
1

Denali Retreat, April 2002

Overlay Socket
Tutorial

Denali Retreat, April 2002 D E N A L I

Overview

1. Terminology:
• Overlay socket, overlay

network
2. User perspective:
• The API: Writing programs with

an overlay socket
• Managing Properties of an

overlay network
a) Attributes
b) Property file
c) Starting/Joining an overlay

network
d) Overlay manager

3. Design
• Components of an overlay

socket
• Data Forwarding
• Overlay node
• CO, CL sockets

4. Monitor and control
infrastructure

• Statistics interfaces
• Portal, Manager

2

Denali Retreat, April 2002 D E N A L I

Overlay Socket

• An overlay socket (OL Socket) is an endpoint for
communication in an overlay network

• An overlay socket provides application programs an
interface for communications over an overlay network

• The application programming interface (API) of an OL
Socket offers applications the ability to

• create overlay;
• join and leave existing overlays;
• send data to all or a subset of the members of the overlay

network; and
• receive data from the overlay.

Denali Retreat, April 2002 D E N A L I

Overlay Network

• An overlay network is a collection of overlay sockets (OL Sockets),
where the overlay sockets are connected with an overlay protocol

• In an overlay network, nodes exchange
data with neighbors in the overlay
network

• Data is exchanged using trees that are
embedded in the overlay network

• Each Overlay network has a “unique ID”

• Overlay sockets in the same overlay
network have a common set of
“attributes”

3

Denali Retreat, April 2002 D E N A L I

Unicast and Multicast in overlays

Root
(sender)

Root
(receiver)

Multicast Unicast• Unicast and multicast is
done using trees that are
embedded in the overlay
network.

• Requirement:
Must be able to compute
the child nodes and
parent node with respect
to a given root

Denali Retreat, April 2002 D E N A L I

Socket Based API

//Generate the configuration object
OverlayManager om = new OverlayManager(“hypercast.prop”);
String overlayID = om.getDefaultProperty(“MyOverlayID")
OverlaySocketConfig config = new
om.getOverlaySocketConfig(overlayID);

//create an overlay socket
OL_Socket socket = config.createOverlaySocket(callback);

//Join an overlay
socket.joinGroup();

//Create a message
OL_Message msg = socket.createMessage(byte[] data, int length);

//Send the message to all members in overlay network
socket.sendToAll(msg);

//Receive a message from the socket
OL_Message msg = socket.receive();

//Extract the payload
byte[] data = msg.getPayload();

//Generate the configuration object
OverlayManager om = new OverlayManager(“hypercast.prop”);
String overlayID = om.getDefaultProperty(“MyOverlayID")
OverlaySocketConfig config = new
om.getOverlaySocketConfig(overlayID);

//create an overlay socket
OL_Socket socket = config.createOverlaySocket(callback);

//Join an overlay
socket.joinGroup();

//Create a message
OL_Message msg = socket.createMessage(byte[] data, int length);

//Send the message to all members in overlay network
socket.sendToAll(msg);

//Receive a message from the socket
OL_Message msg = socket.receive();

//Extract the payload
byte[] data = msg.getPayload();

• Tries to stay close to Socket API for UDP Multicast
• Note: This program does not depend on overlay topology

4

Denali Retreat, April 2002 D E N A L I

Some methods of the API

Overlay Operations
• void joinGroup() Starts an attempt to join an overlay network
• leaveGroup() Leaves an overlay

Send an overlay message from this socket:
void sendToAll(m) Sends (multicasts) an application message to all overlay sockets

in the overlay network
void sendToChildren(m, root) Sends an application message to children with respect to an

embedded tree with given root
void sendToAll(m)

Sends an application message to all neighbors
void sendToParent(m, root) Sends an application message to parent node with respect to an

embedded tree with given root
void sendToNode(m, destination)

Sends an application message to a specified node with a given
logical address

void sendFlood(m) Sends an application message using “flooding”, i.e., the message
is forwarded to all neighbors with exception of the node from
which the message was received

Denali Retreat, April 2002 D E N A L I

Reading with/without callbacks

• Synchronous receive
– Receive operation blocks

if there is no data waiting

• Asynchronous receive:
– Application supplies

callback function

Overlay
 Socket

Application
Receive
Buffer

Application Program

RECEIVE()

Overlay
 Socket

Application Program
Callback()

5

Denali Retreat, April 2002 D E N A L I

Summary: API

• API is based on Berkeley Sockets

• Application program can be left unaware of overlay network
topology

• Application only works with the addresses used by the overlay
(logical addresses).
Application does not know transport layer addresses (physical
addresses)

• How does the program know what type of overlay to start or to
join?

