6. Monitor is connected to the link

between PC2 and PC4 and to the link between PC4 and PC6 via Fast Ethernet hubs.

Therefore, when PC2 sends a frame to PC4, this frame is received by both Monitor

and PC4. Since Monitor only captures traffic on the wires of the network, we do not

assign IP addresses to the second and third interfaces. Monitor only has a passive

role and the presence of Monitor in the network is transparent to the experiments.

6.2 Experiment 1: Measuring MPLS multicast

throughput

The goal of the first set of experiments is to evaluate the throughput achievable by

our multicast MPLS forwarding engine and compare it with the data throughput on a

unicast path. In each experiment, a source is sending data to one or several receivers

6.2. Measuring MPLS multicast throughput 161

PC2
(sender)

(b) Unicast path
(MPLS LSP)

PC3 PC4
(receiver)

(d) Multicast tree of 4 nodes
(3 group members)

PC3PC2
(sender)

PC4
(receiver)

PC6
(receiver)

(e) Multicast tree of 5 nodes
(4 group members)

PC3PC2
(sender)

PC5
(receiver)

PC6
(receiver)

PC4
(receiver)

PC2
(sender)

PC4
(receiver)

(a) Unicast path
(IP forwarding)

PC3 PC2
(sender)

(c) Multicast tree of 3 nodes
(2 group members)

PC3 PC4
(receiver)

Link

Multicast LSR

IP router

Multicast LER
and member of the
multicast group

Unicast LSR

Unicast LER

Figure 6.3: Topology of the network used to measure the performance of the

MPLS-Linux multicast implementation. We compare the throughput achieved

with IP routing, MPLS unicast, MPLS multicast in groups of two to four members.

using a modified version of the ttcp tool [52] [66] that supports multicast traffic. The

ttcp tool is a traffic generation tool in which it is possible to choose the size, the

total amount of data sent and the packet sending rate of the generated traffic. At

the sender, we configure the ttcp tool to send 100,000 UDP packets of 8192 bytes at

the maximum speed offered by the hardware. Since we use UDP packets to measure

throughputs, packets may be dropped between the source and the receivers and the

receivers do not necessarily receive every packet. The throughput seen by a receiver

6.2. Measuring MPLS multicast throughput 162

is the amount of data received by the receiver divided by the time taken to receive

the data. A program runs on each receiver and computes the throughput seen by the

receiver. We run each experiment five times, thus for each experiment we collect five

values for the throughput seen by each receiver.

In Experiment 1.1.1 (see Figure 6.3(a)), the source PC2 sends IP packets to the

receiver PC4. All three PCs involved in the experiments, PC2, PC3 and PC4, exclu-

sively use IP forwarding mechanisms and MPLS forwarding is disabled. In Experi-

ment 1.1.2 (see Figure 6.3(b)), we set up a unicast LSP between the source PC2 and

the receiver PC4. PC2 is setup as an ingress LER, PC3 is a LSR and PC4 is an egress

LER. In Experiments 1.1.3 to 1.1.8, we set up multicast LSPs for multicast routing

trees with two (Figure 6.3(c)), three (Figure 6.3(d)) and four (Figure 6.3(e)) group

members. The core of the multicast routing tree is PC3, and PC2 is the sender. In

Experiments 1.1.3 and 1.1.6, PC4 is the only receiver. In Experiments 1.1.4 and 1.1.7,

both PC4 and PC5 are receivers and in Experiments 1.1.5 and 1.1.8, PC4, PC5 and

PC6 are receivers. We perform Experiments 1.1.1 and 1.1.2 with the probing mecha-

nism that detects link failures and repairs deactivated. We perform the experiments

that involve MPLS multicast with the probing mechanism deactivated (Experiments

1.1.3, 1.1.4 and 1.1.5), and then with the probing mechanism activated (Experiments

1.1.6, 1.1.7 and 1.1.8).

6.2. Measuring MPLS multicast throughput 163

Exp. Description Throughput th1
a Difference

number (Standard variation) to MPLS
Mbits/s Unicast (rdiff1

a)
Probing mechanism deactivated

1.1.1 IP unicast 93.552 (0.0039) +0.279 %
1.1.2 MPLS Unicast th1

0 =93.292 (0.0001) (reference)

MPLS
multicast

1.1.3 Group of 2 members 93.286 (0.0106) -0.006 %
1.1.4 Group of 3 members:

PC4 93.291 (0.0017) -0.001 %
PC5 93.292 (0.0013) -0.001 %

1.1.5 Group of 4 members:
PC4 93.270 (0.0258) -0.024 %
PC5 93.273 (0.0222) -0.021 %
PC6 93.282 (0.0174) -0.012 %

Probing mechanism activated, Tp=10 ms

MPLS
multicast

1.1.6 Group of 2 members 93.215 (0.0090) -0.083 %
1.1.7 Group of 3 members:

PC4 93.215 (0.0011) -0.081 %
PC5 93.217 (0.0008) -0.081 %

1.1.8 Group of 4 members:
PC4 92.034 (0.2169) -1.35 %
PC5 92.108 (0.1635) -1.35 %
PC6 92.108 (0.1729) -1.27 %

Table 6.2: Multicast MPLS forwarding engine performance with UDP pack-

ets of 8192 bytes. Multicast MPLS achieves throughputs comparable with MPLS

unicast and IP unicast. The probing mechanism has little influence on the maximum

throughputs achieved. The size of the group has a limited impact on the performance

of multicast MPLS.

6.2. Measuring MPLS multicast throughput 164

Consider Table 6.2. The first and second columns contain the experiment number

and a short description for each experiment. Each experiment consists of five runs.

In the third column, we give the average throughput seen by each receiver for the five

runs of each experiment, and the standard deviation for the set of the five values of the

throughput. In the fourth column, we give the relative difference rdiff1
a between the

throughput th1
a seen by a receiver a and the throughput achieved with MPLS unicast

when the probing mechanism is not activated th1
0; therefore, rdiff1

a =
th1
a−th1

0

th1
0

.

First, we notice that IP unicast is faster than MPLS (Experiments 1.1.1 and 1.1.2).

For each incoming packet, an ingress LER performs a lookup in the IP routing table

to find the FTN of the packet and then a lookup in the MPLS output table to find

the NHLFE pointed by the FTN. Then the LER pushes a label according to the

information contained in the NHLFE. With IP routing only one lookup is performed

thus IP routing is faster than MPLS forwarding. Nevertheless, routers perform these

lookups fast and the difference between the throughputs achieved by IP and MPLS

unicast is small (0.279 %).

