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Abstract

Packet scheduling methods that approximate Generalized Processor Sharing (GPS) are currently

the focus of much research in the area of Quality-of-Service (QoS) networks. The ability of GPS

schedulers to provide rate guarantees as well as delay guarantees meets the demand of many network

applications. This paper addresses a shortcoming of GPS which can have signi�cant impact on the

service provided by GPS, however, which has been given little attention. Since, with GPS, the service

rate received by a session is proportional to the number of backlogged sessions in the system, the

service rate of a session may change abruptly if some other session becomes active. This may result

in abrupt increases of delay of consecutive packets. In this paper, we propose a new scheduler, called

Slow-Start GPS (S2GPS), which alleviates the problem of abrupt decreases of service rates when

new sessions start transmitting. S2GPS is a modi�cation of GPS where a session does not receive

its guaranteed service rate immediately after it becomes active. Instead, the service rate of a session

is gradually increased. We show that this prevents an abrupt delay increase of the other sessions.

We derive delay bounds for sessions constrained by leaky buckets and we express quantitatively the

advantages of the S2GPS scheduling discipline.

�This work is supported in part by the National Science Foundation under Grant No. NCR-9309224 and NCR-9624106.
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1 Introduction

The statistical multiplexing nature of packet-switched networks with Quality-of-Service (QoS) guaran-

tees sheds light on the importance of the following two desirable properties of networks: isolation and

sharing. Isolation is directly related to the ability of the network to provide to sessions the perfor-

mance guarantees that were made based on a QoS contract and, at the same time, protecting them

from faulty or malicious sessions that do not conform to this contract. Sharing is related to the ability

of the network to distribute its resources (mainly bandwidth and bu�er space) to active sessions in

such a way that the percentage of unused resources is minimal. The property of sharing is one of the

fundamental advantages of packet-switched networks over circuit-switched networks, since it enables

switches to achieve a high utilization of link capacities.

The Generalized Processor Sharing (GPS) scheduling method is known to support isolation and

sharing in a QoS network [8, 16, 17]. GPS can provide rate guarantees to the sessions it services.

However, with GPS, a session that has been active for a long period of time can experience dramatic

decreases in its service rate when some other previously idle session becomes active. The decrease of the

service rates can be quite large, resulting in a possibly signi�cant increase of the delay of consecutive

packets of an active session. Such a delay increase can have a negative impact on the jitter1 and delay

rate of the sessions.

In this study we show how to alleviate the problem of abrupt decrease of service rates with GPS. We

propose a modi�cation to GPS, called Slow-Start GPS (S2GPS), that prevents abrupt rate changes and

delay increases by gracefully degrading the service rate of active sessions. This is accomplished by the

following modi�cation to the original GPS scheduling method. Whenever a session becomes active and

starts sending packets, this session is not assigned the full bandwidth at once, but gradually. The name

\slow-start" was elected to indicate that the service rate of a newly active session is slowly increased

when the session starts transmitting. As a result, the service rates of previously active sessions decrease

smoothly.

In more detail, we de�ne as fair share of a session the service rate that a session receives under

GPS. Under S2GPS, when a session starts transmitting, it undergoes a slow-start phase during which

the service rate of the session is increased from zero to the fair share. During the slow-start phase,

the service rates of all previously active sessions are decreased. As a result, the delay increases and

delay variations of the old sessions will be reduced. We refer to the slow adaptation of active sessions

as graceful degradation. Our de�nition of graceful degradation refers to the way in which the sessions

experience the decrease of the service rates and the bandwidth that is allocated to them.

The advantage of S2GPS can be exploited for several network services and applications. We give

two examples that discuss how S2GPS can be used to support congestion control schemes and adaptive

applications.

Congestion Control: In networks that employ GPS scheduling, a new session can immediately trans-

mit at the maximum allowed transmission rate. This abrupt change of the total transmission may cause

bu�er overows and result in congestion conditions. Under S2GPS, the extra period of time given by

1Jitter is de�ned as the delay di�erence between two consecutive packets.
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the length of the slow-start phase allows all sessions to adjust to their new shares of the transmission

rates, and hence, avoid congestion. Note that the name of our scheduler borrows from the well-known

concept of \slow-start" in TCP congestion control [12]. Our mechanism of slow-start is di�erent from

slow-start in TCP [12], but similar in spirit; in both cases the goal is to avoid congestion by prevent-

ing abrupt changes in the transmission rate of a session. Note, however, that our proposed slow-start

technique is used at the scheduler level and not at the transport layer as in TCP.

Adaptive Applications: It is generally accepted that adaptive applications, which dynamically adjust

their performance parameters based on bandwidth availability or delay of incoming packets, will play an

indispensable role in the integrated services network infrastructure of the future [1, 5, 4]. The di�culty

of supporting adaptive applications relates to sudden changes in the bandwidth availability, which cause

large uctuations in the network delay. An adaptive application must handle this situation either by

bu�ering or by adjusting properly its playback rate. If the delay uctuations are too large, temporary

breaks in the service as it is perceived by the client may occur. S2GPS helps to alleviate this problem

by smoothing out delay uctuations, hence, improving the service of the network.

The remainder of this paper is structured as follows. In Section 2 we review related work on GPS

and in Section 3 we discuss GPS and its packetized version, PGPS. In Section 4 we study a class of

scheduling disciplines that alleviate the problem of abrupt degradation of service and we present the

novel S2GPS scheduler. In Section 5 we analyze the worst-case delays with S2GPS. In Section 6 we

de�ne the packetized version of S2GPS and show how it can be implemented using the concept of virtual

time. In Section 7 we test our scheduler in a set of simulation experiments. We present conclusions in

Section 8.

2 Related Work

GPS and its variations are widely considered well-suited scheduling methods for integrated services

networks. The basic reasons for the popularity of GPS are the isolation (or \protection") and fairness

that GPS provides. The isolation property refers to the guarantee that sessions which transmit at

rates greater than their service rates will not be served at the expense of other sessions; hence, sessions

appear to be isolated. The fairness property refers to the guarantee that a session will always be served

at a minimum service rate.

GPS is an idealized server in that it works under the assumption that all workload is in�nitely

divisible and that all backlogged sessions can be served simultaneously. Since in real networks, packets

have a �nite size, and only one packet can be transmitted at a time, approximations of GPS are needed

that emulate the idealized GPS discipline. Weighted Fair Queueing (WFQ) [8] and Packetized GPS

(PGPS) [16] have approximated GPS using the concept of virtual time to measure the progress in

the uid model. Each packet is tagged with a virtual time deadline upon its arrival, and packets are

served in increasing order of their deadlines. In [16, 17], worst-case delay bounds are provided for single

node and multiple node networks. In [23, 24], GPS is studied from a probabilistic point of view and

statistical bounds on backlog and delay are derived. In [3], it is shown that PGPS is not the best packet

approximation of GPS because a session in PGPS can be far ahead of GPS in terms of served packets.
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A new approximation of GPS called Worst-case Weighted Fair Queuing (WF2Q) is proposed which

mitigates this problem. Under WF2Q, the absolute di�erence between the amount of service that a

session receives between GPS and WF2Q cannot be more than one maximum length packet size.