Overlay ID and Attributes

Denali Retreat, April 2002 D E N A L I

Overlay ID

• An overlay network is uniquely identified by an overlay
identifier (Overlay ID)
– The overlay ID should be a globally unique identifier, e.g., IP address +

timestamp: “128.143.71.29:997831668759”
– No assumption on specific format of overlay ID
– Uniqueness is not enforced

• Overlay ID is used as a key to access the properties
(“attributes”) of an overlay network

• Overlay ID can be created by application or by a server

6

Denali Retreat, April 2002 D E N A L I

Attributes

• An overlay socket is characterized by a set of attributes that specify the
components of an overlay sockets
– Example:

OverlayID = 224.228.19.78/9472
KeyAttributes = Socket,Node,SocketAdapter
SocketAdapter = TCP
Node = HC2-0

• Attributes are key attributes or configurable attributes
– Key attributes cannot be modified

• The following are always key attributes: OverlayID, KeyAttributes
• Other key attributes are specified as a list in KeyAttributes

– Configurable attributes are “not essential” and can be changed

• Attributes can have subattributes
• Creation of an overlay network ties an overlay ID to a set of key

attributes

Denali Retreat, April 2002 D E N A L I

Property File

This is the Hypercast Configuration File
#
(c) University of Virginia 2001

LOG FILE:
LogFileName = stderr

ERROR FILE:
ErrorFileName = stderr

OVERLAY Server:
OverlayServer =

OVERLAY ID:
OverlayID = 224.228.19.78/9472
KeyAttributes = Socket,Node,SocketAdapter

SOCKET:
Socket = HCast2-0
HCAST2-0.TTL = 255
HCAST2-0.ReceiveBufferSize = 200
HCAST2-0.ReadTimeout = 0

. . .

This is the Hypercast Configuration File
#
(c) University of Virginia 2001

LOG FILE:
LogFileName = stderr

ERROR FILE:
ErrorFileName = stderr

OVERLAY Server:
OverlayServer =

OVERLAY ID:
OverlayID = 224.228.19.78/9472
KeyAttributes = Socket,Node,SocketAdapter

SOCKET:
Socket = HCast2-0
HCAST2-0.TTL = 255
HCAST2-0.ReceiveBufferSize = 200
HCAST2-0.ReadTimeout = 0

. . .

SOCKET ADAPTER:
SocketAdapter = TCP
SocketAdapter.TCP.MaximumPacketLength = 16384
SocketAdapter.UDP.MessageBufferSize = 100

NODE:
Node = HC2-0
HC2-0.SleepTime = 400
HC2-0.MaxAge = 5
HC2-0.MaxMissingNeighbor = 10
HC2-0.MaxSuppressJoinBeacon = 3

NODE ADAPTER:
#
NodeAdapter = UDPMulticast

NodeAdapter.UDP.MaximumPacketLength = 8192
NodeAdapter.UDP.MessageBufferSize = 18
NodeAdapter.UDPServer.UdpServer0 = 128.143.71.50:8081
NodeAdapter.UDPServer.MaxTransmissionTime = 1000
NodeAdapter.UDPMulticastAddress = 224.242.224.243/2424

SOCKET ADAPTER:
SocketAdapter = TCP
SocketAdapter.TCP.MaximumPacketLength = 16384
SocketAdapter.UDP.MessageBufferSize = 100

NODE:
Node = HC2-0
HC2-0.SleepTime = 400
HC2-0.MaxAge = 5
HC2-0.MaxMissingNeighbor = 10
HC2-0.MaxSuppressJoinBeacon = 3

NODE ADAPTER:
#
NodeAdapter = UDPMulticast

NodeAdapter.UDP.MaximumPacketLength = 8192
NodeAdapter.UDP.MessageBufferSize = 18
NodeAdapter.UDPServer.UdpServer0 = 128.143.71.50:8081
NodeAdapter.UDPServer.MaxTransmissionTime = 1000
NodeAdapter.UDPMulticastAddress = 224.242.224.243/2424

• Attributes and their values are stored in a property file (default:
“hypercast.prop”)

7

Denali Retreat, April 2002 D E N A L I

Starting/Joining an overlay network

Overlay
Socket

API of Overlay
Socket

Application Program

API of Overlay
Manager

Overlay
Manager

Configuration file
hypercast.prop

Configuration
Object

API of Confi-
guration Class

In terne t

O verlay server

1. OverlayManager om = new OverlayManager(“hypercast.prop”);
2. String overlayID = om.getDefaultProperty("OverlayID")
3. OverlaySocketConfig config = new om.getOverlaySocketConfig(overlayID);
4. OL_Socket socket = config.createOverlaySocket(callback);
5. socket.joinGroup();

1. Read attributes from property file
2. Match attributes and overlay ID
3. Create configuration object
4. Create overlay socket
5. Join overlay

Denali Retreat, April 2002 D E N A L I

Data transfer

Overlay protocol Overlay protocol

Data transfer

Starting an Overlay

1st

Property file

- Overlay ID
- Overlay protocol
- TCP or UDP
- etc.