Second, in all experiments, the throughput for all multicast group members is

the same. For example, in the experiments with the group of four members (Ex-

periments 1.1.5 and 1.1.8), the throughputs at PC4, PC5 and PC6 are the same

(93.3 Mbits/s when the probing mechanism is deactivated, 92.1 Mbits/s when the

probing mechanism is activated). However, the throughput decreases with the num-

6.2. Measuring MPLS multicast throughput 165

ber of group members. In the group of four members, when the probing mechanism

is activated, the throughput is 1.3 % lower than when IP unicast is used (Experi-

ment 1.1.8), while this throughput loss is only 0.8 % in groups of two or three mem-

bers (Experiments 1.1.6 and 1.1.7). Packet duplication is a time consuming operation

and has a negative impact on the throughput on the network. We could not test the

performance of the duplication mechanism for a larger number of duplications.

Third, the probing mechanism has a limited impact on the maximum through-

put in the network (Experiments 1.1.3 and 1.1.6, 1.1.4 and 1.1.7, 1.1.5 and 1.1.8).

Throughputs in the network are lower when the probing mechanism is activated. The

throughput decrease due to the probing mechanism reaches 1.3 % (Experiment 1.1.8).

The probes consume bandwidth on the links and this bandwidth is not available for

the data that the sender has to transmit.

In summary, adding the multicast capability to the routers has a limited impact

on the maximum throughput of the network when using UDP packets of 8192 bytes.

Now, we repeat the experiments but set the UDP packet size to 1024 (instead of

8192 bytes) in Experiments 1.2.1 to 1.2.8. Consider Table 6.3. In the third column, we

give the average throughput seen by each receiver for the five runs of each experiment,

and the standard deviation for the set of the five values of the throughput. In the

fourth column, we give the relative difference rdiff2
a between the throughput th2

a seen

6.2. Measuring MPLS multicast throughput 166

Exp. Description Throughput th2
a Difference

number (Standard variation) to MPLS
Mbits/s Unicast (rdiff2

a)
Probing mechanism deactivated

1.2.1 IP Unicast 91.694 (0.0025) +0.64 %
1.2.2 MPLS Unicast th2

0 =91.114 (0.2217) (reference)

MPLS
multicast

1.2.3 Group of 2 members 88.809 (0.2215) -2.53 %
1.2.4 Group of 3 members:

PC4 91.215 (4.2001) +0.11%
PC5 88.089 (3.1458) -3.32%

1.2.5 Group of 4 members:
PC4 91.237 (0.3782) +0.13 %
PC5 90.478 (0.1635) -4.47 %
PC6 87.044 (0.2680) -0.70 %

Probing mechanism activated, Tp=10 ms

MPLS
multicast

1.2.6 Group of 2 members 80.609 (1.4546) -11.53 %
1.2.7 Group of 3 members:

PC4 84.640 (0.2974) -7.11 %
PC5 82.120 (0.4136) -9.87 %

1.2.8 Group of 4 members:
PC4 81.327 (0.2583) -10.74 %
PC5 80.450 (0.2797) -11.70 %
PC6 84.321 (0.6687) -7.46 %

Table 6.3: Multicast MPLS forwarding engine performance with UDP pack-

ets of 1024 bytes. The limits of the hardware are reached and the performance of

multicast MPLS is severely degraded when the traffic consists of small packets.

6.3. Measuring link failure and recovery detection times 167

by a receiver a and the throughput achieved with MPLS unicast when the probing

mechanism is activated th2
0; therefore, rdiff2

a =
th2
a−th2

0

th2
0

.

The throughputs achieved in the network are lower than with 8192-byte packets.

With IP unicast and MPLS unicast (Experiments 1.2.1 and 1.2.2) the throughput

is now 91 Mbits/s. With MPLS multicast, the throughput is comprised between

80 Mbits/s (Experiment 1.2.8) and 91 Mbits/s (Experiments 1.2.3 and 1.2.4). With

smaller packets, the number of packets that routers need to process each second is

larger than with large packets, thus decreasing the performance of the routers. In this

experiment, we reach the processing capacity limit of the PC routers. Our PC routers

are not able to forward UDP packets of 1024 bytes at the maximum speed allowed

by the network hardware. In the following experiments, we use only 8192-byte UDP

packets in order to use the full capacity of the links and not overload the CPUs of

the PC routers.

6.3 Experiment 2: Measuring link failure and re-

covery detection times

In the second experiment, we determine the link failure and recovery detection times

and compare the experimental values with the values from the analytical model pre-

sented in Section 4.2. The setup for this experiment is depicted in Figure 6.4. In this

6.3. Measuring link failure and recovery detection times 168

Link

Multicast LSR

Multicast LER
and member of the
multicast group

PC1 PC2 PC3 PC5

eth3 eth3 eth2 eth2eth4eth4
failure

Figure 6.4: Experimental setup for determining the link failure and recovery

detection times. No traffic flows on the tree. Once the mLSP is established, we

successively simulate the failure and recovery of the link between PC2 and PC3 by

bringing down and up the interface eth3 of PC2.

experiment, we set up a multicast LSP but do not transmit data over the LSP. The

core of the tree is PC2. The members of the multicast group are PC1 and PC5. On

each machine involved in the experiment, we set the beat checking number n to the

minimum value n = 2 as defined in Section 4.2. In the Linux operating system, the

most accurate timer has a resolution of 10 ms [15]. We use this resolution of 10 ms for

the period Tp. The 10 ms timer is accurate when the machine is underloaded, however

since Linux is not a real-time operating system, the accuracy becomes questionable

when the system is overloaded [15] [45]. In this experiment, the PC routers are un-

derloaded and we assume that the timer is accurate. When an interface is disabled,

the kernel considers that no link is attached to the interface therefore disabling (or

6.3. Measuring link failure and recovery detection times 169

bringing down) an interface is equivalent to cutting the link attached to the interface.

Reenabling (bringing up) an interface is equivalent to repairing the link attached to

the interface.

We modify the code of MulTreeLDP on PC2 to measure Tfdetect and Trdetect.

We add a thread to MulTreeLDP that automatically brings down and brings up

eth3. MulTreeLDP records in a timestamp the instant at which it brings eth3 up.

MulTreeLDP computes the difference between the time at which it detects the link

failure and the instant at which eth3 is brought down. This time difference is Tfdetect.

Then, the thread we added to MulTreeLDP chooses a random time value using the

internal random number generator of the PC and sleeps during that time. When

the new thread wakes up, it brings up eth3 and records in a timestamp the instant

at which it brings eth3 up. When the link repair is detected, PC2 computes the

time difference between the instant of the repair detection and the aforementioned

timestamp. This difference is Trdetect. The new thread successively brings down and

brings up eth3 100 times and then quits. We record the 100 values for Tfdetect and

Trdetect, stop the MulTreeLDP program and restart it on all four machines used in this

experiment. We collect 25 series of 100 values for both Tfdetect and Trdetect. Therefore,

we collect 2500 values for Tfdetect and 2500 values for Trdetect. According to our model

presented in Section 4.2, the time to detect a link failure depends on two factors.

