

It we set	$S_{fifo}(t)$	$= (C - r_c)t$	
we can describe a FIFO system as	D(t) = $D(t) \ge$	$= (rt) * S_{fifo}$ $\geq (rt) * S_{fifo}$, if $r \leq C$ – , if $r > C$ –
This means: FIFO is a lin if total traffic is below c and non-linear otherwise.	iear systen apacity,	n linear	not linear
So, we should not increas	e rate of	$r < C - r_c$	r > C - r

Cross traffic