One of the problems associated with PGPS is that keeping track of virtual time can be compu-

tationally expensive which makes it di�cult to implement PGPS at high speeds. Self-Clocked Fair

Queuing (SCFQ) [9] and Start-time Fair Queuing (SFQ) [11] address this issue by providing a di�erent

way of calculating the virtual time in GPS. Under these schemes, the scheduler does not keep track of

the virtual time using a computationally expensive function. Instead, the virtual time is considered to

be the virtual time of the packet under transmission: SCFQ transmits packets in increasing order of

their virtual �nishing times, whereas SFQ uses virtual start times.

One other approach to approximating GPS is followed by Frame-based Fair Queuing (FFQ) [21],

De�cit Round Robin (DRR) [20], and Carry-over Round Robin (CRR) [19]. FFQ, DRR, and CRR

provide more e�cient implementations than PGPS. Central in these schedulers is the notion that

during a frame (or round) the scheduler attempts to approximate GPS. When a session is not served

at the rate speci�ed by GPS during a frame, the scheduler attempts to compensate for this during

the next frame. However, this comes at the expense of fairness and the increase of worst-case delays

because of the error that the approximation of GPS introduces. Similar in spirit is the Fair Queuing

Fixed Quota (FQFQ) scheduling discipline [7], where each session is allocated a �xed amount of bu�er

space that is available in the switch; if a session occupies all its bu�er space, then all arriving packets of

this session are discarded. In [14], a probabilistic variant of fairness queuing called Stochastic Fairness

Queuing is proposed; this is based on the idea that a hash function will be used to map every session

into a �xed set of queues.

In [2, 15], hierarchical implementations of GPS are proposed. In [15], the implementation is based

on a GPS scheduler, where the weights of the sessions are dynamically changed. In [2], Hierarchical

Worst-Case Weighted Fair Queuing is proposed (H-WF2Q+); this scheduling discipline is a hierarchical

expansion of multiple one-level GPS servers.

Finally, given this proliferation of GPS variants, in [10, 22], a general framework that attempts to

encompass these variants is proposed. In [10], this framework takes the form of a generalized version

of GPS, under which variable service rates can be allocated to the packets of a session. In [22], the

concept of a Latency-Rate scheduler is introduced. A latency-rate server provides rate guarantees to a

session after some time from the time that the session starts transmitting; it is shown how GPS and

its variants can be modeled as latency-rate schedulers.

3 GPS/PGPS Scheduler

In this section we briey outline the basic mechanisms and results for the GPS scheduling discipline

and we discuss the rate and delay guarantees that GPS provides. We also illustrate the problem of

abrupt decrease of service rates when new sessions start transmitting.
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3.1 GPS Server

A Generalized Processor Sharing (GPS) scheduler is a work-conserving2 scheduler that serves the in-

coming tra�c at a �xed rate r. Each Session i that is served by the scheduler is characterized by a

weight �i. Let Si(�; t) be the amount of Session i tra�c that is served in the interval (�; t]. De�ne

a session as backlogged whenever the queue Qi of this session is not zero. Then, a GPS scheduler is

de�ned as one for which:
Si(�; t)

Sj(�; t)
�

�i

�j
(1)

for any pair of Sessions i and j that are backlogged throughout the interval (�; t]. If B(t) is the set of

backlogged sessions at time instant t, then every Session i in B(t) is served at the instantaneous service

rate of:

ri(t) =
�iP

j2B(t)

�j
r (2)

Therefore, a Session i is guaranteed a minimum service rate of gi for any time interval that it is

backlogged:

gi =
�iPN
j=1 �j

r (3)

where N is the maximum number of sessions that are being served by the GPS scheduler.

Note here that GPS is an idealized scheduler that does not transmit packets as individual entities. It

works under the assumption that tra�c is in�nitely divisible; hence, it can serve all backlogged sessions

simultaneously. However, in reality, only one session can receive service at a time, and a packet has to

be fully transmitted before another packet starts being served. Perhaps the most popular method to

approximate GPS in a packet system is Packet-By-Packet Generalized Processor Sharing (PGPS) [16]

which is de�ned as follows. Let d
(p)

i;gps be the departure time of a packet p from Session i under GPS.

Then, PGPS is the service discipline that transmits packets in increasing order of d
(p)
gps's.

In [16], it is proved that:

d
(k)

i;PGPS � d
(k)

i;GPS �
Lmax

r
8i; k (4)

Si;GPS(0; t)� Si;PGPS(0; t) � Lmax 8i; t (5)

where d
(k)

i;PGPS , d
(k)

i;GPS are the departure times of the k-th packet of Session i under GPS and PGPS,

and Si;GPS(0; t), Si;PGPS(0; t) are the total amounts of service received by Session i in time interval

(0; t] under GPS and PGPS, respectively. In other words, a PGPS system cannot fall behind a GPS

system by more than one maximum packet size.

In [16], it was proved that for leaky bucket constrained sessions, GPS guarantees deterministic

worst-case delays. Speci�cally, let Ai(�; t) be the amount of tra�c of Session i that arrives in the time

interval (�; t]. A leaky bucket [6] is de�ned as a pair (�; �) where � is a burst factor and � is a rate

factor. We say that a Session i is (�i; �i)-constrained if: Ai(�; t) � �i+�i(t��), for all t � � . A session

is called greedy if it always transmits at its maximum allowable data rate. If Session i is leaky-bucket

2A scheduler is work-conserving if it is not idle if there is incoming tra�c to be transmitted. Otherwise, it is non-work-

conserving.
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constrained and greedy, then we have: Ai(�; t) = �i + �i(t � �). Under GPS, one easily derived delay

bound for a (�i; �i)-constrained Session i is �i
gi

provided that gi � �i. The isolation property of GPS

makes it possible to derive worst-case delay bounds for a session without taking into consideration the

behavior of other sessions. If the behavior of other sessions is taken into consideration, the exact worst-

case delay bound can be calculated as shown in [16]. The delays depend on the tra�c characterization

of all sessions and the assignment of �'s. Note that the exact worst-case delay bound can be quite

smaller than �i
gi
. However, the delay bounds that are calculated using the guaranteed service rate gi

are independent of the tra�c characterizations and arrival patterns of the other sessions. We will take

advantage of this property of GPS, when we calculate the worst-case delay for S2GPS schedulers.

3.2 GPS and abrupt decrease of service rates

When new sessions start transmitting packets, the service rates of the previously active sessions decrease

abruptly. This abrupt decrease, which in some cases can be dramatic, can result in abrupt increases

of delay and jitter. The decrease of service rates is a direct result of the fact that, under GPS,

the service rate that a session receives is dependent on the number of backlogged sessions (as (2)

indicates). However, GPS is considered to provide isolation to the sessions that it services. As sessions

are considered to be isolated, it would be expected that the behavior of other sessions should not

dramatically a�ect the service rate of a session. Contrary to this expectation we show that essentially

the principle of isolation is violated in GPS; a session can experience an abrupt decrease of its service

rate because of the behavior of the other sessions.

Let us present an example that illustrates how the service rate of a session under GPS can decrease

rapidly. Suppose that we have a switch that operates at 45 Mbps. Further suppose that the switch

serves �ve sessions. All sessions have the same weights, i.e., �0 = �1 = �2 = �3 = �4. The guaranteed

rate for every session is 9 Mbps. Let us assume that Session 0 becomes active at time t = 0 sec, Session

1 at t = 1 sec, : : :, Session 4 at time 4sec.