The first factor is the length of the time interval between the instant at which PC3

sends the last probe before the failure occurs and the instant at which the failure

6.3. Measuring link failure and recovery detection times 170

occurs. We called this time T1 in Section 4.2. We randomize T1 by bringing up and

bringing down interface eth3 at random times. The second factor is related to the

synchronization between the timers on PC2 and PC3. In Section 4.2, we called T2

the difference of synchronization of the timers of PC2 and PC3. We assume that

manually stopping and restarting MulTreeLDP on all machines randomizes T2.

In Figure 6.5, we show the distribution of the 2500 samples of Tfdetect for 2 ms

long time intervals, and compare this experimental distribution with the expected

distribution derived from the analytical model in Section 4.2. The average for the

2500 samples of Tfdetect is T fdetect=25.4 ms. With n = 2 and Tp=10 ms the theoretical

average is 3n−1
2
Tp = 25 ms. Although the model we discuss in Section 4.2 is simple,

our experimental results match the theoretical values determined with the model.

In Figure 6.6, we show the distribution of the 2500 samples of Trdetect for 2 ms long

time intervals and compare this distribution with the expected distribution derived

from our model. Here, the experimental results do not match the model well. We

expect 10 % of the recovery detection times to be comprised between 0 and 10 ms and

0 % above 10 ms, but only 6.1 % of the samples are comprised between 0 and 10 ms

and more than 3 % of the values are higher than 10 ms. Actually, the experimental

recovery detection times are not comprised between 0 and 10 ms but between 0.4

and 10.4 ms, as shown in Figure 6.7. The average for the 2500 samples of Trdetect is

T rdetect=5.48 ms, which is close to the theoretical average (5 ms).

6.3. Measuring link failure and recovery detection times 171

0.0%

1.0%

2.0%

3.0%

4.0%

5.0%

6.0%

7.0%

8.0%

9.0%

10.0%

11.0%

0 2 4 6 8 10 12 14 16 18 20 22 24 26 28 30 32 34 36 38 40 42 44

Detection time (ms)

F
re

q
u

en
cy

Measured

Theory

Figure 6.5: Experimental distribution of the link failure detection time. In

bold lines, the theoretical distribution for time intervals of 2 ms.

6.3. Measuring link failure and recovery detection times 172

0.0%

2.0%

4.0%

6.0%

8.0%

10.0%

12.0%

14.0%

0 1 2 3 4 5 6 7 8 9 10 11 12 13 14

Recovery time (ms)

Fr
eq

ue
n

cy

Measured

Theory

Figure 6.6: Experimental distribution of the link recovery detection time.

In bold lines, the theoretical distribution for time intervals of 1 ms.

6.3. Measuring link failure and recovery detection times 173

0.0%

2.0%

4.0%

6.0%

8.0%

10.0%

12.0%

0.4 1.4 2.4 3.4 4.4 5.4 6.4 7.4 8.4 9.4 10.4 11.4 12.4 13.4 14.4

Recovery time (ms)

Fr
eq

u
en

cy

Measured

Theory

Figure 6.7: Experimental distribution of the link recovery detection time

compared with the theoretical distribution shifted by 0.4 ms. The experi-

mental distribution matches the theoretical distribution when we add 0.4 ms to the

time intervals in the model. There is a difference of 0.4 ms between the experimental

and theoretical distributions.

6.3. Measuring link failure and recovery detection times 174

We conduct additional experiments to assess the behavior of the link failure de-

tection mechanism for high link capacity utilization. We modify the setup of the

experiment such that PC1 sends traffic to PC5 using the multicast LSP. The traffic

consists of UDP packets of 8192 bytes. When we set the sending rates at 93 Mbits/s

or more, we observe that PC2 and PC3 make false detections, i.e they detect that the

link between PC2 and PC6 successively fails and is repaired several times per second.

The PC routers are not fast enough to forward the packets and send or check the

reception of the probes at the same time. As discussed earlier, Linux is not a real-time

operating system therefore there is no guarantee that probes are sent exactly every

Tp ms or that probe reception is checked exactly every n Tp ms under high load of the

system. Solutions to this issue include increasing n or Tp (at the cost of higher link

failure and detection times), using a real-time operating system, using faster routers,

or using a fraction of the maximum throughput achievable with MPLS multicast to

send traffic. In the remaining experiments, we send traffic at lower rates to avoid

false detections.

6.4. Measuring link failure and recovery notification times 175

6.4 Experiment 3: Measuring link failure and re-

covery notification times

In this experiment, we determine the time to notify a PSL of a link failure or link

recovery by measuring the node notification delay Tnnotif . Indeed, the time to notify

the PSLs after a link failure or recovery has been detected is proportional to the

time Tnnotif to propagate the notification message between two nodes as explained in

Section 4.3.

The setup of the experiment is illustrated in Figure 6.8. We set up a multicast

LSP of six nodes. PC1, PC5 and PC6 are the LERs of the tree. PC2, PC3 and PC4

are LSRs. The link between PC3 and PC4 is the unique link of the backup path. The

PSLs are PC3 and PC4. The links between PC3 and PC2, and PC2 and PC4 are the

links of the protected path. PC1 is a source and sends UDP packets of 8192 bytes at

40 Mbits/s on the tree. The receivers are PC5 and PC6. Monitor captures traffic on

the link between PC2 and PC4 and on the link between PC4 and PC6 using tcpdump.

To measure the node notification delay Tnnotif , we simulate the failure and recovery

of the link between PC3 and PC2. When we bring down interface eth3 of PC2,

PC2 and PC3 detect a link failure. PC2 sends a link failure message to PC4. Upon

reception of this link failure message, PC4 sends a link failure message to PC6. We use

Monitor to measure Tnnotif . Since Monitor captures traffic on the link between PC2

and PC4 and on the link between PC4 and PC6, Monitor receives both notification

6.4. Measuring link failure and recovery notification times 176

PC2

PC3

PC1

PC4

PC5

PC6

eth3

Monitor

LSR

LER

Link of the
multicast tree

Link of the
backup path

hub
hub

failure

Figure 6.8: Experimental setup for determining the link failure and recovery

notification delays. No traffic flows on the tree. Once the mLSP is established,

we successively simulate the failure and recovery of the link between PC2 and PC3

by bringing down and bringing up the interface eth3 of PC2. Monitor is passive and

only monitors traffic on the two links to which is attached.

messages and is able to compute the time difference between the instants at which

it receives each message. When we bring up interface eth3 of PC2, PC2 and PC3

detect the link recovery. PC2 sends a links recovery notification message to PC4

and then PC4 sends a link recovery message to PC6. Monitor records the time at

which it captures the notification message on the link between PC2 and PC4, the

time at which it captures the notification message on the link between PC4 and PC6,

6.4. Measuring link failure and recovery notification times 177

and determines Tnnotif for the link recovery by computing the difference between

the two recorded times. To bring up and bring down interface eth3 of PC2, we use

the additional thread in MulTreeLDP we introduced in Section 6.3. This thread

brings down and brings up eth3 at instants randomly chosen by the random number

generator of the machine. After the interface is brought down and brought up 100

times, we stop and restart MulTreeLDP manually on all six machines. We repeat the

experiment 25 times. Therefore we collect 25 series of 200 node notification delays.

