Protocols for Large Self-Organizing Peer Networks

Jorg Liebeherr

University of Virginia

Jörg Liebeherr, 2002

HyperCast Project

- HyperCast is a set of protocols for large-scale overlay multicasting and peer-to-peer networking
- Motivating Research Problems:
 - How to organize thousands of applications in a virtual overlay network?
 - How to do multicasting in very large overlay networks?

Jörg Liebeherr, 2002

Acknowledgements

Team:

- Past: Bhupinder Sethi, Tyler Beam, Burton Filstrup, Mike Nahas, Dongwen Wang, Konrad Lorincz, Jean Ablutz
- Current:, Weisheng Si, Haiyong Wang, Jianping Wang, Guimin Zhang
- This work is supported in part by the National Science Foundation:

DENALI

Jörg Liebeherr, 2002

Need for Multicasting?

- · Maintaining unicast connections is not feasible
- Infrastructure or services needs to support a "send to group"

Jörg Liebeherr, 2002

March 2002

Problem with Multicasting

- Feedback Implosion: A node is overwhelmed with traffic or state
 - One-to-many multicast with feedback (e.g., reliable multicast)
 - Many-to-one multicast (Incast)

Jörg Liebeherr, 2002

Multicast support in the network infrastructure (IP Multicast)

- Reality Check (after 10 years of IP Multicast):
 - Deployment has encountered severe scalability limitations in both the size and number of groups that can be supported
 - IP Multicast is still plagued with concerns pertaining to scalability, network management, deployment and support for error, flow and congestion control

Jörg Liebeherr, 2002

March 2002

Overlay Multicasting

- Logical overlay resides on top of the Layer-3 network
- Data is transmitted between neighbors in the overlay
- · No network support needed
- Overlay topology should match the Layer-3 infrastructure

Jörg Liebeherr, 2002

Overlay-based approaches for multicasting

- Build an overlay mesh network and embed trees into the mesh:
 - Narada (CMU)
 - RMX/Gossamer (UCB)
 - many more
- · Build a shared tree:
 - Yallcast/Yoid (NTT, ACIRI)
 - AMRoute (Telcordia, UMD College Park)
 - Overcast (MIT)
 - many more
- · Build an overlay using a "logical coordinate spaces":
 - Chord (UCB, MIT) ← not used for multicast
 - CAN (UCB, ACIRI)

Jörg Liebeherr, 2002

March 2002

HyperCast Approach

- Build overlay network as a graph with known properties
 - N-dimensional (incomplete) hypercube
 - Delaunay triangulation
- Advantages:
 - Achieve good load-balancing
 - Exploit symmetry
 - Routing in the overlay comes for free
- Claim: Can improve scalability of multicast and peer-topeer networks by orders of magnitude over existing solutions

Jörg Liebeherr, 2002

Hypercast Software

- Applications organize themselves to form a logical overlay network with a given topology
 - No central control

- Transport services in Peer-to-Peer Networks
- · Socket-based API
- UDP or TCP
- Different reliability semantics
- Implementation done in Java
- Software available from:

www.cs.virginia.edu/~hypercast

HyperCast Software: Data Exchange

- Each overlay socket has two communication ports:
 - 1. Protocol to manage the overlay (overlay protocol)
 - 2. Data transfer

Jörg Liebeherr, 2002

HyperCast Software: Socket Based API

```
//Generate the configuration object
OverlayManager om = new OverlayManager (propertyfilename);
String overlayID = om.getDefaultProperty("OverlayID")
OverlaySocketConfig config = new
om.getOverlaySocketConfig (overlayID);

//create an overlay socket
OL_Socket socket = config.createOverlaySocket(callback);

//Join an overlay
socket.joinGroup();

//Create a message
OL_Message msg = socket.createMessage(byte[] data, int length);

//Send the message to all members in overlay network
socket.sendToAll(msg);

//Receive a message from the socket
OL_Message msg = socket.receive();

//Extract the payload
byte[] data = msg.getPayload();
```

Jörg Liebeherr, 2002

HyperCast Software: Demo Applications

March 2002

Distributed Whiteboard

Multicast file transfer

Jörg Liebeherr, 2002

Jörg Liebeherr, 2002 March 2002

Locally Equiangular Property

 Sibson 1977: Maximize the minimum angle

For every convex quadrilateral formed by triangles ACB and ABD that share a common edge AB, the minimum internal angle of triangles ACB and ABD is at least as large as the minimum internal angle of triangles ACD and CBD.

