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Service GuaranteesService Guarantees

Sender
ReceiverSwitch

• A deterministic service gives worst-case guarantees

Delay ≤ d

• A statistical service provides probabilistic guarantees

Pr[ Delay ≥ d ] ≤ ε or Pr[ Loss ≥ l ] ≤ ε
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Multiplexing GainMultiplexing Gain
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Sources of multiplexing gain:
• Traffic Conditioning (Policing, Shaping)
• Scheduling
• Statistical Multiplexing of Traffic

SchedulingScheduling

• Scheduling algorithm determines the order in which 
traffic is transmitted
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By now: The design 
space for determi-
nistic guarantees is 
well understood.
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Still open:
Is there an elegant 
framework to reason 
about statistical 
guarantees? 

Statistical 
Network 
Calculus

Statistical service
Multiple Buckets

Traffic
Characterization/ 
Conditioning

Scheduling

Service /
Admission Control
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Related Work (small subset) Related Work (small subset) 

1985 1990 1995 2000

Deterministic 
network calculus
Cruz, 1991

(min,+) algebra 
for det. networks:
Agrawal et.al. 99
Chang 98
LeBoudec 98

Effective bandwidth 
in network calculus
Chang 94

Effective 
Bandwidth:
J. Hui ’88
Guerin et.al. ’91
Kelly `91
Gibbens, Hunt `91

Motivation for our work on statistical network 
calculus:

(1) Maintain elegance of deterministic calculus

(2)  Exploit know-how of statistical multiplexing 

Service
Curves
Cruz 95
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Source AssumptionsSource Assumptions
Arrivals Aj(t,t+τ) are random processes

Deterministic Calculus:Deterministic Calculus:

(A1) Additivity: For any t1 < t2 < t3, we have: 

(A2) Subadditive Bounds: Traffic Aj is constrained by 
a subadditive deterministic envelope A*

j as follows

with

τ

(P,σ,ρ)

A*=min (Pt,σ+ρt)

Source AssumptionsSource Assumptions

Statistical Calculus:Statistical Calculus:

(A1) +(A2)

(A3) Stationarity: The Aj are stationary random 
variables

(A4) Independence: The Ai and Aj (i≠j) are 
stochastically independent

(No assumptions on arrival distribution!)
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Aggregating ArrivalsAggregating Arrivals

Arrivals from multiple flows: 

Deterministic Calculus:Deterministic Calculus:
Worst-case of multiple flows is sum of the worst-case 
of each flow

Regulated
arrivals

Regulator
Buffer
with Scheduler

Flow 1

Flow N

)(A*
1 τ

)(A*
N τ

C

),(1 τ+ttA
.
.
. ),( τ+ttAN

Aggregating ArrivalsAggregating Arrivals

Statistical Calculus:Statistical Calculus:
To bound aggregate arrivals we define a function that 
is a bound on the sum of multiple flows with high 
probability “Effective Envelope”

• Effective envelopes are non-random functions

• effective envelope        :

• strong effective envelope          :

2000
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Obtaining Effective EnvelopesObtaining Effective Envelopes

with

with 

Effective  vs. Effective  vs. Deterministic Deterministic 
Envelope Envelope EnvelopesEnvelopes

A*=min (Pt, σ+ρt)

Type 1 flows:
P =1.5 Mbps
ρ = .15 Mbps
σ =95400 bits

Type 2 flows:
P = 6 Mbps
ρ = .15 Mbps
σ = 10345 bits

Type 1 flows
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Effective  vs. Effective  vs. Deterministic Deterministic 
Envelope Envelope Envelopes Envelopes 

Traffic rate at t = 50 ms
Type 1 flows

Scheduling AlgorithmsScheduling Algorithms

• Consider class-q arrival at t with t+dq:

• Tagged arrival has no delay bound violation if

0)ˆ(),ˆ(sup
ˆ

≤








+−+−∑
p

qpC dRttA
p

τττ
τ

Class-p arrivals from class p which
Are transmitted before tagged arrival.

