Networks with Deterministic Quality-of-Service Guarantees

Jörg Liebeherr

Department of Computer Science University of Virginia

jorg@cs.virginia.edu

Motivation

 Transmission of video and audio over packet-switched networks.

• Requires new networks and protocols.

Overview

- Background
- Traffic Characterization
- Packet Scheduling
- Conclusions

Quality-of-Service

- Video and audio need Quality-of-Service (QoS) guarantees:
 - delay
 - jitter
 - throughput
 - loss rate
- A deterministic service gives worst-case guarantees.

Multimedia Networks

- Multimedia connections have QoS and traffic parameters.
- Multimedia networks need resource reservation.

Why is Resource Reservation Difficult?

Compressed digital video has a variable bit rate.

 Problem: How do we provide deterministic QoS without peak-rate reservation?

Design Space of a Multimedia Network

What is Traffic Characterization?

- A traffic characterization is a bound for the traffic over any interval.
 - Time-invariant: $A^*(t) \ge A[\tau, \tau + t], \quad \forall t, \tau$
 - Subadditive: $A^*(t_1 + t_2) \le A^*(t_1) + A^*(t_2), \quad \forall t_1, t_2$
- Traffic characterization must map to traffic policer.

The "Leaky Bucket" Traffic Characterization

• Used in: ATM, Integrated-services Internet

Traffic Characterization Problem

- Given a video sequence, how do I select leaky bucket parameters?
- Previous approaches:
 - Candidate Sets (Low and Varaiya 1991).
 - Choose B according to buffer space availability (Pancha and El Zarki 1995).
 - Relative importance of buffer space and bandwidth (Guillemin et. al. 1995).
 - Empirical envelope (Wrege, Knightly, Zhang, and Liebeherr 1996).

Empirical Envelope

- The best possible characterization for a video source is its empirical envelope E^* .
- $\bullet \ E^*(t):=\sup_{\tau\geq 0}A[\tau,\tau+t] \text{, for all } t\geq 0.$
- Difficult to police, expensive to compute.

Our Approach

- ullet Approach: approximate the empirical envelope E^* .
- ullet Use only a subset of E^* .
- Select leaky bucket parameters.

Evaluation

- How much information do we need from the envelope?
- How good is our approximation?

Experimental Setup

- Single 155 Mbps switch.
- Characterize a "typical" MPEG-compressed traffic source.
- Frame pattern: IBBPBBPBBPBB
- Video frames partitioned into 53-byte cells.

How much of E^* do we need?

- 200 points of the envelope are sufficient.
- Empirical envelope has 40,000 points.

How Good is Our Method?

• We plot a normalized utilization $U(d) = \#A^*/\#E^*$.

Design Space of a Multimedia Network **Packet Scheduling Traffic** Characterization **Admission Control**

Packet Scheduling

- A connection j has a delay bound d_j .
- Packet scheduling discipline determines delay.

What is a good scheduler?

Approximate EDF with FIFO queues

Approximations that require no sorting:

- HOL-PJ (Lim/Kobza 1990)
- Relabeling Architecture (Peha/Tobagi 1991)
- Rotating-Priority-Queues (RPQ) (Liebeherr/Wrege 1994)

Rotating-Priority-Queues⁺ (RPQ⁺)

Design Principles:

- \bullet P priority sets.
- ullet 2P FIFO queues with labels.
- ullet Relabel queues every Δ time units.
- One delay bound for each priority set: $d_p = p \cdot \Delta$.

RPQ⁺ Scheduler

RPQ⁺ Queue Rotation

Implementating RPQ⁺ in Shared Memory

- No movement of packets.
- Operations independent of queued packets.

Admission Control Test for RPQ⁺

For all priorities p and all $t \geq d_p$,

$$t \geq \sum_{q=1}^{p-1} \sum_{j \in \mathcal{C}_q} A_j^*(t - d_q + \Delta) + \sum_{q=p}^P \sum_{j \in \mathcal{C}_q} A_j^*(t - d_q) + \max_{r, d_r > t} s_r^{max}$$

Experimental Setup

- Single 155 Mbps switch.
- Three connection groups Low, Medium, High Delay.

		Delay	Burst	
	Index	Bound	Size	Rate
	j	d_{j}	B_{j}	r_{j}
Low	1	12 ms	4,000 cells	10-155 Mbps
Medium	2	24 ms	2,000 cells	10-155 Mbps
High	3	36 ms	4,000 cells	10-155 Mbps

Evaluation

Evaluation

 $\mathsf{RPQ}^+\ (\Delta = 12ms;\ \mathsf{6}\ \mathsf{FIFOs})$

 $\mathsf{RPQ}^+\ (\Delta = 6ms;\ 12\ \mathsf{FIFOs})$

 $\mathsf{RPQ}^+\ (\Delta = 4ms;\ 18\ \mathsf{FIFOs})$ $\mathsf{RPQ}^+\ (\Delta = 3ms;\ 24\ \mathsf{FIFOs})$

Conclusions

- Relax deterministic service.
- Implement RPQ⁺ for IP forwarding.
- Combine advantages of delay schedulers (EDF,RPQ) and rate schedulers (WFQ).

Reading:

```
IEEE/ACM Transactions on Neworking, December 1996.
```

Proc. IEEE Infocom '96, San Francisco, March 1996.

Proc. IEEE Infocom '97, Kove, April 1997.