Figure 6.9 shows how the 5000 samples are distributed. The average for Tnnotif is

T nnotif=1.18 ms with a minimum of 0.127 ms, a maximum of 4.172 ms and a standard

deviation of 0.37 ms. The notification time is a multiple of Tnnotif . In our experiment,

there is at most one hop between the routers which detects the link failure and the

PSLs thus l = 1 and Tnotif = Tnnotif . Therefore the average time to notify PSL PC4

of the link failure is 1.2 ms. With larger networks and larger trees, the value of l is

larger and the notification time can reach a few tens of milliseconds. It is possible

to decrease Tnnotif by opening a TCP connection between every two neighbors in a

multicast LSP at circuit establishment and closing the connection when the LSP is

torn down instead of opening a new TCP connection each time a MulTreeLDP sends

a message. This optimization is left for future work.

6.5. Measuring the tree repair time 178

0%

5%

10%

15%

20%

25%

0 0.2 0.4 0.6 0.8 1 1.2 1.4 1.6 1.8 2 2.2 2.4 2.6 2.8 3 3.2 3.4 3.6 3.8

Notification time (ms)

F
re

qu
en

cy
 (

%
)

Figure 6.9: Experimental distribution of the node notification delay.

6.5 Experiment 4: Measuring the tree repair time

In this experiment, we measure the time Trepair to repair a tree on a link failure and

study the behavior of the MPLS multicast Fast Reroute mechanism when a failed link

is physically repaired. For each experiment, we present typical graphs to illustrate

our discussion.

6.5. Measuring the tree repair time 179

PC2

PC3

PC1

PC4

PC5

PC6

failure
switchover

switchback
PC2

PC3

PC1

PC4

PC5

PC6

LER LSR Traffic sent by radonLink of the multicast tree

Figure 6.10: Switchover and switchback in the multicast routing tree set up

on our testbed. PC1 sends traffic over the tree. When the link between PC2 and

PC3 fails, PC4 reroutes traffic over the backup path between PC4 and PC3. When

the link is repaired, PC4 stops forwarding traffic on the backup path.

6.5.1 Experiment 4.1: Measuring the service interruption

time due to a link failure

In this experiment, we determine the distribution of the service interruption time

due to a link failure. The interruption time is the time to repair the tree including

propagation delays (see Section 2.1). We keep the setup from Section 6.4 and do not

use Monitor (see Figure 6.10). We set up a multicast LSP of six nodes. PC1, PC5

and PC6 are the LERs of the tree. PC2, PC3 and PC4 are LSRs. The link between

PC3 and PC4 is the unique link of the backup path. The PSLs are PC3 and PC4.

6.5. Measuring the tree repair time 180

The links between PC3 and PC2, and PC2 and PC4 are the links of the protected

path. PC1 is a source and sends UDP packets of 8192 bytes at 40 Mbits/s on the

tree. The receivers are PC5 and PC6. We simulate the failure and repair of the

link between PC2 and PC3 by bringing down and bringing up interface eth3 of PC2.

To bring up and bring down interface eth3 of PC2, we use the additional thread in

MulTreeLDP we introduced in Section 6.3. This thread brings down and brings up

eth3 at instants randomly chosen by the random number generator of the machine.

After the interface is brought down and brought up 100 times, we stop and restart

MulTreeLDP manually on all six machines. We repeat the experiment 25 times to

collect 2500 values of the repair time.

When we simulate the link failure, PC5 stops receiving traffic. PC2 detects the

link failure and notifies PC4 of the failure. When PC4 is notified of the failure, it

switches traffic over the backup path and PC5 resumes receiving the traffic sent by

PC1 (see Figure 6.10). The repair time is the time during which PC1 receives no

packet. We measure the repair time as follows. On PC5, we record the arrival time

of each packet sent by PC1. PC1 sends one packet roughly every 1.5 ms therefore

the packet interarrival time at PC5 is 1.5 ms before a link failure. We compute

the interarrival time for any two packets successively received at PC5. According to

Section 6.3, the minimum amount of time to detect a link failure is 10 ms, which

is much larger than the packet interarrival time before link failure. Therefore, we

6.5. Measuring the tree repair time 181

consider that every interarrival time longer than 10 ms is a service interruption time

due to a link failure. Since we are not able to distinguish whether an interarrival

time is longer than 10 ms due to a link failure or an external phenomenon not related

to our experiments, we collect more than 2500 values for the repair time. Actually

we collect 2600 values; we present in Figure 6.11 the distribution for all collected

samples.

The average for all samples is T repair=29.4 ms, with a minimum of 10 ms (by con-

struction of the sample set) and a maximum of 49.6 ms. The standard deviation is

7.1 ms. The average T repair is close to the sum T fdetect+1×T nnotif=25.4+1.2=26.6 ms.

Thus, there is a difference of less than 3 ms between the experimental and the analyt-

ical averages for the repair time. This difference takes into account the propagation

delays and the time for the PCs to modify the MPLS tables. The experimental results

show that a network can be repaired in average in less than 50 ms by MPLS multicast

Fast Reroute. The main component of the repair time is the detection time. In larger

trees, only the notification time increases. Our data shows that our implementation

of MPLS multicast Fast Reroute can repair multicast routing trees with a protected

path of up to 20 links in less than 50 ms. With a protected path of 20 links, the

average repair time is 25.4 + 20× 1.2 = 49.4 ms.

6.5. Measuring the tree repair time 182

0.0%

2.0%

4.0%

6.0%

8.0%

10.0%

12.0%

14.0%

0 2 4 6 8 10 12 14 16 18 20 22 24 26 28 30 32 34 36 38 40 42 44 46 48

Repair time (ms)

F
re

qu
en

cy
 (

%
)

Figure 6.11: Experimental distribution of the repair time.