Arrivals from class p

Tagged
arrival

Limit
(Scheduler Dependent)

Deadline of
Tagged arrival

τ̂−t t pt τ+
qdt +

qd

• Consider a work-conserving scheduler with rate R
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τ̂−t t pt τ+
qdt +

qd
Arrivals from class p
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ˆ
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with

FIFO:

SP:

EDF:

.0=pτ

q).  (p    ,  )(  0   ,  )(  ˆ <=>−= qp dqpqpττ

{ }.,ˆmax pqp dd −−= ττ

Scheduling AlgorithmsScheduling Algorithms

Admission Control for Scheduling AlgorithmsAdmission Control for Scheduling Algorithms

with Strong Effective Envelopes:

with Effective Envelopes:

with Deterministic Envelopes:

q
p

p
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2000
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Effective  vs. Effective  vs. Deterministic Deterministic 
Envelope Envelope Envelope Envelope 

Statistical multiplexing 
makes a 
big difference

Scheduling 
has small impact

C= 45 Mbps, ε = 10-6

Delay bounds: Type 1: d1=100 ms, Type 2: d2=10 ms, 

Effective Envelopes and Effective Bandwidth Effective Envelopes and Effective Bandwidth 

Effective Bandwidth (Kelly, Chang)

Given α(s,τ), an effective envelope is given by

2002
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Effective Envelopes and Effective Bandwidth Effective Envelopes and Effective Bandwidth 

Now, we can calculate statistical service guarantees 
for schedulers and traffic types

Schedulers:
SP- Static Priority
EDF – Earliest 
Deadline First
GPS – Generalized 
Processor Sharing

Traffic:
Regulated – leaky 
bucket
On-Off – On-off 
source
FBM – Fractional 
Brownian Motion

C= 100 Mbps, ε = 10-6

Statistical Network Calculus with MinStatistical Network Calculus with Min--Plus AlgebraPlus Algebra

...
..

..
......

......
.......

D(t)

A(t)

s

........
... .

backlog=B(s)

delay=W (s)

S(t)

A(t) D(t)
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• Convolution operation:

• Deconvolution operation

• Impulse function:

Convolution and Deconvolution operatorsConvolution and Deconvolution operators

t

f(t)

g(t)

f*g(t)

τ

)()(inf  (t) g  f
t][0,

ττ
τ

gtf +−=∗
∈

)()(sup  (t) g  f
t][0,

ττ
τ

gtf −+=⊗
∈

Service Curves (Cruz 1995)Service Curves (Cruz 1995)

0t, )( S )( ≥∀∗≥ tAtD
A (minimum) service curve for a flow is a function S 

such that:

Examples:

• Constant rate service curve: 

• Service curve with delay guarantees:

 )( S tct ⋅=

(t) )( S dt δ=
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Network Calculus Main Results Network Calculus Main Results (Cruz, Chang,(Cruz, Chang, LeBoudecLeBoudec))

1. Output Envelope: is an envelope for the 
departures:

2. Backlog bound: is an upper bound for 
the backlog B

3. Delay bound: An upper bound for the delay is

SA* ⊗

)( D -  )( D)( SA* ττ+≥⊗ tt

(0) SA* ⊗

{ })()(A:0|0infd *

t][0,
max tSdttd ≤−≥∀≥≥

∈τ

Network Service CurveNetwork Service Curve (Cruz, Chang, (Cruz, Chang, LeBoudecLeBoudec))

Sender
Receiver

Traffic
Conditioning

S3S1
S2

Network Service Curve:

If S1, S2 and S3 are service  curves for a flow at 
nodes, then 

Snet = S1 * S2 * S3

is a service curve for the entire network. 

Snet
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A (minimum) service curve for a flow is a function S such 
that:

A (minimum) effective service curve for a flow is a 
function Sε such that:

Statistical  Network CalculusStatistical  Network Calculus

[ ] 0t, -1  )(  )(Pr ≥∀≥∗≥ εε tAtD S

2001

0t, )( S )( ≥∀∗≥ tAtD

1. Output Envelope: is an envelope for the 
departures:

2. Backlog bound: is an upper bound for the 
backlog 

3. Delay bound: A probabilistic upper bound for the delay 

, i.e., 

Statistical  Network Calculus TheoremsStatistical  Network Calculus Theorems

(0) A* εS⊗

{ })()(A:0|0infd *

t][0,
max tdttd ε

τ
S≤−≥∀≥≥

∈

εS⊗*A

[ ] 0t,, -1  )( D -  )( D)( APr * ≥∀≥+≥⊗ τεττε ttS

[ ] 0t, -1  )0( A)(Pr * ≥∀≥⊗≤ εεStB

[ ] 0t, -1  d)(Pr max ≥∀≥≤ εtW

2001
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Effective Network Service CurveEffective Network Service Curve