In Figure 1 we plot the bandwidth that is available to Session 1 in such a scenario.3 As the �gure

indicates, when Session 1 starts transmitting at time t = 1 sec, it immediately obtains its fair share

of the bandwidth, which is 22.5 Mbps. When Sessions 2, 3, and 4 start transmitting, the available

bandwidth for Session 1 is decreased rapidly to 15 Mbps, 11.25 Mbps and 9 Mbps, respectively. The

�gure clearly shows that GPS abruptly changes the service rates of a session whenever a new session

becomes active.4

4 Slow-Start GPS Schedulers (S2
GPS)

The problem of abrupt changes of the service rate available to sessions is a direct result of the dependence

of the service rate on the number of backlogged sessions and their weights, �'s. In order to alleviate

3The �gure depicts the results for PGPS, a packetized version of GPS (see Section 6). Note that the uctuations of

the service rate are caused by the fact that PGPS is an approximation of GPS. As a result, the total available bandwidth

oscillates.
4In Figure 7 of Section 7 we show how our slow-start mechanism for GPS smoothes the changes of the service rate.



7

0

500

1000

1500

2000

2500

0.5 1 1.5 2 2.5 3 3.5 4 4.5 5 5.5 6 6.5
Time   (sec)

B
an

dw
id

th
 (

kb
ps

)

Session 1
starts starts starts startsstarts

Session 4Session 3Session 2Session 0

Figure 1: Available bandwidth for Session 1 under GPS.

this problem we propose a modi�cation to the GPS servicing discipline that aims to provide smoother,

i.e., graceful, decrease of the service rates of all backlogged sessions. In our scheme the service rate of

a session cannot decrease abruptly. It is important to note that our proposal modi�cation will provide

long-term behavior equivalent to a GPS system, i.e., the long term service rates that a session receives

under GPS and a modi�ed-GPS should be similar.

In GPS, changes in the service rates occur when the set of the backlogged sessions changes. This

happens when either \new" sessions become active or some sessions cease to be backlogged. When

\new" sessions become backlogged, they demand their share of the bandwidth. This results in the

decrease of the service rates of the \old" sessions and a potential increase of delays. On the other hand,

when some sessions are no longer backlogged, the service rates of all other sessions have to be increased

abruptly. In this paper we are only interested in the �rst case. Handling of the second case can be done

straightforwadly by making the scheduler non-work-conserving. Speci�cally, if service rate increases are

to be avoided we simply delay packets on purpose. The scheduler will be non-work-conserving, since

no packet is transmitted when all packets in the queue have to be delayed.

Our approach is based on the following basic idea: when a new Session k with �k becomes active

at time instant tk (We use tk to denote the time instant when Session k becomes active after an idle

period), then the weight of this session will be gradually increased from an initial value of � = 0 to its

�nal value, �k. Since the new session will not receive at once its fair, we anticipate that the service

rates of all other sessions will not drop dramatically. In other words, a slow-start scheduler does not

assign to a new session its fair share of the bandwidth as soon as it becomes active. Instead, the service

rate is increased gradually until it reaches the service rate which is given by (2). Correspondingly, the

service rates of the previously active sessions decrease in a smooth fashion.
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In a slow-start GPS scheduler, for each new Session k, we use Tk > 0 to specify the length of the

slow-start period, that is, the amount of time that has to pass before Session k is assigned its fair

share of the bandwidth. If Session k becomes active at tk , its service rate is increased in the interval

[tk; tk+Tk], and at time tk+Tk, the session has obtained its fair share of the bandwidth. Let us denote

the instantaneous service rates as r̂k(t). A slow-start GPS scheduler is a work-conserving scheduler

that maintains two sets of sessions, B(t) and Bnew(t). B(t) is the set of active sessions at time t as

de�ned in Subsection 3.1, and Bnew(t) = fkjr̂k(t) < rk(t)g is the set of all newly active sessions that

have not yet acquired their fair share of the bandwidth at time t.

The slow-start GPS scheduler is characterized by the following properties:

1. The service rate of a newly active session in the slow-start phase is an increasing function in time.

Thus,

0 � r̂k(t) � r̂k(t+�t) � ri(t + Tk) : tk � t < t+ �t � tk + Tk

2. If Session k is backlogged throughout the interval [tk; tk + Tk], then after time tk + Tk, Session k

is served at a rate at least as large as the service rate under GPS. Note that r̂k(t) can be greater

than rk(t) for t � tk +Tk. This will happen when some session (other than k) is in the slow-start

phase. Thus,

r̂k(t) � rk(t) : t � tk + Tk

3. For any two connections i and j in B(t)� Bnew(t), we have that:

r̂i(t)

r̂j(t)
=

�i

�j
; : 8t

In this paper we investigate a slow-start GPS scheduler where the increase of service rates is carried

out linearly with respect to time. Also, we assume that the length of the slow start period is identical

for all sessions, that is, Tk = T; 8k. Then the service rate of a Session k 2 Bnew(t) that becomes active

at time tk and is continuously backlogged in the interval [tk; tk + T ] is given by:

r̂k(t) =
t� tk

T
r(t) : tk � t � T + tk (6)

At time t = T + tk, k is removed from Bnew(t) because it will have been assigned its fair share of the

bandwidth. We refer to this scheduler as Slow-Start GPS (S2GPS).

In Figure 2 we illustrate the di�erence between GPS and S2GPS. This �gure depicts the service

rate of Session k as a function of time. The �gure shows three events: At time tk, Session k becomes

active, at time tj , Session j becomes active and at time tx Session k becomes idle. Under GPS, the

service rate function rk(t) for a Session k consists of linear horizontal segments. Under S2GPS the

service rate function does not change abruptly at the points in time where a session becomes active or

a session leaves the system. At these points, the service rate changes in a linear fashion as Figure 2

illustrates. Under GPS, when a session becomes active, it immediately receives service at a rate given

by (2); when a new session arrives, the service rate of the \old" sessions drop abruptly. Under S2GPS,

when a session becomes active, its service rate is increased linearly in an interval of length T . Thus,

when a \new" session becomes active, the service rate of the \old" sessions decrease linearly.
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Figure 2: Service rate of Session k as a function of time in GPS and S2GPS.

If B(t) and Bnew(t) are constant in [tk; T + tk ], then a Session k 2 Bnew(t) is served at the instan-

taneous rate of:

r̂k(t) =
t � tk

T

�kP
i2B(t)

�i
r : tk � t � T + tk (7)

and a Session j 2 B(t) �Bnew(t) is served at the instantaneous rate of:

r̂j(t) = (r�
X

k2Bnew(t)

r̂k(t))
�jP

i2B(t)�Bnew(t)

�i
: tk � t � T + tk (8)

Equations (7) and (8) illustrate the fact that when a session is in the slow-start phase, the bandwidth,

which corresponds to the di�erence between the fair share and the actual service rate, is distributed

among the \old" sessions.

