
1

Jörg Liebeherr, 2002

Protocols for Large
Self-Organizing Peer Networks

Jorg Liebeherr

University of Virginia

Jörg Liebeherr, 2002 March 2002

HyperCast Project

• HyperCast is a set of protocols for large-scale overlay
multicasting and peer-to-peer networking

• Motivating Research Problems:
– How to organize thousands of

applications in a virtual overlay
network?

– How to do multicasting in very
large overlay networks?

2

Jörg Liebeherr, 2002 March 2002

Acknowledgements

• Team:
– Past: Bhupinder Sethi, Tyler

Beam, Burton Filstrup, Mike
Nahas, Dongwen Wang, Konrad
Lorincz, Jean Ablutz

– Current:, Weisheng Si, Haiyong
Wang, Jianping Wang, Guimin
Zhang

• This work is supported in
part by the National Science
Foundation:

D E N A L I

Jörg Liebeherr, 2002 March 2002

Applications with many receivers

Number
of Receivers

Number
of Senders

Streaming
Software

Distribution

10 1,000

1

1,000,000

10

1,000

1,000,000

Collaboration
Tools

Games

Distributed
Information
Systems

Peer-to-Peer
Applications

3

Jörg Liebeherr, 2002 March 2002

Need for Multicasting ?

• Maintaining unicast connections is not feasible
• Infrastructure or services needs to support a “send to group”

Jörg Liebeherr, 2002 March 2002

Problem with Multicasting

• Feedback Implosion: A node is overwhelmed with
traffic or state
– One-to-many multicast with feedback (e.g., reliable multicast)
– Many-to-one multicast (Incast)

NAK
NAK
NAK
NAK
NAK

4

Jörg Liebeherr, 2002 March 2002

Multicast support in the network
infrastructure (IP Multicast)

• Reality Check (after 10 years of IP Multicast):
– Deployment has encountered severe scalability limitations in both the

size and number of groups that can be supported
– IP Multicast is still plagued with concerns pertaining to scalability,

network management, deployment and support for error, flow and
congestion control

Jörg Liebeherr, 2002 March 2002

Overlay Multicasting

• Logical overlay resides on top of the Layer-3 network
• Data is transmitted between neighbors in the overlay
• No network support needed
• Overlay topology should match the Layer-3 infrastructure

5

Jörg Liebeherr, 2002 March 2002

Overlay-based approaches for multicasting

• Build an overlay mesh network and embed trees into the mesh:
– Narada (CMU)
– RMX/Gossamer (UCB)
– many more

• Build a shared tree:
– Yallcast/Yoid (NTT, ACIRI)
– AMRoute (Telcordia, UMD – College Park)
– Overcast (MIT)
– many more

• Build an overlay using a “logical coordinate spaces”:
– Chord (UCB, MIT) not used for multicast
– CAN (UCB, ACIRI)

Jörg Liebeherr, 2002 March 2002

HyperCast Approach

• Build overlay network as a graph with known properties
– N-dimensional (incomplete) hypercube
– Delaunay triangulation

• Advantages:
– Achieve good load-balancing
– Exploit symmetry
– Routing in the overlay comes for free

• Claim: Can improve scalability of multicast and peer-to-
peer networks by orders of magnitude over existing
solutions

6

Jörg Liebeherr, 2002 March 2002

Hypercast Software

Applications organize themselves to form a logical
overlay network with a given topology

No central control
Dynamic membership

hypercube

Delaunay
triangulation

Jörg Liebeherr, 2002 March 2002

Data Transfer

• Data is distributed neighbor-
to-neighbor in the overlay
network

110

010

000 001

011

111

101

7

Jörg Liebeherr, 2002 March 2002

HyperCast Software: Overlay Socket

• Transport
services
in Peer-to-Peer
Networks

• Socket-based API
• UDP or TCP

• Different reliability
semantics

• Implementation
done in Java

• Software available from:
www.cs.virginia.edu/~hypercast

Overlay
Socket

Forwarding Engine Message Store

Overlay Socket Interface

S
ta

tis
tic

s
In

te
rf

ac
e

Messages of
the Overlay
Protocol

Application
Receive
Buffer

Application
Transmit

Buffer

Overlay Node

Overlay Node
Interface

Node Adapter

Adapter Interface

Socket Adapter

Adapter Interface

Application
Messages

Application Program

Network

Jörg Liebeherr, 2002 March 2002

HyperCast Software: Data Exchange

• Each overlay socket has two communication ports:
1. Protocol to manage the overlay (overlay protocol)
2. Data transfer

Data transfer

Overlay protocol
Overlay protocolData transfer

Overlay protocol

Data transfer

8

Jörg Liebeherr, 2002 March 2002

Data transfer

Overlay protocol Overlay protocol

Data transfer

HyperCast Software: Bootstrap

Overlay
server

store
parameters

1st

Configuration file

- Overlay protocol
- TCP or UDP
- etc.