Network Service Curve:

If S1,ε, S2 ,ε … SH ,ε are effective service  curves for a 
flow at nodes, then 

.  /Ht-1  )])(  ...   ()([Pr ,,2,1 ≥∗∗∗∗∗≥ atAtD aH
H εδεεε SSS

Unfortunately, this network service is not very useful!
A “good” network service curve can be obtained by working with 
a modified service curve definition

2002

What is the cause of the problem What is the cause of the problem 
with the network effective service curve?with the network effective service curve?

In the convolution 

the range [0,t] where the infimum is taken is a 
random variable that does not have an a priori bound. 

Sender ReceiverS2, εS1, ε

D1 = A2

)()( )(  )( ,22

t][0,

,222
inf ττ ε

τ

ε SS +−=∗≥
∈

tAtAtD

A1 D2
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Statistical PerStatistical Per--Flow Service BoundsFlow Service Bounds

Given:

• Service guarantee to aggregate (SC ) is known

• Total Traffic                         is known

What is a lower bound on the service seen by a 
single flow?

2002

Service available to 
aggregate  SC

Sender Receiver

Statistical PerStatistical Per--Flow Service BoundsFlow Service Bounds

Can show:

is an effective service curve for a flow where
is a strong effective envelope and

is a probabilistic bound on the busy period   

2002

Service available to 
aggregate  SC

Sender Receiver
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Effective service curve of a single flowEffective service curve of a single flow

Type 1 flows:

Bandwidth 
needed by a per-
flow allocation 
to meet a delay 
bound of d=10ms

Number of flows that can be admittedNumber of flows that can be admitted

Type 1 flows:

Goal: probabilistic
delay bound 
d=10ms

2002
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• Convergence of deterministic and statistical 
analysis with new constructs:

• Effective envelopes

• Effective service curves

• Preserves much (but not all) of the 
deterministic calculus

• Open issues:
• So far: Often need bound on busy period or other    
bound on “relevant time scale”. 

•Many problems still open for multi-node calculus

ConclusionsConclusions

Adaptive service curvesAdaptive service curves

Modified convolution operation






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

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time
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arrivals
departures

t00
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Adaptive service curvesAdaptive service curves

adaptive service curve:
• Many service curves are adaptive ( Cruz/Okino, LeBoudec)

• Obtain service curve with  t0=0

)( ),D( 0 tSAtt
ot

∗≥

l-adaptive service curve: )( ),D( 0 tSAtt
ot

l∗≥

l-adaptive effective 
service curve: [ ]  -1 )( ),D(Pr 0 εε ≥∗≥ tAtt

ot
l,S

l≤≥∀ 00 -t0,t, tt

strong (l-adaptive) effective 
service curve: [ ]  -1 ],[   ),(),D(Pr 00 εε ≥⊆∀∗≥ l

l, IT tttAtt
ot

0t, 0 ≥∀ t

l≤≥∀ 00 -t0,t, tt

Effective Network Service CurveEffective Network Service Curve

Sender
Receiver

Traffic
Conditioning

T3,l,εT1,l,ε
T2,l,ε

A*

Network Service Curve:

If T1,l,ε, T2,l,ε, and T3,l,ε, are strong effective service  curves for a 
flow at nodes, then 

Tnet,l, 3ε = T1,l,ε * T2,l,ε * T3,l,ε

is a service curve for the entire network. 

Tnet,l,3 ε
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Recover original effective Recover original effective setworksetwork curvecurve

Given a strong effective service curve T l,ε .

If the backlog clears in any time interval of length l with probability ε1
, i.e, 

Then is an effective service curve

[ ]  -1 0)B(:],[Pr 100 ε≥=−∈∃ tttt l

1εε+ S