Property file

- Overlay ID
- Overlay protocol
- TCP or UDP
- etc.

load
attributes

2nd

Property file

- Overlay ID
- Overlay protocol
- TCP or UDP
- etc.

Property file

- Overlay ID
- Overlay protocol
- TCP or UDP
- etc.

load
attributes

8

Denali Retreat, April 2002 D E N A L I

• Overlay server can help with the management of overlay attributes
– Can generate Overlay IDs
– Can store attributes
– Can respond to queries for attributes
– Can provide access control to attributes

• Overlay server is implemented as a
minimal http server

• Attribute in the property file tells if an overlay
server is used or not

Overlay Server

Overlay
server

Denali Retreat, April 2002 D E N A L I

Data transfer

Overlay protocol Overlay protocol

Data transfer

Starting an Overlay with Overlay server

Overlay
server

attributes

1st

Property file

- Overlay protocol
- TCP or UDP
- etc.

Property file

- Overlay protocol
- TCP or UDP
- etc.

load
attributes

2nd

get
attributes

Property file

- Overlay protocol
- TCP or UDP
- etc.

Property file

- Overlay protocol
- TCP or UDP
- etc.

generate
overlay ID

Overlay ID ?

load
attributes

9

Denali Retreat, April 2002 D E N A L I

Interactions between overlay server and
overlay manager

Overlay
Server

Overlay
Manager

www.cs.virginia.
edu:80

IP:128.143.71.33

C
re

at
e

G
ro

up

http://www.cs.virginia.edu/hypercast/
overlayserver?cmd=create&OverlayID=mygroup&KeyA

ttributes=A,B&A=first&B=second&C=third

OverlayID=mygroup&KeyAttributes=A,B&A=first&B=s
econd&C=third

Te
st

G
ro

up
G

ro
up

Pr
op

er
tie

s

http://www.cs.virginia.edu/hypercast/
overlayserverr?cmd=test&OverlayID=mygroup

Yes/No

http://www.cs.virginia.edu/hypercast/
overlayserver?cmd=prop&Group=mygroup

OverlayID=mygroup&KeyAttributes=A,B&A=first&
B=second&C=third

Denali Retreat, April 2002 D E N A L I

Summary: Managing properties of overlay

• Overlay ID is an (unique) identifiers for an overlay network
• Attributes specify properties of an overlay network
• Property files stores attributes

• Overlay is started from property file
• Attributes of an overlay can be stored at overlay server

– Interface to overlay server uses HTTP and CGI queries

10

Denali Retreat, April 2002 D E N A L I

Some Features

• Design separates overlay maintenance (overlay protocol)
from data transport

• Data transport over UDP or TCP

• Data transport uses formatted messages, modeled after
IPv6

• Current implementation is in Java (SDK 1.2 or higher)

Denali Retreat, April 2002 D E N A L I

Overlay Socket: Components

• Components are
configured when
the overlay socket
is created

• Two transport
level ports are
used:
– Data transfer
– Overlay protocol

Overlay
Socket

Forwarding Engine Message Store

Overlay Socket Interface

S
ta

tis
tic

s
In

te
rf

ac
e

Messages of
the Overlay
Protocol

Application
Receive
Buffer

Application
Transmit

Buffer

Overlay Node

Overlay Node
Interface

Node Adapter

Adapter Interface

Socket Adapter

Adapter Interface

Application
Messages

Application Program

Network

11

Denali Retreat, April 2002 D E N A L I

Separation of overlay protocol from data
transfer
• Each overlay socket has two communication ports:

1. Protocol to manage the overlay (overlay protocol)
2. Data transfer

Data transfer

Overlay protocol
Overlay protocolData transfer

Overlay protocol

Data transfer

Denali Retreat, April 2002 D E N A L I

Overlay Node

• The overlay node adds and maintains the
membership of an overlay socket in an overlay
network

• Overlay nodes runs an overlay protocol (e.g.,
Delaunay triangulation)

– Rendezvous with other overlay nodes using
servers, broadcast or buddy lists

– Overlay exchanges UDP message with neighbors
in the overlay network

OLSocket

Messages of
the Overlay
Protocol

Overlay Node

Overlay Node
Interface

Node Adapter

Adapter Interface

12

Denali Retreat, April 2002 D E N A L I

Overlay Node

• Each overlay node maintains a neighborhood table which
contains a list of its neighbors in the overlay network

• Each entry of a neighborhood table contains:
– the logical address of the neighbor
– physical address of the neighbor

• All overlay protocols that must be able to compute:
Given the logical address of some overlay node R, each
overlay node with logical address A must be able to
compute the logical address of A’s parent and child nodes
in an embedded tree which has R as the root.