Configuration file

- Overlay protocol
- TCP or UDP
- etc.

load
parameters

2nd

get
parameters

Configuration file

- Overlay protocol
- TCP or UDP
- etc.

Configuration file

- Overlay protocol
- TCP or UDP
- etc.

Overlay ID

Overlay ID ?

load
parameters

Jörg Liebeherr, 2002 March 2002

Data transfer

Overlay protocol Overlay protocol

Data transfer

HyperCast Software: Bootstrap
(without Overlay server)

1st

Configuration file

- Overlay ID
- Overlay protocol
- TCP or UDP
- etc.

Configuration file

- Overlay ID
- Overlay protocol
- TCP or UDP
- etc.

load
parameters

2nd

Configuration file

- Overlay ID
- Overlay protocol
- TCP or UDP
- etc.

Configuration file

- Overlay ID
- Overlay protocol
- TCP or UDP
- etc.

load
parameters

9

Jörg Liebeherr, 2002 March 2002

HyperCast Software: Message Formats

 1 2 3
 1 2 3 4 5 6 7 8 9 0 1 2 3 4 5 6 7 8 9 0 1 2 3 4 5 6 7 8 9 0 1 2
 +-------+---------------+---+---+-------------------------------+
 |Version|LAS|Dmd| Traffic Class | Flow Label | Next Header |
 +-------+---------------+---+---+-------------------------------+
 | OL Message Length | Hop Limit |
 +-------------------------------+-------------------------------+
 | Src LA |
 +---
 | Dest LA |
 +---+

Logical
address size
Delivery mode
(unicast, multicast, flood)

Next
header

QoS

• Common Header of “Overlay Message”:

Message
Length

TTL field Logical address of the sourceLogical address of the
destination (if unicast)
Version

Jörg Liebeherr, 2002 March 2002

HyperCast Software: Message Formats

Next
header
Payload
length

• “Raw” messages

 1 2 3
1 2 3 4 5 6 7 8 9 0 1 2 3 4 5 6 7 8 9 0 1 2 3 4 5 6 7 8 9 0 1 2
+--------------+------------------------------+----------------+
| Next Header | Payload length |///Payload//////|
+--+

Payload

10

Jörg Liebeherr, 2002 March 2002

HyperCast Software: Socket Based API

//Generate the configuration object
OverlayManager om = new OverlayManager(propertyfilename);
String overlayID = om.getDefaultProperty("OverlayID")
OverlaySocketConfig config = new
om.getOverlaySocketConfig(overlayID);

//create an overlay socket
OL_Socket socket = config.createOverlaySocket(callback);

//Join an overlay
socket.joinGroup();

//Create a message
OL_Message msg = socket.createMessage(byte[] data, int length);

//Send the message to all members in overlay network
socket.sendToAll(msg);

//Receive a message from the socket
OL_Message msg = socket.receive();

//Extract the payload
byte[] data = msg.getPayload();

//Generate the configuration object
OverlayManager om = new OverlayManager(propertyfilename);
String overlayID = om.getDefaultProperty("OverlayID")
OverlaySocketConfig config = new
om.getOverlaySocketConfig(overlayID);

//create an overlay socket
OL_Socket socket = config.createOverlaySocket(callback);

//Join an overlay
socket.joinGroup();

//Create a message
OL_Message msg = socket.createMessage(byte[] data, int length);

//Send the message to all members in overlay network
socket.sendToAll(msg);

//Receive a message from the socket
OL_Message msg = socket.receive();

//Extract the payload
byte[] data = msg.getPayload();

Jörg Liebeherr, 2002 March 2002

HyperCast Software: Demo Applications

Distributed Whiteboard Multicast file transfer

11

Jörg Liebeherr, 2002 March 2002

Delaunay Triangulation Overlays

Jörg Liebeherr, 2002 March 2002

0,0 1,0 2,0 3,0

0,1

0,2

0,3

12,0

10,8

5,2

4,9

0,6

Nodes are assigned
x-y coordinates

(e.g., based on
geographic location)

Nodes are assigned
x-y coordinates

(e.g., based on
geographic location)

Nodes in a Plane

12

Jörg Liebeherr, 2002 March 2002

12,0

10,8

5,2

4,9

0,6

The Voronoi region of
a node is the region of
the plane that is closer
to this node than to
any other node.