6.5.2 Experiment 4.2: Observing duplicate packets on the

tree when a failed link is repaired

We perform additional experiments to show the duplicate packets that flow on the

tree on switchback. We do not change the experiment setup. PC1 starts sending

6.5. Measuring the tree repair time 183

UDP packets of 8192 bytes at 85 Mbits/s on the tree at time t = 0. We simulate

the failure of the link between PC2 and PC3 at time t ≈ 2.3 s by bringing down

interface eth3 of PC2. We simulate the repair of the link between PC2 and PC3 at

time t ≈ 4.6 s by bringing up interface eth3 of PC2 and we record the reception time

for each packet on PC5 and PC6.

Figures 6.12 and 6.13 depict the evolution of the amount of data received by PC5

and PC6 when PC1 sends data over the multicast routing tree. Figures 6.14, 6.15,

6.16 and 6.17 are enlarged views of Figures 6.12 and 6.13. We observe that PC5

receives no traffic for 29 ms starting at time t = 2.321 s (Figure 6.14). PC6 receives

traffic during the full duration of the experiment.

The link failure occurs at time t ≈ 2.321. Before PC 3 and PC4 have performed

switchover, PC 5 receives no traffic. At time t = 2.350 s, switchover is complete and

PC5 receives the traffic from PC1 via the backup path. The repair time is 29 ms.

Since the failure is not located between PC1 and PC 6, PC6 keeps receiving traffic

during the link failure. We expect to observe a slope increase on Figures 6.16 and

6.17 due to packet duplication at switchback time (see Section 4.4), however the slope

of the curves slightly decreases during a short time when the link is repaired. The

reason why the traffic increase phenomenon is not visible in this experiment lies in

the size of the UDP packets we used. Indeed, PC1 sends packets of 8192 bytes.

Ethernet can send frames with a payload of at most 1500 bytes over the links and

6.5. Measuring the tree repair time 184

therefore on PC1 the IP layer has to segment the UDP packets before passing them

to the Ethernet layer. On PC5 and PC6 the IP layer reassembles the fragments of

the packets received in the Ethernet frames. During the reassembly process the IP

layer detects the duplicate frames and discards them. Therefore, although there is a

traffic increase on two links of the network, this increase is hidden by the IP layer of

the receivers.

To make the duplicate packets on switchback apparent, we conduct an additional

experiment. The experiment setup is kept unchanged except that PC1 sends UDP

packets of 1024 bytes at 40 Mbits/s. We simulate the failure of the link at t ≈ 2.3 s

and the repair at time t ≈ 4.50 s. We show the traffic received by PC5 and PC6

during the total length of the experiment in Figures 6.18 and 6.19. Figures 6.20 and

6.21 are enlarged views of Figures 6.18 and 6.19.

In Figures 6.20 and 6.21, the slope change due to switchback is visible at time

t ≈ 4.50 s. After the link is repaired and before switchback is complete, PC5 and

PC6 receive duplicate packets, hence the slope change during approximately 5 ms on

each receiver. The slope change lasts only a few milliseconds, making it impossible

to distinguish from other curve irregularities via automated means and preventing us

from measuring Trepairback experimentally.

6.5. Measuring the tree repair time 185

0

1e+07

2e+07

3e+07

4e+07

5e+07

6e+07

7e+07

0 1 2 3 4 5 6

T
ra

ff
ic

 r
ec

ei
ve

d
(b

yt
es

)

Time (s)

Traffic received by PC5 when a link fails and recovers

Link failure

Link repair

Figure 6.12: Traffic received by PC5 when the tree sustains a failure and a

recovery (UDP packets of 8192 bytes). The failure occurs at time t ≈ 2.3 s

and the link is repaired at t ≈ 4.6 s.

6.5. Measuring the tree repair time 186

0

1e+07

2e+07

3e+07

4e+07

5e+07

6e+07

7e+07

0 1 2 3 4 5 6

T
ra

ff
ic

 r
ec

ei
ve

d
(b

yt
es

)

Time (s)

Traffic received by PC6 when a link fails and recovers

Link failure

Link repair

Figure 6.13: Traffic received by PC6 when the tree sustains a failure and a

recovery (UDP packets of 8192 bytes). The failure occurs at time t ≈ 2.3 s

and the link is repaired at t ≈ 4.6 s.

6.5. Measuring the tree repair time 187

2.4e+07

2.45e+07

2.5e+07

2.55e+07

2.6e+07

2.65e+07

2.7e+07

2.2 2.25 2.3 2.35 2.4 2.45 2.5

T
ra

ff
ic

 r
ec

ei
ve

d
(b

yt
es

)

Time (s)

Traffic received by PC5 when a link fails

Link failure

Trepair

Figure 6.14: Switchover on PC5 (packets of 8192 bytes). PC5 receives no

traffic between t = 2.321 s and t = 2.350 s. The interruption of service seen by PC5

is 29 ms.

6.5. Measuring the tree repair time 188

2.4e+07

2.45e+07

2.5e+07

2.55e+07

2.6e+07

2.65e+07

2.7e+07

2.2 2.25 2.3 2.35 2.4 2.45 2.5

T
ra

ff
ic

 r
ec

ei
ve

d
(b

yt
es

)

Time (s)

Traffic received by PC6 when a link fails

Link failure

Figure 6.15: Switchover on PC6 (packets of 8192 bytes). Instead of increasing,

the slope of the curves slightly decreases on the link failure.

6.5. Measuring the tree repair time 189

4.9e+07

4.95e+07

5e+07

5.05e+07

5.1e+07

5.15e+07

5.2e+07

5.25e+07

5.3e+07

4.55 4.6 4.65 4.7 4.75 4.8 4.85

T
ra

ff
ic

 r
ec

ei
ve

d
(b

yt
es

)

Time (s)

Traffic received by PC5 when a link is repaired

Link repair

Figure 6.16: Switchback on PC5 (packets of 8192 bytes). Instead of increasing,

the slope of the curves slightly decreases on the link failure.

6.5. Measuring the tree repair time 190

4.95e+07

5e+07

5.05e+07

5.1e+07

5.15e+07

5.2e+07

5.25e+07

5.3e+07

5.35e+07

4.55 4.6 4.65 4.7 4.75 4.8 4.85

T
ra

ff
ic

 r
ec

ei
ve

d
(b

yt
es

)

Time (s)

Traffic received by PC6 when a link is repaired

Link repair

Figure 6.17: Switchback on PC6 (packets of 8192 bytes). PC6 is not affected

by the link recovery.

