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Service Guarantees

Receiver
Sender

* A deterministic service gives worst-case guarantees
Delay < d
* A statistical service provides probabilistic guarantees

Pr[ Delay > d]<¢ or Pr[Loss>/]<c¢




Multiplexing Gain

Resource needed
to support QoS
for N flows

Resource needed
<< N-| to support QoS
for1 flow

Sources of multiplexing gain:
* Traffic Conditioning (Policing, Shaping)

* Scheduling

» Statistical Multiplexing of Traffic

Scheduling
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+ Scheduling algorithm determines the order in which
traffic is transmitted
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Designing Networks for Multiplexing Gain
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Designing Networks for Multiplexing Gain

Scheduling By now: The design
space for determi-
nistic guarantees is
well understood.
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Designing Networks for Multiplexing Gain

Scheduling Still open:
Is there an elegant

framework to reason
about statistical
guarantees?
- Statistical
Network
Calculus
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Motivation for our work on statistical network
calculus:

(1) Maintain elegance of deterministic calculus

(2) Exploit know-how of statistical multiplexing




Source Assumptions

Arrivals A{(1,7+) are random processes

Deterministic Calculus:

(A1) Additivity: For any #; <, < t3; we have:
Aty t2) + Aj(ta,t3) = Aj(t1,t3)

(A2) Subadditive Bounds: Traffic A, is constrained by
a subadditive deterministic envelope A”; as follows

Aj(t.t+ 1) <AN(T) VYT

A*=min (Pt,c+pt)

Source Assumptions

Statistical Calculus:

(A1) +(A2)

(A3) Stationarity: The A; are stationary random
variables

(A4) Independence: The A; and A; (i=)) are
stochastically independent

(No assumptions on arrival distribution!)




Aggregating Arrivals

- At t+1
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Flow N———»| AL(3) |

Regulated Buffer
Regulator arvivals with Scheduler

Arrivals from multiple flows: Ac¢ = Z Aj
J

Deterministic Calculus:
Worst-case of multiple flows is sum of the worst-case

of each flow Aot t +7) < ZA;(T)
J

Aggregating Arrivals

Statistical Calculus:

To bound aggregate arrivals we define a function that
is a bound on the sum of multiple flows with high
probability > "Effective Envelope”

« Effective envelopes are non-random functions
- effective envelope ge
Pr{Ac(t,t +71)<Gi(1)} >1—¢ Vi, T
b, e
- strong effective envelope He™

Pr{V[t,t+7] C I;: Ac(r) < H5E(T)} > 1—¢ VI,




Obtaining Effective Envelopes
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Effective vs. Deterministic
Envelope Envelopes

i

A*=min (Pt, o*pt)
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Effective vs. Deterministic
Envelope Envelopes

Traffic rate at + = 50 ms
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Scheduling Algorithms

* Consider a work-conserving scheduler with rate R

» Consider class-q arrival at t with t+d;:

Class-p arrivals from class p which
Are transmitted before tagged arrival.

1
Arrivals from class p
d

q

A 4

P
<

v

I
t—7 /t / t+ Tp
Tagged Limit Deadline of
arrival (Scheduler Dependent) Tagged arrival
+ Tagged arrival has no delay bound violation if

sups > Ao (t—t,t+7,)-R(F+d,) <0
t |5 ’

+
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Scheduling Algorithms

1
Arrivals from class p

o q
<

\ 4

I
t-7 t t+z, t+d,

sup{ZAC (t—f,t+fp)—(f+dq)}30
z > i’

with
FIFO: z, =0.
SP: r,==7 (p>q), 0(p=q), d, (p<q).
EDF: T, = max{— 7,d,—d, }

Admission Control for Scheduling Algorithms

with Deterministic Envelopes:
sup{z Az, +7)- f} <d,
7 p
with Effective Envelopes:
sup{z GC"/Q(TP +7)— ?} <d,
A e

with Strong Effective Envelopes:

SL}p{Z H (e, +1) - r} <d,
r p




Effective vs. Deterministic
Envelope Envelope
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Effective Envelopes and Effective Bandwidth

Effective Bandwidth (Kelly, Chang)

ST

t>0

a(s, ) = sup {i log E[eS(AlHT]—A[t])]}

s,7 € (0,00)

Given a(s,t), an effective envelope is given by

log e

G (r) = Sigg{ra(s,T)—

}




Effective Envelopes and Effective Bandwidth

Now, we can calculate statistical service guarantees
for schedulers and traffic types

Schedulers:

SP- Static Priority
EDF — Earliest
Deadline First
GPS - Generalized
Processor Sharing

Traffic:

Regulated — leaky
bucket

On-Off — On-off
source

Number of Type—2 Flows FBM - Fractional
Brownian Motion

C= 100 Mbps, &= 10-¢

Statistical Network Calculus with Min-Plus Algebra

A(t)

~

/ < delay=W(s)
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‘Eacklog=B(S)_/'_/ K D(t)
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A(t) > D(t)
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S(t)