One can make the following observations about S2GPS. First, equation (1) still holds for any two

sessions that belong to B(t)�Bnew(t). Second, in the long term, when all sessions are active and their

service rates have assumed their steady-state values, a S2GPS system behaves exactly in the same way

as a GPS system. Third, if the duration T of the slow-start phase is small relatively to the time that

a session is active, then S2GPS will not necessarily cause a dramatic increase to the average delay of

the session. However, depending on the value of T , we expect the worst-case delay in a slow-start GPS

scheduler to be larger than that in GPS. Fourth, the isolation property of GPS is further enhanced in

S2GPS. In GPS a session that does not transmit packets continuously (for example, a bursty source

with long idle periods) can cause abrupt changes to the service rates of all the other sessions; though all

sessions are guaranteed a minimum service rate, the actual service rates depend heavily on the behavior

of all other sessions. Thus, the sessions are not perfectly isolated from each other. A slow-start GPS

scheduler mitigates this problem and enhances the property of isolation.
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5 Analysis of S2GPS

The linear change of service rate in S2GPS has primarily two e�ects. First, it increases the worst-case

delay of new sessions that arrive in the system. Second, it decreases the delay rate for previously active

sessions. In the following we derive bounds for the worst-case delay and the rate of delay changes for

leaky bucket constrained sessions.

5.1 Worst Case Delay

In S2GPS, when a previously idle session becomes active, it is assigned its fair share of the bandwidth

only gradually. As a result, we expect the worst-case delay in a S2GPS system to be larger than the

worst-case delay in the corresponding GPS system. For sessions that have been assigned their fair share

of the scheduler bandwidth, the worst-case delay in S2GPS system is expected to be the same as in

a GPS system, as the session will receive service at a minimum rate of gi. Therefore, the di�erence

between the worst-case delays in S2GPS and GPS system for a Session i is obtained by evaluating the

di�erence of service that the session receives until it is assigned its fair share of the bandwidth. In the

following we will derive the worst-case delay bound for sessions that are constrained by leaky buckets.

In our analysis we take advantage of the so-called isolation property of GPS (which is also retained

in S2GPS). For the calculation of the worst-case delay, we consider a S2GPS system where a maximum

of N sessions can be admitted. Without loss of generality, we will calculate the worst-case delay for

the k-th session that starts transmitting at time 0. As in GPS, in S2GPS, Session k experiences its

worst-case delay when:

1. All the other sessions in the system are continuously backlogged, and

2. Session k is greedy, i.e., Ak(0; t) = �k + �kt.

The �rst condition keeps the maximum service rate attained by Session k to the minimum rate gk . The

second condition is required because the worst-case scenario will occur when a session transmits at its

maximum allowable rate.

Let Qk(t) be the queue size (or backlog) of Session k at time instant t. Then we have:

Qk(t) = Ak(0; t)� Sk(0; t) (9)

Let �k(t) be the delay of each arrival at time t. Then we have:

Qk(t) = Sk(t; t+ �k(t)) (10)

For ease of notation, we will use Ak(t) for Ak(0; t) and Sk(t) for Sk(0; t). Figure 3 depicts Ak(t) and

Sk(t). As Figure 3 suggests, �k(t) is the horizontal distance between Ak(t) and Sk(t); Qk(t) is the

vertical distance between Ak(t) and Sk(t).

Under S2GPS, the service rate of Session k is given by:

rk(t) =

(
t
T
gk : t � T

gk : t > T
(11)
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The amount of tra�c Sk(t1; t2) that is served in the interval [t1; t2] and the instantaneous service

rate are associated through the equation:

Sk(t1; t2) =

Z t2

t1

rk(t)dt (12)

From (10) and (12) we have:

Qk(t) =

Z t+�k(t)

t

rk(�) d� (13)

From (9) and (13) we obtain:

Sk(0; t) +

Z t+�k(t)

t

rk(�)d� = Ak(0; t)

As Sk(0; t) =
R t
0
rk(�)d� :

�k + �kt =
Z t+�k(t)

0

rk(�) d� (14)

Equation (14) will be used to evaluate the delay �(t) as a function of time t. Hence, we are able to

calculate the maximum delay �max, which is given in the following theorem.

Theorem 1 The worst-case delay �max
k of the (�k; �k)-constrained Session k is:

�max
k =

8>>><
>>>:

T
2
+ �k

gk
: T < 2�k

gkq
2T�k
gk

: 2�k
gk

� T < 2�kgk
�2
k

�k
�k

+ �kT
2gk

: 2�kgk
�2
k

� T

(15)

provided that gk � �k.

Proof: Without loss of generality, we assume that Session k starts transmitting at time 0. We assume

that the worst-case delay of Session k is experienced by an arrival at time t. We use �k(t) to denote

the delay of the tra�c from Session k that arrives at time t. From (11) we have that the service rate

rk(t) is time dependent. Hence, in order to use (14), we have to examine the three cases described in

Table 1. For ease of notation, in the following we will drop the index k.

First, we proceed to examine the worst-case delay that corresponds to Case 1.
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Case arrival time departure time

Case 1 t < T t + �(t) < T

Case 2 t < T t + �(t) � T

Case 3 t � T t + �(t) � T

Table 1: Cases for the worst-case delay

Case 1: We have that r(t) = t
T
g. From (14) we obtain:

� + �t =

Z t+�(t)

0

�

T
g d�

=
g

T

(t+ �(t))2

2
(16)

which gives:

�(t) =

s
2T (� + �t)

g
� t (17)

As the departure must occur before time T , we need that t + �(t) � T must hold. From (17) we

obtain: s
2T (�+ �t)

g
� T (18)

As the left hand part of (18) is an increasing function of time t, we need to check what happens when

t = 0. By setting t = 0 in (18), we obtain:

T �
2�

g
(19)

Hence, Case 1 is invalid if 2�
g
> T .

In order to �nd the maximum value of �(t) we will use the derivative �0(t) which is given by:

�0(t) =

s
T�2

2g(�+ �t)
� 1 (20)

Let us denote as t� the time instant where �0(t) = 0. We �nd that:

t� =
�T

2g
�
�

�
(21)

Depending on the values of T , �, � and g, t� can be on the \left", or \inside" of the interval [0; T ]

(recall that � � g). Therefore we have to check the following cases:

(a) t� � 0: As �(t) is monotonously decreasing for t � t�, we conclude that the maximum delay occurs

at t = 0. Hence, in this case the maximum delay is given by:

�(0) =

s
2T�

g
(22)
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(b) 0 � t� � T : First, we need to check when t� � 0 holds. From (21), we have:

�T

2g
�
�

�
� 0

which yields:

T �
2�g

�2
(23)

In this case the maximum delay �(t�) is calculated from (17) and (21):

�(t�) =
�

�
+
�T

2g
(24)

We still need to verify if this maximum delay corresponds to a departure that occurs before time

T , i.e., we must show that t� + �(t�) � T . The proof that this inequality holds is technical and

pushed in the Appendix in Lemma 1.

Combining (19), (22), (23), and (24) we obtain:

�max =

8<
:
q

2T�
g

: 2�
g
� T < 2�g

�2

�
�
+ �T

2g
: T � 2�g

�2

(25)

Case 2: From (11) and (14) we obtain:

� + �t =
Z t+�(t)

0

r(�) d�

=

Z T

0

�

T
g d� +

Z t+�(t)

T

g d�

=
g
T
T 2

2
+ (t + �(t)� T )g

which yields:

�(t) = (
T

2
+
�

g
) +

�� g

g
t (26)

As g � �, �(t) is a monotonously decreasing function of time and the maximum occurs at t = 0. Hence:

�max = �(0) =
T

2
+
�

g
(27)

However, Case 2 assumes that the departure occurs at a time after time T . Therefore, we must have

that �(0) > T . We can easily verify that this holds if and only if T < 2�
g
. Hence the maximum delay

for Case 2 is:

�max =
T

2
+
�

g
; if T <

2�

g
(28)

Case 3 In this case we look at arrivals that occur after time T . As after time T the session is served

at a rate g � �, intuitively, all arrivals that occur after this time will have delays that are smaller than

the worst-case delay. However, this needs to be proved. The proof is in the Appendix and it is given

by Lemma 2.