The Voronoi region of
a node is the region of
the plane that is closer
to this node than to
any other node.

Voronoi Regions

Jörg Liebeherr, 2002 March 2002

The Delaunay
triangulation has
edges between nodes
in neighboring
Voronoi regions.

The Delaunay
triangulation has
edges between nodes
in neighboring
Voronoi regions.

12,0

10,8

5,2

4,9

0,6

Delaunay Triangulation

13

Jörg Liebeherr, 2002 March 2002

An equivalent
definition:
A triangulation such
that each
circumscribing circle
of a triangle formed by
three vertices, no
vertex of is in the
interior of the circle.

An equivalent
definition:
A triangulation such
that each
circumscribing circle
of a triangle formed by
three vertices, no
vertex of is in the
interior of the circle.

12,0

10,8

5,2

4,9

0,6

Delaunay Triangulation

Jörg Liebeherr, 2002 March 2002

α β

A

B

C

D

Locally Equiangular Property

• Sibson 1977: Maximize
the minimum angle

For every convex quadrilateral
formed by triangles ACB and
ABD that share a common edge
AB, the minimum internal angle
of triangles ACB and ABD is at
least as large as the minimum
internal angle of triangles ACD
and CBD.

A

B

C

D

14

Jörg Liebeherr, 2002 March 2002

Next-hop routing with Compass Routing

• A node’s parent in a spanning tree is its neighbor which forms
the smallest angle with the root.

• A node need only know information on its neighbors – no
routing protocol is needed for the overlay.

Root Node

B

A

15°

30°

B is the Node’s Parent

Jörg Liebeherr, 2002 March 2002

12,0

4,9

Spanning tree when node
(8,4) is root. The tree can
be calculated by both
parents and children.

Spanning tree when node
(8,4) is root. The tree can
be calculated by both
parents and children.

0,6

5,2

4,9

12,0

10,8

8,4

15

Jörg Liebeherr, 2002 March 2002

Problem with Delaunay Triangulations

• Delaunay triangulation
considers location of
nodes, but not the
network topology

• 2 heuristics to achieve a
better mapping

Jörg Liebeherr, 2002 March 2002

Hierarchical Delaunay Triangulation

• 2-level hierarchy of Delaunay triangulations
• The node with the lowest x-coordinate in a domain DT

is a member in 2 triangulations

16

Jörg Liebeherr, 2002 March 2002

Multipoint Delaunay Triangulation

• Different (“implicit”) hierarchical organization
• “Virtual nodes” are positioned to form a “bounding box”

around a cluster of nodes. All traffic to nodes in a cluster goes
through one of the virtual nodes

Jörg Liebeherr, 2002 March 2002

Evaluation of Overlays

• Simulation:
– Network with 1024 routers (“Transit-Stub” topology)
– 2 - 512 hosts

• Performance measures for trees embedded in an overlay
network:
– Degree of a node in an embedded tree
– “Relative Delay Penalty”: Ratio of delay in overlay to

shortest path delay
– “Stress”: Number of duplicate transmissions over a

physical link

17

Jörg Liebeherr, 2002 March 2002

Illustration of “Stress” and “Relative Delay Penalty”

AA

BBStress = 2

Stress = 2

Relative delay
penalty for A B: 1.5

1 1

1 1

Unicast delay A B : 4

1
1 1

1

1

1

Delay A B in overlay: 6

Jörg Liebeherr, 2002 March 2002

Transit-Stub Network

Transit-Stub
• GA Tech topology

generator
• 4 transit domains
• 4×16 stub domains
• 1024 total routers
• 128 hosts on stub

domain

18

Jörg Liebeherr, 2002 March 2002

Overlay Topologies

Delaunay Triangulation and variants
– Hierarchical DT
– Multipoint DT

Degree-6 Graph
– Similar to graphs generated in Narada

Degree-3 Tree
– Similar to graphs generated in Yoid

Logical MST
– Minimum Spanning Tree

Hypercube

Jörg Liebeherr, 2002 March 2002

Average Relative Delay Penalty

19

Jörg Liebeherr, 2002 March 2002

90th Percentile of Relative Delay Penalty

Delaunay triangulation

Jörg Liebeherr, 2002 March 2002

Average “Stress”

Delaunay triangulation

20

Jörg Liebeherr, 2002 March 2002

90th Percentile of “Stress”