6.5. Measuring the tree repair time 191

0

5e+06

1e+07

1.5e+07

2e+07

2.5e+07

3e+07

0 1 2 3 4 5 6

T
ra

ff
ic

 r
ec

ei
ve

d
(b

yt
es

)

Time (s)

Traffic received by PC5 when a link fails and recovers

Link failure

Link repair

Figure 6.18: Traffic received by PC5 when the tree sustains a failure and a

recovery (UDP packets of 1024 bytes). The failure occurs at time t ≈ 2.3 s

and the link is repaired at t ≈ 4.50 s.

6.5. Measuring the tree repair time 192

0

5e+06

1e+07

1.5e+07

2e+07

2.5e+07

3e+07

0 1 2 3 4 5 6

T
ra

ff
ic

 r
ec

ei
ve

d
(b

yt
es

)

Time (s)

Traffic received by PC6 when a link fails and recovers

Link failure

Link repair

Figure 6.19: Traffic received by PC6 when the tree sustains a failure and a

recovery (UDP packets of 1024 bytes). The failure occurs at time t ≈ 2.3 s

and the link is repaired at t ≈ 4.50 s.

6.5. Measuring the tree repair time 193

2.26e+07

2.27e+07

2.28e+07

2.29e+07

2.3e+07

2.31e+07

2.32e+07

2.33e+07

2.34e+07

4.45 4.46 4.47 4.48 4.49 4.5 4.51 4.52 4.53 4.54 4.55

T
ra

ff
ic

 r
ec

ei
ve

d
(b

yt
es

)

Time (s)

Traffic received by PC5 when a link is repaired (packets of 1024 bytes)

Link repair

Trepairback

Figure 6.20: Switchback on PC5 (packets of 1024 bytes). A traffic increase

during a short period is visible at time t ≈ 4.50 s.

6.5. Measuring the tree repair time 194

2.295e+07

2.3e+07

2.305e+07

2.31e+07

2.315e+07

2.32e+07

2.325e+07

4.48 4.485 4.49 4.495 4.5 4.505 4.51 4.515 4.52 4.525 4.53

T
ra

ff
ic

 r
ec

ei
ve

d
(b

yt
es

)

Time (s)

Traffic received by PC6 when a link is repaired (packets of 1024 bytes)

Link repair

Trepairback

Figure 6.21: Switchback on PC6 (packets of 1024 bytes). A traffic increase

during a short period is visible at time t ≈ 4.50 s.

7

Conclusion

Link failure is a common cause of service disruption in computer networks. Many

techniques have been developed to alleviate the consequences of hardware failure

in a network like the Internet by rerouting traffic from a failed link to a working

or a set of working links. Rerouting is performed automatically in the Internet by

recomputing routing tables. However routing convergence may be slow and faster

techniques which require expensive hardware have been developed to protect networks

from link failures. MPLS is a recent virtual circuit packet switching technology which

has been designed to support the forwarding of IP packets over virtual circuits. MPLS

Fast Reroute is a traffic engineering technique that is able to reroute IP traffic quickly

without the need of additional hardware. Indeed, MPLS Fast Reroute relies on pre-

planned backup path to reroute traffic on a link failure and can be implemented in

existing routers.

An important delivery mode of the Internet is multicasting, where the information

sent by a member of a multicast group is received by all other members of the group.

195

7.1. Contributions 196

A popular example of a multicasting application is teleconferencing. In real-time

applications like teleconferencing, if a link failure occurs, it is crucial to repair the

multicast routing tree of the multicast communication in a short time. For example,

an interruption of service of more than 50 ms is noticeable in a live transmission.

Establishing a backup path to protect a multicast routing tree is a resource consuming

process. Therefore, it is desirable to protect a large number of members of a multicast

group with a low number of backup paths. In this thesis, we presented an algorithm

which is able to choose such a backup path, and the design and implementation of

an MPLS-based rerouting mechanism adapted to the protection of multicast routing

trees. We now review our contributions and expose possible future work.

7.1 Contributions

In Chapter 3, we presented a graph algorithm which computes a single backup path

to protect a multicast routing tree. The backup path is computed after the multicast

routing tree establishment and before a link failure occurs, making it suitable for

pre-planned rerouting mechanisms. The aim of the algorithm is to minimize the

number of members of the multicast group dropped from the communication when a

single link fails. We showed how a backup path determined by the algorithm could

be used to reroute traffic so that no node is dropped from the tree when a single

7.1. Contributions 197

link of the protected path fails. We determined the complexity of the algorithm in

the average and the worst case. We also gave extensions to the algorithm to support

dynamic multicast groups where nodes can join and leave after the establishment of

the communication.

In Chapter 4, we presented MPLS multicast Fast Reroute, a pre-planned rerouting

mechanism that can use the backup path computed in Chapter 3 to protect a multicast

routing tree when a single link fails. MPLS multicast Fast Reroute uses a probing

mechanism to detect link failures. The nodes that detect the failure then propagate

link failure notifications over the multicast routing tree. Two routers, one at each end

of the backup path, switch traffic over the backup path when they are notified of the

link failure. When the link is repaired, the nodes that detect the failure also detect

the link repair and propagate link recovery information on the multicast routing tree.

The mechanisms used to detect the repair and notify the routers of the tree of the link

repair are the same as those used when a link fails. The two routers which switched

traffic over the backup path perform switchback by stopping forwarding traffic on the

backup path. During switchover, nodes downstream of the failed link with regards to

the center of the tree are temporarily disconnected from the multicast routing tree.

During switchback, certain links of the tree see an increase of traffic and certain nodes

of the tree receive duplicate packets.

7.2. Directions for future work 198

In Chapter 5, we presented our implementation of multicast extensions to MPLS-

Linux. MPLS-Linux is a unicast MPLS implementation that runs on Linux PCs.

To our knowledge, our implementation is the first non-proprietary MPLS multicast

implementation. We also presented the MulTreeLDP protocol which implements the

MPLS multicast Fast Reroute mechanism described in Chapter 4. We evaluated the

performance of multicast MPLS-Linux and MPLS multicast Fast Reroute. Overall,

multicast MPLS-Linux is able to forward fast Ethernet traffic on PC routers with

no dedicated hardware. MPLS multicast Fast Reroute can repair a multicast routing

tree in a few tens of milliseconds which mostly correspond to the time to detect the

failure. Because of the timer resolution limitation on the Linux operating system, it

is not possible to build faster software link failure detector. When the failed link is

repaired, MPLS multicast Fast Reroute can switch the traffic back on the original

multicast routing tree in a few milliseconds.

7.2 Directions for future work

Our work can be extended in several directions. First, our algorithm selects a single

backup path to protect a multicast routing tree from a single link failure. Extensions

to our algorithm may take into account node failures, multiple link or multiple node

7.2. Directions for future work 199

failure, or the computation of several backup paths to improve the resilience of the

multicast routing tree.