To conclude the proof of the theorem, we note that from (25) and (28) we obtain (15). 2
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5.2 Graceful Degradation

S2GPS o�ers graceful degradation of service to all previously active sessions in the sense that there is

a smooth increase of delay when a new session starts transmitting. The smooth increase of delay is a

direct result of the linear decrease of service rates. The delay increase can be evaluated by using the

rate _�(t) at which the delay changes over time when a new session arrives at the system. This rate is

given by

_�i(t) =
�i(t +�t)� �i(t)

�t

If _�i(t) is bounded, then graceful degradation is provided. Under S2GPS, we expect that _�i(t) will be

bounded and that the bound will depend on T . We also expect that the \smoothness" of the delay

increase should increase for larger values of T . In other words, if T is large, then _�(t) should be small.

Next we evaluate _�i(t) and we show that indeed the bound for _�i(t) is a decreasing function of T .

Let us suppose that a Session i which has been active for a long period of time before time t = 0

when a new Session N becomes active. Let N �1 be the number of the active sessions before t = 0. We

assume that the number of active sessions has been constant and that after the arrival of the Session

N , it will remain constant in the time interval [0; T ]. We look at a \bit" of the Session i that arrives

at time (�t) and is transmitted at time ~t, such that 0 � ~t � T . Then we have:

Qi(�t) =

Z ~t

�t
r̂i(�) d� (29)

We proceed to calculate ~t. The service rate of the Session i is given by:

ri(t) =

8><
>:

�iPN�1

j=1
�j
r(1� t

T
�NPN

j=1

�j) : 0 � t � T

�iPN�1

j=1
�j
r : � � 0

(30)

From (29) and (30) we have:

Qi(�t) =
Z ~t

�t
ri(�) d�

=
Z

0

�t
ri(�) d� +

Z ~t

0

ri(�)d�

=

Z
0

�t

�irPN�1
j=1 �j

d� +

Z ~t

0

�irPN�1
j=1 �j

(1�
�

T

�NPN
j=1 �j

) d�

=
�irPN�1
j=1 �j

t+
�irPN�1
j=1 �j

(~t�
(~t)2

2T

�NPN
j=1 �j

)

which implies:

�N

2T
PN

j=1 �j
(~t)2 � ~t+ Qi(�t)

PN�1
j=1 �j

�ir
= 0 (31)

From (31) we obtain

~t =
T
PN

j=1 �j

�N

0
@1�

vuut1� 2
�N

T
PN�1

j=1 �j
(

PN
j=1 �j

�i
Qi(�t)� t)

1
A (32)
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In the same way we can �nd that a \bit" that arrives at (�t) + �t will have a delay of:

�i(�t+ �t) = t ��t +~~t (33)

where ~~t denotes the transmission time, which is given by:

~~t =
T
PN

j=1 �j

�N

0
@1�

vuut1� 2
�n

T
PN

j=1 �j
(

PN
j=1 �j

�i
Qi(�t+ �t)� (t��t))

1
A (34)

Also, we have that:

Qi(�t +�t) = Qi(t)� ri�t+ Ai(�t;�t+ �t) (35)

Using Equations (32), (34), and (35) we can calculate _�(t) as a function of time t, the queue size

Qi(t), and the amount of tra�c Ai(�t;�t +�t):

_�i(t) =
T
PN

j=1
�j

�N�t

0
@
vuut1� 2

�n

T
PN

j=1 �j
(

PN
j=1 �j

�i
Qi(�t) � ri�t+ Ai(�t;�t+ �t)� (t��t))

�

vuut1� 2
�N

T
PN�1

j=1 �j
(

PN
j=1 �j

�i
Qi(�t) � t)

1
A (36)

It follows from (36) that the delay rate is bounded if Qi(t) is bounded. However, Qi(t) is bounded by

Qi(t) � �i, if Session i is constrained by a leaky bucket (�i; �i) and gi � �i: Hence, S2GPS provides

a bounded delay rate and, as a result, graceful degradation of service. Also, it can be easily proved

that _�i(t) is a decreasing function of T . This con�rms our intuition that for larger values of T , S2GPS

provides smoother delay increases because the bound for the delay rate will be smaller.

6 A Packet-by-packet version of S2GPS

S2GPS assumes a uid model where tra�c is in�nitely divisible. In reality, however, a scheduler can

serve one packet at a time. In this section we de�ne the packet approximation of S2GPS, called

Slow-Start Packetized Generalized Processor Sharing or S2PGPS. and we show that S2PGPS closely

approximates S2GPS. Also, we show how S2GPS can be implemented using the concept of virtual time.

6.1 S2PGPS

In this Subsection, we de�ne the packet approximation of S2GPS, called S2PGPS. S2PGPS is the

scheduling discipline that transmits packets in increasing order of their �nishing times under the S2GPS

system. S2GPS attempts to approximate the uid model as closely as possible. Note that S2PGPS is

derived from S2GPS in the same way that PGPS is derived from GPS [16]. The question that arises

is whether S2PGPS is a good approximation of a S2GPS system. We will prove that this is indeed

the case. Speci�cally, we will show that a S2PGPS system cannot fall behind from the corresponding

S2GPS system by more than one maximum packet size. We will take advantage of the following results

that are available for GPS/PGPS [16]:
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1. Let p and q be packets in a GPS system at time � , and suppose that packet p completes service

before packet q if there are no arrivals after time � . Then, the packet p will also complete service

before the packet q for any pattern of arrivals after time � .

2. Let F̂p, Fp be the times that packet p departs from the PGPS and GPS systems, respectively.

Then for all packets p,

F̂p � Fp �
Lmax

r
(37)

3. Let Ŝi(0; �) be the amount of service that Session i receives under S2GPS. Then, for all times �

and for each Session i:

Si(0; �)� Ŝi(0; �) � Lmax (38)

It is not hard to show that the above properties also apply in S2GPS. This is because the proofs of

these properties for PGPS, which are given in [16], are not sensitive to time dependent service rates.

Thus, a S2PGPS system cannot fall behind from the corresponding S2GPS system by more than one

packet size. These properties facilitate the translation of delay bounds under a S2GPS system to the

corresponding S2PGPS system.

6.2 Virtual Time Implementation of S2PGPS

In this section we present an implementation of the S2PGPS based on virtual times. The concept of

virtual time as a means of implementing PGPS was proposed in [8, 16]; the virtual time V (t) in [8, 16]

is used as a measure of progress in the system. When packets arrive, the scheduler assigns virtual time

deadlines to them and serves packets in increasing order of these deadlines. The virtual time is set to

zero at the beginning of a busy period and increases at the marginal rate of 1P
i2B(t)

�i
. Thus, during any

system busy period [t1; t2], V (t) evolves as follows:

V (t1) = 0 (39)

@V (t)

@t
=

1P
i2B(t)

�i
t1 � t � t2 (40)

which yields:

V (t) =

Z t2

t1

d�P
i2B(t)

�i
(41)

Let us de�ne as an event in the system the arrival or the departure of a packet. Let ej be the time that

the j-th event in the system occurs. By observing that B(t) is constant in any time interval during

which no events occur, we obtain:

V (ej + �) = V (ej) +
�P

i2B(ej)

�i
0 � � � ej+1 � ej (42)
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For the p-th packet of the k-th session, the virtual start time S
(p)
i and virtual �nish time F

(p)
i are

de�ned as:

S
(p)

i = maxfF
(p�1)
i ; V (t

(p)

i )g (43)

F
(p)

i = S
(p)

i +
L
(p)

i

�i
(44)

where t
(p)

i is the arrival time of packet p and L
(p)

i is the length of packet p. The scheduler serves packets

in increasing order of their virtual �nishing times.