Convolution and Deconvolution operators

« Convolution operation:
frg®=inr fE-7)+g(7)

7€[0,t]

- Deconvolution operation

f®g®)=sup f(t+7)-g(7)

7€[0,t]

* Impulse function:

oo L, t>T
6T(t)={0 t<r

—~y

Service Curves (Cruz 1995)

A (minimum) service curve for a flow is a function S

such that:
D(t)> A*S(1) ,Vt>0
Examples:
Constant rate service curve: S)=-c-t

Service curve with delay guarantees: S(¢) = 9, (t)




Network Calculus Main Results (Cruz, Chang, LeBoudec)

1. Output Envelope: A" ®S is an envelope for the
departures:

A'®S()> D(t+7) -D(2)

2. Backlog bound: A" ®S(0) is an upper bound for
the backlog B

3. Delay bound: An upper bound for the delay is

Ao = inf (20| V2 0:A"((—d) < S()}

max
7€(0,t]

Network Service Curve (Cruz, Chang, LeBoudec)

Sender Shnet

Traffic
Conditioning

Receiver

Network Service Curve:

If S!, 52 and S3 are service curves for a flow at
nodes, then

Snet = g1 * g2 * g3

is a service curve for the entire network.
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Statistical Network Calculus

A (minimum) service curve for a flow is a function S such
s D(t)> A*S() ,¥t>0

A (minimum) effective service curve for a flow is a
function St such that:

PrlD(t) = A% S (H)]21-¢  ,vt20

Statistical Network Calculus Theorems

. Output Envelope: A ®S° is an envelope for the
departures:

PrlA"®S ()2 D(t+7) -D(D)|21-6 ,¥t,r20

. Backlog bound: A" ®S°(0) is an upper bound for the
backlog

PrlB(t) < A" ® S (0)]21-6 ,Vt=0

. Delay bound: A probabilistic upper bound for the delay
Ay = inf 1420 V120:A"(t—d) < S (1))

7€[0,t]

,i.e., Pr|w()<d, |>1-¢ ,vt>0
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Effective Network Service Curve

Network Service Curve:

If Sle, 52 SHeare effective service curves for a
flow at nodes, then

Pr[D(t) > A*(S* *S* *..xS§"* %5, )t)]=1-Hte/a

/'

Unfortunately, this network service is not very useful!

A "good” network service curve can be obtained by working with
a modified service curve definition

What is the cause of the problem
with the network effective service curve?

Sender Receiver

In the convolution

D*(t) 2 A** 8™ ()= ipf A*(t—-1)+S>(7)
7€[0,t]
the range [0,t] where the infimum is taken is a
random variable that does not have an a priori bound.
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Statistical Per-Flow Service Bounds
Ac

Service available to ‘
aggregate S
Sender Receiver

Given:
Service guarantee to aggregate (S, ) is known
Total Traffic Ac = ZAJ- is known
J

What is a lower bound on the service seen by a
single flow?

Statistical Per-Flow Service Bounds

Ac
Service available to
aggregate S

Sender Receiver

Can show:

T1,
8;‘1+€2 = [S¢ — Heo 62]+

is an effective service curve for a flow where
Te1,e2 is a strong effective envelope and
Tl is a probabilistic bound on the busy period




Effective service curve of a single flow
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Conclusions

« Convergence of deterministic and statistical
analysis with new constructs:

- Effective envelopes
- Effective service curves

* Preserves much (but not all) of the
deterministic calculus
- Open issues:

+ So far: Often need bound on busy period or other
bound on “relevant time scale".

*Many problems still open for multi-node calculus

Adaptive service curves

Modified convolution operation

A%, g(t)= min {g(t'to)aB(to)'i' ,inf A(to,f—T)Jrg(T)}

7€[0,t-t, ]

1 traffic

arrw\als B(ty) \

departures

v

t time




Adaptive service curves

adaptive service curve: D(to, t) > A * S(t)
» Many service curves are adaptive (- Cruz/Okino, LeBoudec) vt,t, >0
* Obtain service curve with t,=0

l-adaptive service curve:  D(z,,£) > A*, S'(¢)
Vt,t, 20,t-1, <|

I-adaptive effective

le
service curve: Pr[D(tO’t) ZA*ta S (t)]z l-¢

Vt,t, 20,t-1, <|

strong (l-adaptive) effective
service curve: Pr[D(lO,l)ZA*tO T“(), Ytt,]cI ]2 l-¢

Effective Network Service Curve

Traffic
Conditioning

A*

Sender Theti3e Receiver
Network Service Curve:

If T"\e, T2\ and T3'<, are strong effective service curves for a
flow at nodes, then

Tnet,l, 3 = T1,I,g * T?,I,s * 7’3,I,8

is a service curve for the entire network.




Recover original effective setwork curve

Given a strong effective service curve T ¢,

If the backlog clears in any time interval of length | with probability €,
, 1.8,

Pr[3t, €[t—1,1]:B¢,)=0]> 1-¢

Then S ™ s an effective service curve