Second, although the message format of MulTreeLDP is the same as the for-

mat of CR-LDP messages, MulTreeLDP and CR-LDP are different protocols. Since

LDP/CR-LDP is the reference signaling protocol for MPLS, MulTreeLDP should be

merged with CR-LDP and eventually standardized as a part of CR-LDP. Concerning

MPLS multicast Fast Reroute, our experiments show that the transient network over-

load due to switchback does not disrupt network operations, temporary transmission

of duplicate packets may occur. Clearly, it is desirable to totally avoid the forwarding

and delivery of duplicate packets.

Finally, we implemented our solution on a small network of PC routers. We

performed our experiments on a single multicast LSP and a single flow. An extension

to our work includes an implementation in commercial routers and deployment in

large scale networks.

Bibliography

[1] C. Alaettinoglu, V. Jacobson, and H. Yu. Toward millisecond IGP convergence,
October 2000. NANOG 20, Washington, D.C., USA.

[2] Mostafa H. Ammar, Shun Yan Cheung, and Caterina M. Scoglio. Routing mul-
tipoint connections using virtual paths in an ATM network. In Proceedings of
IEEE INFOCOM, pages 98–105, 1993.

[3] L. Andersson, P. Doolan, N. Feldman, A. Fredette, and B. Thomas. IETF RFC
3036: LDP Specification, January 2001.

[4] ANSI. Fiber Distributed Data Interface (FDDI) – Token Ring Media Access
Control (MAC), ANSI X3.139-1987, 1987.

[5] G. Armitage. IETF RFC 2022: Support for multicast over UNI 3.0/3.1 based
ATM networks, November 1996.

[6] The ATM forum, http://www.atmforum.com/.

[7] Traffic Management Specification Version 4.0,
ftp://ftp.atmforum.com/pub/approved-specs/af-tm-0056.000.pdf.

[8] D. Awduche, L. Berger, D. Gan, T. Li, V. Srinivasan, and G. Swallow. IETF
RFC 3209: RSVP-TE: Extensions to RSVP for LSP Tunnels, December 2001.

[9] A. Ballardie. IETF RFC 2201: Core Based Trees (CBT) multicast routing ar-
chitecture, September 1997.

[10] Bellcore. SR-NWT-001756, Automatic Protection Switching for SONET, Issue
1, October 1990.

[11] Bellcore. GR-1230-Core, SONET Bidirectional Line-Switched Ring Equipment
Generic Criteria, Issue 2, November 1995.

200

Bibliography 201

[12] Bellcore. GR-1400-Core, SONET Dual-Fed Unidirectional Path Switched Ring
(UPSR) Equipment Generic Criteria, Issue 1, Revision 1, October 1995.

[13] R. Braden, L. Zhang, S. Berson, S. Herzog, and S. Jamin. IETF RFC 2205:
Resource ReSerVation Protocol (RSVP), September 1997.

[14] P. Brittain and A. Farrel. MPLS Traffic Engineering: a choice of signaling
protocol, January 2000.

[15] H. Bruyninckx. Real Time and embedded HOWTO,
http://people.mech.kuleuven.ac.be/ bruyninc/rthowto/.

[16] B. Cain, S. Deering, B. Fenner, I. Kouvelas, and A. Thyagarajan. Internet Group
Management Protocol, Version 3, http://www.ietf.org/internet-drafts/draft-ietf-
idmr-igmp-v3-10.txt, April 2002. Work in progress.

[17] Alcatel Corporate Research Center. IP Multicast in MPLS Networks, technical
leaflet, 1999.

[18] Inc Cisco Systems. Internetworking Technology Handbook,
http://www.cisco.com/univercd/cc/td/doc/cisintwk/ito doc/index.htm, 2002.

[19] R. Cole, D. Shur, and C. Villamizar. IETF RFC 1932: IP over ATM: A frame-
work document, April 1996.

[20] S. Deering. IETF RFC 1112: Host extensions for IP multicasting, August 1989.

[21] S. Deering. Multicast routing in a datagram internetwork. PhD thesis, Stanford
University, December 1991.

[22] S. Deering and R. Hinden. IETF RFC 2460: Internet Protocol, Version 6 (IPv6)
specification, December 1998.

[23] Differentiated services charter (DiffServ), http://www.ietf.org/html.charters/diffserv-
charter.html.

[24] E. W. Dijkstra. A note on two problems in connection with graphs. Numerical
Mathematics, 1:269–271, 1959.

[25] C. Diot, W. Dabbous, and J. Crowcroft. Multipoint communication: A survey
of protocols, functions and mechanisms. IEEE Journal on Selected Areas in
Communications, 15(3), April 1997.

[26] C. Diot, B. Levine, J. Lyles, H. Kassem, and D. Balensiefen. Deployment is-
sues for the IP multicast service and architecture. IEEE Network, 14(1):78–88,
January / February 2000.

Bibliography 202

[27] D. Estrin, D. Farinacci, A. Helmy, D. Thaler, S. Deering, M. Handley, V. Ja-
cobson, C. Liu, P. Sharma, and L. Wei. IETF RFC 2362: Protocol Independent
Multicast-Sparse Mode (PIM-SM): Protocol specification, June 1998.

[28] A. Farrel and B. Miller. Surviving failures in MPLS networks. Technical report,
Data Connection, February 2001.

[29] W. Fenner. IETF RFC 1112: Internet Group Management Protocol, Version 2,
November 1997.

[30] E. N. Gilbert and H. O. Pollak. Steiner minimal trees. SIAM journal of applied
mathematics, January 1968.

[31] GNU’s Not Unix licenses, http://www.gnu.org/licenses/.

[32] M.-H. Guo and R.-S. Chang. Multicast ATM Switches: Survey and Performance
Evaluation. ACM SIGCOMM, Computer Communication Review, 28(2), April
1998.

[33] D. Harel and R. Tarjan. Fast algorithms for finding nearest common ancestors.
SIAM Journal on Computing, 13(2), 1984.

[34] D. Haskin and R. Krishnan. A method for setting an alternative label switched
paths to handle fast reroute, November 2000. Work in progress.

[35] C. L. Hedrick. IETF RFC 1058: Routing Information Protocol, June 1988.

[36] J. Heinanen. IETF RFC 1483: Multiprotocol encapsulation over ATM Adapta-
tion Layer 5, July 1993.

[37] IEEE 802.17 Resilient Packet Ring Working Group,
http://grouper.ieee.org/groups/802/17/.

[38] IEEE. 802.3-2002 Information Technology - Telecommunication & Information
Exchange Between Systems - LAN/MAN - Specific Requirements - Part 3: Car-
rier Sense Multiple Access with Collision Detection (CSMA/CD) Access Method
and Physical Layer Specifications 2002, 2002.