An implementation of S2PGPS with virtual time is not straightforward and must address the fol-

lowing two problems:

1. From (42) we have that the virtual time V (t) is calculated as a function of the �'s of the sessions.

Note, however, that the weights of the sessions in the slow-start phase have to be modi�ed to

reect the increasing service rates that these sessions receive, and the decreasing service rates of

the other, i.e., the previously active sessions.

2. For a packet p that is transmitted during the slow-start phase of a S2GPS of a Session k, the

service rates of the session at the beginning and at the end of the transmission will be di�erent.

Correspondingly, the weight �k of a Session k will take di�erent values during the transmission

of a packet. As (44) suggests, the deadline of a packet depends on the �k of the session. If the �k

of Session k is not constant over the transmission of a packet of the session, then it is not obvious

how a deadline can be assigned to this packet.

We proceed to present solutions to these two problems. In Subsection 6.3 we show how the weights

of sessions in the slow-start phase can be calculated. In Subsection 6.4 we show how the virtual �nishing

times are calculated in S2GPS.

6.3 De�nition of �k(t)

Our goal is to de�ne the �k of every Session k in Bnew(t) as a function of time, �k(t), such that:

rk(t) =
�k(t)P

j2B(t)�Bnew(t)

�j +
P

j2Bnew(t)

�j(t)
r (45)

Using (7), (8), and (45), we can calculate �k(t) for every session in the slow-start phase. We show how

this can be done in the case when (i) only one Session k is in the slow-start phase, and (ii) the set B(t)

of the backlogged sessions is constant in the time interval [tk; tk +T ]. In Subsection 6.5 we discuss how

this restriction can be relaxed.

To derive �k(t), recall that the service rate of Session k in time interval [tk; tk + T ] is given by:

rk(t) =
t� tk

T

�kP
i2B(t)

�i
r (46)
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As only Session k is in the slow-start phase, (45) becomes:

rk(t) =
�k(t)P

i2B(t); i6=k

�i + �k(t)
r (47)

and (46) becomes:

rk(t) =
t� tk

T

�kP
i2B(t);i6=k

�i + �k
r (48)

From (47) and (48) we have:

�k(t)P
i2B(t);i6=k

�i + �k(t)
=

t � tk

T

�kP
i2B(t); i6=k

�i + �k

which implies:

�k(t) =

t�tk
T

�kP
i2B(t)

�i

P
i2B(t);i6=k

�i

1� t�tk
T

�kP
i2B(t)

�i

(49)

Equation (49) clearly shows that �k(t) is an increasing function of time t. At time t = tk + T , we have

that �k(tk + T ) = �k which implies that Session k will be assigned its fair share of the bandwidth.

6.4 Virtual Finishing Time in S2PGPS

Let p be a packet of Session k that is transmitted during the slow-start phase of Session k. In this

subsection we will show how the virtual �nishing time of this packet can be computed upon the arrival

of the packet. Note that the virtual �nishing time is used as the deadline with which the packet p will

be tagged upon its arrival.

As (49) suggests, the weight �k of a Session k in the slow-start phase changes during the transmission

of a packet p of this session. We calculate an average value of the weight �k of the session over the

transmission of the packet and we call it the \e�ective" value �
(p)

eff . Using �
(p)

eff , it is possible to calculate

the virtual �nishing time as S(p)
k

+
L
(p)

k

�
(p)

eff

. In other words, we are able to use (44) provided that we have

calculated �
(p)

eff . We will show how �
(p)

eff can be calculated for a Session k in the slow-start phase. We

assume that only Session k is in the slow-start phase and that B(t) is constant in [tk; tk + T ].

Let wp denote the elapsed time between the end of the transmission of packet p and the arrival of

the �rst packet of session k. Clearly, the transmission of packet p ends at time tk+wp. We can calculate

wp in terms of wp�1. As the transmission of packet p will start at tk + wp�1 and end at tk + wp, we

have:

L
(p)

k =

Z tk+wp

tk+wp�1

rk(t) dt

=
Z tk+wp

tk+wp�1

t � tk

T

�kPN
i=1 �i

r dt

=

Z wp

wp�1

�

T

�kPN
i=1 �i

r dt
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which yields:

wp =

vuut2L
(p)

k

PN
i=1 �i

r�k
+ (wp�1)2 (50)

However, packet p is served at a rate
r�

(p)

eff

NP
i=1 ;i6=k

�i+�
(p)

eff

. As the transmission of the packet takes time

wp � wp�1, we have:

r�
(p)

eff

NP
i=1 i6=k

�i + �
(p)

eff

(wp � wp�1) = L
(p)

k

which yields:

�
(p)

eff =

L
(p)

k

NP
i=1 ;i6=k

�i

r(wp � wp�1)� L
(p)

k

(51)

Using (50) and (51), we can now devise a procedure for S2GPS that assigns a deadline to an incoming

packet of a new session. The deadlines of packets from sessions that are not in the slow-start phase

can be directly calculated using (44). In the following, we present pseudo-code for the algorithm that

assigns deadlines to packets from sessions that are in the slow-start phase:

procedure Assign Deadline To(Packet p, Session k)

1. if p = 1

2. set w0 = 0

3. add Session k to Bnew

4. if wp�1 < T

5. calculate wp using (50)

6. calculate �
(p)

eff using (51)

7. assign a deadline to packet p using (44)

8. else /* the slow-start phase of Session k is over */

9. remove k from Bnew(t)

When the �rst packet of Session k arrives, the Session k enters a slow-start phase. Thus it is inserted

to Bnew(t) and w0 is initialized to 0. Then w1 is calculated from (50) and �
(1)

eff is calculated from (51).

A deadline to the �rst packet of the session packet is assigned using (44). When the p-th packet of

Session k arrives, then the scheduler has to check if the session is still in the slow-start phase. This

check can be carried out in the following way. If the (p � 1)-th packet departs before the end of the

slow-start phase, i.e., wp�1 < T , then packet p will also be transmitted during the slow-start phase of

Session k. Thus, wp is calculated using (50) and �
(p)

eff is calculated using (51). However, if wp�1 > T ,

then the slow-start phase of Session k is over. Session k is removed from Bnew(t) and its � is set to �k

for all the other packets from Session k.
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6.5 Relaxing the Assumption

So far we have shown how a S2PGPS system can be implemented by assigning deadlines to packets of

sessions in the slow-start phase provided that the following conditions hold:

Condition C1: Only one session is in the slow-start phase

Condition C2: B(t) is constant if a session is in the slow-start phase.

If this assumption holds, then S2PGPS provides the following guarantees:

Guarantee G1: The new session will experience a linear increase of its service rate.

Guarantee G2: The worst-case delay bounds as given in Equation (15) will hold.

Guarantee G3: Previously active sessions experience smooth decreases of their service rates.

We now relax this assumption and examine the impact on guarantees G1, G2, and G3, if conditions C1

or C2 do not hold.