Jörg Liebeherr, 2002

Next-hop routing with Compass Routing

- A node's parent in a spanning tree is its neighbor which forms the smallest angle with the root.
- A node need only know information on its neighbors no routing protocol is needed for the overlay.

Jörg Liebeherr, 2002 March 2002

Problem with Delaunay Triangulations

- Delaunay triangulation considers location of nodes, but not the network topology
- 2 heuristics to achieve a better mapping

Jörg Liebeherr, 2002

March 2002

Hierarchical Delaunay Triangulation

- 2-level hierarchy of Delaunay triangulations
- The node with the lowest x-coordinate in a domain DT is a member in 2 triangulations

Jörg Liebeherr, 2002

Multipoint Delaunay Triangulation

- · Different ("implicit") hierarchical organization
- "Virtual nodes" are positioned to form a "bounding box" around a cluster of nodes. All traffic to nodes in a cluster goes through one of the virtual nodes

Evaluation of Overlays

- Simulation:
 - Network with 1024 routers ("Transit-Stub" topology)
 - 2 512 hosts
- Performance measures for trees embedded in an overlay network:
 - Degree of a node in an embedded tree
 - "Relative Delay Penalty": Ratio of delay in overlay to shortest path delay
 - "Stress": Number of duplicate transmissions over a physical link

Jörg Liebeherr, 2002

Unicast delay A→B: 4

Delay A→B in overlay: 6

Relative delay penalty for A→B: 1.5

Jörg Liebeherr, 2002 March 2002

Transit-Stub Network

Transit-Stub

- GA Tech topology generator
- · 4 transit domains
- 4×16 stub domains
- 1024 total routers
- 128 hosts on stub domain

Jörg Liebeherr, 2002

Overlay Topologies

Delaunay Triangulation and variants

- Hierarchical DT
- Multipoint DT

Degree-6 Graph

- Similar to graphs generated in Narada

Degree-3 Tree

- Similar to graphs generated in Yoid

Logical MST

- Minimum Spanning Tree

Hypercube

Jörg Liebeherr, 2002

March 2002

Average Relative Delay Penalty

The DT Protocol

Protocol which organizes members of a network in a Delaunay Triangulation

- Each member only knows its neighbors
- "soft-state" protocol

Topics:

- Nodes and Neighbors
- Example: A node joins
- State Diagram
- Rendezvous
- Measurement Experiments

Jörg Liebeherr, 2002

Rendezvous Methods

Rendezvous Problems

- How does a new node detect a member of the overlay?
- How does the overlay repair a partition?

Three solutions

- 1. Announcement via broadcast
- 2. Use of a rendezvous server
- 3. Use 'likely' members ("Buddy List")

Jörg Liebeherr, 2002

Sub-states of a Node

• A node is **stable** when all nodes that appear in the CW and CCW neighbor columns of the neighborhood table also appear in the neighbor column

Jörg Liebeherr, 2002

March 2002

Measurement Experiments

Experimental Platform:

Centurion cluster at UVA (cluster of 300 Linux PCs)

- 2 to 10,000 overlay members
- 1-100 members per PC

Jörg Liebeherr, 2002

How long does it take to add M members to an overlay network of N members ?

Jörg Liebeherr, 2002

Experiment: Throughput of Multicasting

100 MB bulk transfer for N=2-100 members (1 node per PC)
10 MB bulk transfer for N=20-1000 members (10 nodes per PC)

100 MB bulk transfer for N=2-100 members (1 node per PC)
10 MB bulk transfer for N=20-1000 members (10 nodes per PC)

Summary

- Use of Delaunay triangulations for overlay networks
- Delaunay triangulation observes 'coordinates" but ignores network topology
- No routing protocol is needed in the overlay
- Ongoing efforts:
 - Use delay measurements to determine coordinates
 - HyperCast on handheld devices (iPaQs)
 - Enhance data services: "Message Store"
- HyperCast Project website: http://www.cs.virginia.edu/~hypercast

Jörg Liebeherr, 2002