Delaunay triangulation

Jörg Liebeherr, 2002 March 2002

The DT Protocol

Protocol which organizes members of
a network in a Delaunay
Triangulation

• Each member only knows
its neighbors

• “soft-state” protocol

Topics:
• Nodes and Neighbors
• Example: A node joins
• State Diagram
• Rendezvous
• Measurement Experiments

21

Jörg Liebeherr, 2002 March 2002

Each node sends Hello
messages to its neighbors
periodically

Each node sends Hello
messages to its neighbors
periodically

12,0

5,2

4,9

0,6

10,8HelloHello

H
el

lo

HelloHello

H
ello

HelloHello

HelloHello

H
el

lo

H
ello

HelloHell
o

Jörg Liebeherr, 2002 March 2002

• Each Hello contains the clockwise (CW) and counterclockwise (CCW)
neighbors

• Receiver of a Hello runs a “Neighbor test” (locally equiangular prop.)

• CW and CCW are used to detect new neighbors

• Each Hello contains the clockwise (CW) and counterclockwise (CCW)
neighbors

• Receiver of a Hello runs a “Neighbor test” (locally equiangular prop.)

• CW and CCW are used to detect new neighbors

12,0

5,2

4,9

0,6

10,8

Hell
o

CW
 =

12
,0

CCW
 =

4,9

N
ei

gh
bo

r

5,2 12,0 4,9
4,9 5,2 –

12,0 – 10,8

C
C

W

C
W

Neighborhood Table of 10.8

22

Jörg Liebeherr, 2002 March 2002

A node that wants to join the
triangulation contacts a node
that is “close”

A node that wants to join the
triangulation contacts a node
that is “close”

12,0

10,8

5,2

4,9

0,6

8,4

New node

Hello

Jörg Liebeherr, 2002 March 2002

Node (5,2) updates its Voronoi
region, and the triangulation

Node (5,2) updates its Voronoi
region, and the triangulation

12,0

4,9

0,6

8,4

10,8

5,2

23

Jörg Liebeherr, 2002 March 2002

(5,2) sends a Hello which contains
info for contacting its clockwise and
counterclockwise neighbors

(5,2) sends a Hello which contains
info for contacting its clockwise and
counterclockwise neighbors

Hello

12,0

4,9

0,6

8,4

10,8

5,2

Jörg Liebeherr, 2002 March 2002

12,0

4,9

0,6

(8,4) contacts these neighbors ...(8,4) contacts these neighbors ...

8,4

10,8

5,2

Hello

Hello

12,0

4,9

24

Jörg Liebeherr, 2002 March 2002

12,0

4,9

… which update their respective
Voronoi regions.

… which update their respective
Voronoi regions.

0,6

10,8

5,2

4,9

12,0

8,4

Jörg Liebeherr, 2002 March 2002

12,0

4,9

0,6

(4,9) and (12,0) send Hellos and
provide info for contacting their
respective clockwise and
counterclockwise neighbors.

(4,9) and (12,0) send Hellos and
provide info for contacting their
respective clockwise and
counterclockwise neighbors.

10,8

5,2

4,9

12,0

8,4

Hello

Hello

25

Jörg Liebeherr, 2002 March 2002

12,0

4,9

0,6

(8,4) contacts the new neighbor
(10,8) ...

(8,4) contacts the new neighbor
(10,8) ...

10,8

5,2

4,9

12,0

8,4

He
llo

10,8

Jörg Liebeherr, 2002 March 2002

12,0

4,9

0,6

…which updates its Voronoi region...…which updates its Voronoi region...

5,2

4,9

12,0

10,8

8,4

26

Jörg Liebeherr, 2002 March 2002

12,0

4,9

0,6

…and responds with a Hello…and responds with a Hello

5,2

4,9

12,0

10,8

8,4

He
llo

Jörg Liebeherr, 2002 March 2002

12,0

4,9

This completes the update of the
Voronoi regions and the Delaunay
Triangulation

This completes the update of the
Voronoi regions and the Delaunay
Triangulation

0,6

5,2

4,9

12,0

10,8

8,4

27

Jörg Liebeherr, 2002 March 2002

Rendezvous Methods

• Rendezvous Problems:
– How does a new node detect a member of the overlay?
– How does the overlay repair a partition?