Let us suppose that C1 does not hold. We will show that G2 and G3 still hold. When C1 does not

hold, there is a time period where n > 1 Sessions k1; k2; : : : ; kn are in the slow-start phase. Without

loss of generality we can assume that Session k1 �rst entered the slow-start phase, then Session k2 and

so on:

tk1 � tk2 � : : : � tkn

In this scenario, the increase of the service rate of Session k1 will be linear only until the time that

Session k2 enters the slow-start phase. In other words, in the time interval [tk1 ; tk2 ] the service rate

of Session k1 increases linearly. After time tk2 Session k1 sees its service rate increase but not in a

linear fashion. This is due to (51) not taking into account the � 's of sessions tk2 : : : tkn . However, at

time tk1 + T , Session k1 is guaranteed to be served at a minimum rate gk as given by (3). Similarly,

the service rates of Sessions k2, : : :, kn also increase gradually but not linearly. Thus, when a new

session enters the system, it is always served at a gradually increasing rate; the increase is linear only

if assumptions C1 and C2 hold. As a result, G3 holds.

Next we prove that G2 holds even if C1 does not hold. Recall that the delay bounds are computed

by making worst-case assumptions, i.e., all N � 1 sessions are continuously backlogged and only one

Session k is in the slow-start phase. Let us denote the service rate of Session k as ronek (t) when only

Session k is in the slow-start phase and r
many
k (t) when several sessions are in the slow-start phase. We

have ronek (t) � r
many
k (t) since S2GPS is work-conserving and a session in the slow-start phase is always

served at a rate smaller than the service rate the session gets when it is not in the slow-start phase.

Hence, when C1 does not hold, a session in the slow-start does not experience the worst-case delays,

and G2 holds.

Thus, relaxing C1 does not have any detrimental e�ects on S2PGPS. It turns out that this is also

the case with relaxing assumption C2; we will show that G2 and G3 still hold. When C2 does not hold,

then some previously active sessions are removed from the system while some \new" sessions are still

in the slow-start phase. If an \old" session ceases to be backlogged, its service rate is distributed to all
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remaining sessions in the system. The sessions in Bnew(t) will experience a sudden increase in the service

rates. As their service rates will increase, their delays will decrease; hence, G2 will hold. However, this

increase of service rates will not be at the expense of the remaining sessions in B(t)�Bnew(t), as these

sessions will also take a signi�cant part of the bandwidth that was made available. Thus the smooth

decrease of service rates is guaranteed in this case, too, and G3 will hold. Hence, the slow-start nature

of S2PGPS is preserved.

We have shown that even if our original assumption does not hold, the behavior of the packe-

tized version of S2GPS is not signi�cantly altered. Previously active sessions still see their service

rate decrease smoothly and the worst-case delay bounds for the sessions in the slow-start phase are

guaranteed.

7 Evaluation

In this section we present three simulation experiments that evaluate the packetized version of our

slow-start scheduler, S2PGPS, with respect to the following properties. First, we will illustrate how

S2PGPS increases the bandwidth of new sessions and decreases the bandwidth of active sessions, for

di�erent selection of parameter T , the length of the slow-start phase. Second, we show that S2PGPS

prevents abrupt increases of delays when new sessions become active. In Experiments 1 and 2 we focus

on the �rst property. In Experiment 3 we focus on the second property.

7.1 Experiment 1

Our goal in this experiment is to illustrate that S2PGPS provides linear increase of service rates when

only one session is in the slow-start phase. We consider an ATM Permanent Virtual Connection (PVC)

with an available bandwidth of 1 Mbps. This bandwidth is distributed among three continuously

backlogged sessions with �0 = �1 = �2 = 1. We assume that all sessions transmit ATM 53-byte

cells. Since each session being continuously backlogged results in unbounded delays, we only plot the

bandwidth that is available to each session. Sessions 0 and 1 start transmitting at time t = 0 sec, and

Session 2 starts transmitting at time t = 2 sec. Figure 4 shows the bandwidth for Sessions 0, 1 and

2 under PGPS. This �gure clearly shows that under PGPS the bandwidth for Sessions 0 and 1 drops

abruptly at time t = 2 sec, when Session 2 starts transmitting.
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Figure 4: Available bandwidth under PGPS.
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Figure 5: Available bandwidth of Session 0 under S2PGPS (The results are almost identical for Ses-

sion 1).
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Figure 6: Available bandwidth of Session 2 under S2PGPS.

Figure 5 depicts the bandwidth for Sessions 0 and 1 under S2PGPS and Figure 6 depicts the

bandwidth for Session 2 for various values of parameter T . Figure 5 clearly shows that the bandwidth

of Sessions 0 and 1 is decreased smoothly in an interval of length T . Figure 6 shows that the bandwidth

of Session 2 is increased almost linearly in an interval of length T . Note that bandwidth increase for

Session 2 is not \strictly" linear. This is because of the approximation S2PGPS introduces.

From this experiment we can clearly see that when only one session is in the slow-start phase and

the set of sessions is constant, then S2PGPS provides linear increase of the service rate of the \new"

session. Correspondingly, the service rates of the previously active sessions are decreased linearly.

7.2 Experiment 2

Our goal in this experiment is to examine the behavior of S2PGPS when several sessions are in the

slow-start phase. The parameters for this experiment are the same as in the example of Subsection

3.2. The available bandwidth is 45Mbps and is distributed among �ve sessions. All sessions have the

same weights, �0 = �1 = �2 = �3 = �4. Session 0 starts transmitting at t = 0 sec, Session 1 starts

transmitting at time t = 1 sec and so on. As it was pointed out in Subsection 3.2, under PGPS, when

a session starts transmitting, the service rates of all previously active sessions are decreased abruptly.



24

0

5

10

15

20

25

0.5 1 1.5 2 2.5 3 3.5 4 4.5 5 5.5 6 6.5

B
an

dw
id

th
 (

M
bp

s)

Time (sec)

(a) PGPS (or S2PGPS with T = 0 sec).

0

5

10

15

20

25

0.5 1 1.5 2 2.5 3 3.5 4 4.5 5 5.5 6 6.5

B
an

dw
id

th
 (

M
bp

s)

Time (sec)

(b) S2PGPS with T = 0:8 sec

0

5

10

15

20

25

0.5 1 1.5 2 2.5 3 3.5 4 4.5 5 5.5 6 6.5

B
an

dw
id

th
 (

M
bp

s)

Time (sec)

(c) S2PGPS with T = 1:2 sec

0

5

10

15

20

25

0.5 1 1.5 2 2.5 3 3.5 4 4.5 5 5.5 6 6.5

B
an

dw
id

th
 (

M
bp

s)

Time (sec)

(d) S2PGPS with T = 2:2 sec

Figure 7: Available bandwidth of Session 1.

Figure 7 depicts the available bandwidth for Session 1 for di�erent values of the period T of the

slow-start phase under S2PGPS. From Figure 7 we can draw interesting conclusions about S2PGPS.