[39] IETF Internet Traffic Engineering Charter, http://www.ietf.org/html.charters/tewg-
charter.html.

[40] Alon Itai and Michael Rodeh. The multi-tree approach to reliability in dis-
tributed networks. In IEEE Symposium on Foundations of Computer Science,
pages 137–147, 1984.

Bibliography 203

[41] B. Jamoussi, L. Andersson, R. Callon, R. Dantu, L. Wu, P. Doolan, T. Worster,
N. Feldman, A. Fredette, M. Girish, E. Gray, J. Heinanen, T. Kilty, and A. Malis.
IETF RFC 3212: Constraint-Based LSP Setup using LDP, January 2002.

[42] R. M. Karp. Reducibility among combinatorial problems. Plennum Press, New
York, 1972.

[43] M. Kodialem and T. Lakshman. Dynamic routing of bandwidth guaranteed
multicasts with failure backup. In Proceedings of IEEE INFOCOM, June 2002.

[44] R. Kuhn. Sources of failure in the public switched telephone network. IEEE
Computer, 30(4), April 1997.

[45] Kansas University Real-Time Linux, http://www.ittc.ku.edu/kurt/.

[46] G. Malkin. IETF RFC 2453: RIP version 2, November 1998.

[47] M. Médard, S. Finn, R. Barry, and R. Gallager. Redundant trees for preplanned
recovery in arbitrary vertex-redundant or edge-redundant graphs. IEEE/ACM
Transactions on Networking, 7(5):641–652, 1999.

[48] J. Moy. IETF RFC 1584: Multicast extensions to OSPF, March 1994.

[49] J. Moy. IETF RFC 2328: OSPF version 2, April 1998.

[50] Multiprotocol Label Switching (MPLS) charter,
http://www.ietf.org/html.charters/mpls-charter.html.

[51] MPLS for Linux, http://sourceforge.net/projects/mpls-linux/.

[52] M. Muuss. ttcp, http://ftp.arl.mil/ mike/ttcp.html.

[53] Linux manpages — Netlink.

[54] NetX: Networking research without a better home, University of Cambridge,
UK, http://www.cl.cam.ac.uk/research/srg/netos/netx/.

[55] NIST Switch - NIST MPLS research platform, National Institute
of Standards and Technology, information technology laboratory,
http://snad.ncsl.nist.gov/nistswitch/.

[56] D. Ooms, B. Sales, W. Livens, A. Acharya, F. Griffoul, and F. Ansari. Framework
for IP Multicast in MPLS, draft-ietf-mpls-multicast-07, January 2002. Work in
progress.

Bibliography 204

[57] D. Oran. IETF RFC 1142: OSI IS-IS intra-domain routing protocol, February
1990.

[58] K. Owens, S. Makam, V. Sharma, B. MackCrane, and C. Huang. A path
protection/restoration mechanism for MPLS networks, draft-chang-mpls-path-
protection-03, July 2001. Work in progress.

[59] J. Postel. IETF RFC 791: Internet Protocol, September 1981.

[60] Y. Rekhter and T. Li. IETF RFC 1771: A Border Gateway Protocol 4 (BGP-4),
March 1995.

[61] E. Rosen, D. Tappan, G. Fedorkow, Y. Rekhter, D. Farinacci, T. Li, and
A. Conta. IETF RFC 3032: MPLS Label Stack Encoding, January 2001.

[62] E. Rosen, A. Viswanathan, and R. Callon. IETF RFC 3031: Multiprotocol Label
Switching Architecture, January 2001.

[63] E. C. Rosen. IETF RFC 827: Exterior Gateway Protocol (EGP), October 1982.

[64] V. Sharma and F. Hellstrand. Framework for MPLS Based Recovery, draft-ietf-
mpls-recovery-frmwrk-06, July 2002. Work in progress.

[65] H. Truong, W. Ellington, J. Le Boudec, A. Meier, and J. Pace. LAN Emulation
on an ATM network. IEEE Communications Magazine, 33(5):70–85, May 1995.

[66] ttcp multicast, http://mng.cs.virginia.edu/software.html.

[67] D. Waitzman, C. Partridge, and S. E. Deering. IETF RFC 1075: Distance Vector
Multicast Routing Protocol, November 1988.

[68] B. Wang and J. Hou. Multicast routing and its QoS extension: Problems, al-
gorithms, and protocols. IEEE Network Magazine, 14(1), January / February
2000.

[69] Y.-F. Wang and R.-F. Chan. Self-healing on ATM multicast tree. IEICE Trans-
action on Communication, E81-B(8):590–598, August 1998.

[70] Interface between data terminal equipment(DTE) and data circuit-terminating
equipment(DCE) for terminals operating in the packet mode and connected to
public data networks by dedicated circuit.

[71] S. Yasukawa, M. Uga, H. Kojima, and K. Sugisono. Extended RSVP-TE for
Multicast LSP tunnels, draft-yasukawa-mpls-rsvp-multicast-00, June 2002. Work
in progress.

	Introduction
	Switching technology
	Circuit switching
	Datagram packet switching
	Virtual circuit packet switching

	Virtual circuit packet switching with IP
	IP-over-ATM
	MPLS

	Multicast
	Multicast routing tree structure
	Multicast with IP
	Multicast with ATM
	Multicast with MPLS

	Contributions of this thesis

	Resilience and protection in networks
	Overview of rerouting
	Protection at the MAC and physical layers: self-healing rings
	Network layer protection
	MPLS Unicast Fast Reroute
	Multicast fault recovery

	A multicast routing tree repair algorithm
	Problem modeling
	Maximization of the resilience of a tree with a single backup path
	Main algorithm
	Incremental version

	Complexity analysis
	Computation of the metrics
	General case
	Average case
	Worst case

	MPLS Multicast Fast Reroute
	Overview
	Link failure and recovery detection
	Failure and recovery notification
	Switchover and switchback

	Implementation
	Multicast MPLS-Linux
	Unicast MPLS-Linux implementation
	Multicast MPLS-Linux implementation
	FIB management API

	The MulTreeLDP protocol
	Multicast Explicit Routing
	Link failure and recovery detection
	Link failure and recovery notification
	Switchover and switchback
	MulTreeLDP messages and TLV formats

	Experiments
	Hardware used for the experiments
	Measuring MPLS multicast throughput
	Measuring link failure and recovery detection times
	Measuring link failure and recovery notification times
	Measuring the tree repair time
	Measuring the service interruption time due to a link failure
	Observing duplicate packets on the tree when a failed link is repaired

	Conclusion
	Contributions
	Directions for future work