• Three solutions:
1. Announcement via broadcast
2. Use of a rendezvous server
3. Use `likely’ members (“Buddy List”)

Jörg Liebeherr, 2002 March 2002

12,0

10,8

5,2

4,9

0,6

8,4

New node

Hello

Rendezvous Method 1: Announcement via broadcast (e.g.,
using IP Multicast)

Rendezvous Method 1: Announcement via broadcast (e.g.,
using IP Multicast)

28

Jörg Liebeherr, 2002 March 2002

12,0

10,8

5,2

4,9

0,6

Leader Rendezvous
Method 1:
A Leader is a node
with a Y-coordinate
higher than any of its
neighbors.

Rendezvous
Method 1:
A Leader is a node
with a Y-coordinate
higher than any of its
neighbors.

Jörg Liebeherr, 2002 March 2002

12,0

10,8

5,2

4,9

0,6

8,4

New node

Rendezvous Method 2: New node and leader contact a server.
Server keeps a cache of some other nodes
Rendezvous Method 2: New node and leader contact a server.
Server keeps a cache of some other nodes

Server

ServerRequest
Server
Reply
(12,0)

NewNode

Hello NewNode

29

Jörg Liebeherr, 2002 March 2002

12,0

10,8

5,2

4,9

0,6

8,4

New node
with Buddy
List:
(12,0) (4,9)

Rendezvous Method 3: Each node has a list of “likely” members
of the overlay network
Rendezvous Method 3: Each node has a list of “likely” members
of the overlay network

NewNode

Hello NewNode

Jörg Liebeherr, 2002 March 2002

State Diagram of a Node

Leader
without

Neighbor

Leader with
Neighbor

Not
Leader

Leaving

Stopped

Neighbor added
(with smaller coordinates)

All neighbors
leave or timeout

Neighbor added
(with larger coordinates)

All neighbors
leave or timeout

Application starts

A new neighbor with
greater coordinates is added

After removing some neighbor,
this node has largest coordinates

Send Goodbye Send Goodbye

Send
Goodbye

Application
exits

30

Jörg Liebeherr, 2002 March 2002

Sub-states of a Node

Stable Without
Candidate
Neighbor

Stable With
Candidate
Neighbor

Not
Stable

Node contained in NewNode
passes neighbor test

After handling the
candidate neighbor,
node remains stable

After neighborhood
updating, node becomes

 not stable

After neighborhood updating,
node becomes stable.

After neighborhood
updating,

node becomes not stable

• A node is stable when all nodes that appear in the CW and
CCW neighbor columns of the neighborhood table also appear
in the neighbor column

• A node is stable when all nodes that appear in the CW and
CCW neighbor columns of the neighborhood table also appear
in the neighbor column

Jörg Liebeherr, 2002 March 2002

Measurement Experiments

• Experimental Platform:
Centurion cluster at UVA (cluster of 300 Linux PCs)
– 2 to 10,000 overlay members
– 1–100 members per PC

Switch 8

Switch 9

Switch 11

Switch 10

Switch 4

Switch 5

Switch 6

Switch 7

Switch 3

Internet

centurion149-167centurion183
centurion253-255

centurion246
centurion250
centurion251

centurion249
centurion252

centurion168-182
centurion164-187

centurion188-211

centurion228-247centurion128-147

Gigabit Ethernet

31

Jörg Liebeherr, 2002 March 2002

How long does it take to add M members to an overlay network
of N members ?

Experiment: Adding Members

M+N members

Ti
m

e
to

 C
om

pl
et

e
(s

ec
)

Jörg Liebeherr, 2002 March 2002

Experiment: Throughput of Multicasting

Number of Members N

Bandwidth bounds
(due to stress)

Measured
values

Av
er

ag
e

th
ro

ug
hp

ut

(M
bp

s)

100 MB bulk transfer for N=2-100 members (1 node per PC)
10 MB bulk transfer for N=20-1000 members (10 nodes per PC)

32

Jörg Liebeherr, 2002 March 2002

Experiment: Delay

100 MB bulk transfer for N=2-100 members (1 node per PC)
10 MB bulk transfer for N=20-1000 members (10 nodes per PC)

D
el

ay
 o

f a
 p

ac
ke

t (
m

se
c)

Number of Nodes N

Jörg Liebeherr, 2002 March 2002

Summary

• Use of Delaunay triangulations for overlay networks
• Delaunay triangulation observes ‘coordinates” but ignores

network topology
• No routing protocol is needed in the overlay

• Ongoing efforts:
– Use delay measurements to determine coordinates
– HyperCast on handheld devices (iPaQs)
– Enhance data services: “Message Store”

• HyperCast Project website:
http://www.cs.virginia.edu/~hypercast