For values of T less than 1 sec only one session is in the slow-start phase in the interval [1 sec, 5 sec]. In

these cases, the change of service rates is carried out in a linear fashion. For example, when T = 0:8 sec,

the service rate of Session 1 is increased linearly in the interval [1 sec, 1.8 sec]. When Session 2 starts

transmitting, the service rate of Session 1 is decreased linearly. This is also the case when Sessions 3

and 4 start transmitting. When T > 1s, then more than one session is in the slow-start phase at the

same time. For example, when T = 2:2 sec, at time t = 3:1 sec three sessions (Sessions 1, 2, and 3) are

in the slow-start phase. We can clearly see that the increase of service rates is not linear. Nevertheless,

the smooth decrease of service rates is preserved. Moreover, at the end of the slow-start phase, every

session receives from the scheduler its fair share of the bandwidth. Hence, in the presence of many

sessions in the slow-start phase, S2PGPS succeeds in providing smooth decreases of service rates.

7.3 Experiment 3

We assume that we have a video transmission system over PVC with a bandwidth of 1 Mbps. On this

PVC, three MPEG movie transmissions are multiplexed. Sessions 1 and 2 transmit the same movie,
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\camera", and Session 3 transmits the movie \dino". The MPEG movie sequences are taken from a

publicly available library of MPEG traces [18]. We refer to [18] for a detailed discussion and statistical

analysis of these traces. Sessions 1 and 2 start transmitting at time t = 0 sec and they have a worst-

case delay bound of 0.4 sec. Session 3 has a worst-case delay of 0.2 sec and starts transmitting at time

t = 3 sec. These parameters are illustrated in the following table:

movie frames per s worst-case delay � transmission start

camera 17 0.4 sec 1 t = 0 sec

camera 17 0.4 sec 1 t = 0 sec

dino 24 0.2 sec 2.4 t = 3 sec

Table 2: Parameters.

First, we use PGPS as the scheduling discipline for the multiplexing of the three sessions. Figure

8(a) depicts the delay of Sessions 1 and 2 if Session 3 did not transmit any packets at all and Figure 8(b)

depicts the delay when Session 3 starts transmitting at time t = 3 sec. Due to the burstiness of MPEG

tra�c, abrupt increases of delays occur even when only Sessions 1 and 2 are active. The abrupt delay

increase at time t = 2:8 sec in Figure 8(a) shows this phenomenon. However, the delay increase caused

by the burstiness of the MPEG sources is smaller than the delay increase caused by the arrival of Session

3 at time t = 3 sec. From Figure 8(b) we observe that as soon as Session 3 starts transmitting at t = 3s,

the delay of Sessions 0 and 1 is increased by almost 100 msec, corresponding to a 66% increase of delay.

This example illustrates that even with very bursty types of tra�c, such as MPEG, the abrupt delay

increase when new sessions start transmitting can be dramatic.

Figure 9 depicts the delay of Sessions 1 and 2 when S2PGPS is used. The �gures show that S2PGPS

indeed mitigates the problem of sudden delay increase. In fact, Figure 9(a) shows that when the period

T of the slow-start phase is T = 0:4 sec, S2PGPS reduces the delay increase back by about 50 msec.

From Figure 9(b) we can see that for a larger value of T (T = 0:8 sec), the delay of Sessions 1 and 2

assumes high values for a smaller time period. This implies that with S2PGPS, the increase in delay is

not only smaller, but it also lasts for a smaller period of time.

However, we expect that S2PGPS will have a negative e�ect on the delay of Session 3. Figures 10

and 11 illustrate this inherent trade-o� of S2PGPS.

Figure 10 depicts the delay of Session 3 under PGPS. As Session 3 receives more than 50% of the

available bandwidth, its delay is always smaller than 100 msec. However, when S2PGPS is used, its

delay is increased.

Figure 11 depicts the delay of Session 3 under S2PGPS. We can see that the e�ect of S2PGPS in an

increase in delay of 220 msec (when T = 0:4 sec) or 330 msec (when T = 0:8 sec). It is clear, however,

that this increase of delay is temporary; it lasts only while Session 3 in the slow-start phase.
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Figure 8: Abrupt Increase of Delay under PGPS.
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Figure 9: Delay for Sessions 1 and 2 under S2PGPS.
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Figure 10: Delay of Session 3 under PGPS.
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Figure 11: Delay for Session 3 under S2PGPS.

8 Conclusion and Future Work

In this paper we have shown that the GPS scheduling discipline is unable to provide graceful degra-

dation of service since the service rates of active sessions decrease abruptly when new sessions start

transmitting. We have proposed and analyzed a modi�cation to GPS, called Slow-Start GPS or S2GPS

that remedies this problem. We have presented concrete cases where this new scheduling discipline

can be utilized. Adaptive applications and congestion control can bene�t from S2GPS and provide

better QoS guarantees to the end user. We have shown how S2GPS can be e�ciently implemented in

packet-switched networks; the packetized version of S2GPS, S2PGPS, can be implemented using the

concept of virtual time. Finally, by simulations we have tested the e�ectiveness of S2GPS.

We have shown that if only one session is in the slow-start phase, then S2GPS provides linear

increase of the service rate. When several sessions are in the slow-start phase, the increase of service

rates is carried out in a smooth fashion, but not linearly. Additional work is needed for the design

of a scheduler that guarantees linear increase of service rates, if multiple sessions are in the slow-start

phase.
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A Appendix

Lemma 1 Let Session k be (�k, �k)-constrained. If T > 2�kgk
�2
k

, then the worst-case delay occurs for an

arrival at time t� that departures at a time earlier than T .

Proof: We need to prove that

t� + �k(t
�) � T (52)

From (21) and (24) we have that (52) is equivalent to:vuut2T (�k + �k(
�kT
2gk

� �k
�k
))

gk
� T

It can be easily found that this equivalent to �k � gk, which holds per assumption. Hence, (52)

holds. 2

Lemma 2 Any arrival of a session that occurs outside the slow-start phase of that session, has a delay

less than the worst-case delay.

Proof: As in the proof of Theorem 1, we assume that a session becomes active at time 0. Therefore,

an arrival outside the slow-start phase has an arrival time t > T . We will prove that the maximum

delay that corresponds to this case is less than �max (as given in (15)). Note that for ease of notation

we again drop the index k.

As in Case 2 in the proof of Theorem 1, we �nd that the delay for an arrival at time t > T is

�(t) = (T
2
+ �

g
) + ��g

g
t. As �(t) is a monotonously decreasing function of time, the maximum delay will

be at t = T , i.e.,

�(T ) =
� + �T

g
�
T

2
(53)

We need to examine the following cases:

� If T < 2�
g
, then from (15) we have that �max =

T
2
+ �

g
. It can be easily veri�ed that �(T ) < �max.

� If 2�
g
� T < 2�g

�2
, then from (15), �max =

q
2T�
g
. Let us suppose that:

�(T ) >

s
2T�

g
(54)

As we have T � 2�
g
, we obtain:

�

g
+ (

�

g
�
1

2
)T >

s
2�

g

2�

g
(55)

which yields:

(
�

g
�

1

2
)T >

�

g
(56)

This can hold only if � > g
2
. As T < 2�g

�2
, we obtain:

(
�

g
�

1

2
)
2�g

�2
>

�

g
(57)
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This implies:

0 >

�
(
�

g
)� 1

�
2

(58)

which is a contradiction. Hence, �(T ) � �max.

� If 2�g

�2
� T , then from (15), �max =

�
�
+ �T

2g
. Let us suppose that:

�(T ) >
�

�
+
�T

2g

Then, by using (53) we obtain:
�

g
+
�� g

2g
T >

�

�

which is a contradiction, because � � g.

Thus, �(T ) � �max. The proof is complete if we recall that for t > T , we have �(t) < �(T ). 2