Logical
address Physical address

(x, y) 128.143.137.21 / 2233
(a, d) 128.143.71.144 / 2567
… …

OLSocket

Messages of
the Overlay
Protocol

Overlay Node

Overlay Node
Interface

Node Adapter

Adapter Interface

Denali Retreat, April 2002 D E N A L I

Overlay Protocol

• Overlay node is the only
component that knows the
overlay protocol, and the
overlay protocol message
format

• Current overlay protocols have
small finite state machine

OverlayID
Hash ADDR2ADDR1DSTSRCType

14 bytes 14 bytes 14 bytes 14 bytes4 bytes1 byte

• Message format of DT protocol

Leader
without

Neighbor

Leader with
Neighbor

Not
Leader

Leaving

Stopped

Neighbor added
(with smaller
coordinates)

All neighbors
leave or
timeout

Neighbor added
(with larger
coordinates)

All neighbors
leave or
timeout

Application
starts

A new neighbor with
greater coordinates is

added

After removing some neighbor,
this node has largest

coordinates

Send
Goodbye

Send
Goodbye

Send
Goodbye

Application
exits

13

Denali Retreat, April 2002 D E N A L I

Types of Sockets

Application messages are
exchanged as UDP unicast
datagrams between neighbors in
the overlay network.

OLSocket

Messages of
the Overlay
Protocol

Socket Adapter =
TCP Adapter

OLSocket

Messages of
the Overlay
Protocol

Socket Adapter =
UDP Adapter

TCP connections are used to
exchange application messages
between neighbors in the overlay
network

Connectionless (CL) overlay sockets Connection-Oriented (CO) overlay
sockets

Denali Retreat, April 2002 D E N A L I

Unicast and Multicast in overlays

Root
(sender)

Root
(receiver)

Multicast Unicast• Unicast and multicast is
done using trees that are
embedded in the overlay
network.

• Requirement: Overlay
node must be able to
compute the child nodes
and parent node with
respect to a given root

14

Denali Retreat, April 2002 D E N A L I

Logical addresses vs. physical addresses

Overlay
Socket

Forwarding Engine

Overlay Socket Interface

Messages of
the Overlay
Protocol

Application
Receive
Buffer

Overlay Node

Overlay Node
Interface

Node Adapter Socket Adapter

Application
Messages

• Logical address (LA): overlay specific addresses, e.g., coordinates in DT
protocol

• Physical address (PA): transport level address, e.g., IP address + port number

logical, physical

logical

logical (physical)

physicalphysical

Denali Retreat, April 2002 D E N A L I

Forwarding Engine

• Forwarding Engine
performs functions of
a “router”.

• Forwarding Engine
makes forwarding
decisions with logical
addresses

• Forwarding engine
forwards data by
requesting “children”
and “parent” in a tree
with respect to a “root”

Overlay
Socket

Forwarding Engine

Overlay Socket Interface

Messages of
the Overlay
Protocol

Application
Receive
Buffer

Overlay Node

Overlay Node
Interface

Node Adapter Socket Adapter

Application
Messages

getChildren (root)
getParent (root)
getPA(node)

15

Denali Retreat, April 2002 D E N A L I

Send

SendToAll(Data) {

// Build the message

// Get the list of children from
overlay node

// Get physical address of children

// Send message to children nodes

}

S
en

d

S
en

d

S
en

d

S
en

d

Sen
d Send

Denali Retreat, April 2002 D E N A L I

Receive and Forward

OL_Forward() {
// 1. Forward packet
// Determine the children in the tree
// Send datagram to children nodes

// 2. Pass packet on to application
if (UpCallFunction available)

CallBackforReceive.
receiveMessage (RecvdDatagram.Data);

else
ApplRecvBuffer.Write(RecvdDatagram.Data);

}

S
en

d

S
en

d

S
en

d

S
en

d

Sen
d Send

16

Denali Retreat, April 2002 D E N A L I

Message Formats

OL PayloadOL HeaderOL Message

AD RAW

ADF
Message

Control

Application Data (AD)

ADF Message
Header ADF Message Payload

ADF Stream
Header ADF Stream Payload

AD Raw Payload

Control Payload

ADF Stream

RAW
Header

Denali Retreat, April 2002 D E N A L I

OL Header

 1 2 3
 1 2 3 4 5 6 7 8 9 0 1 2 3 4 5 6 7 8 9 0 1 2 3 4 5 6 7 8 9 0 1 2
 +-------+---------------+---+---+-------------------------------+
 |Version|LAS|Dmd| Traffic Class | Flow Label | Next Header |
 +-------+---------------+---+---+-------------------------------+
 | OL Message Length | Hop Limit |
 +-------------------------------+-------------------------------+
 | Src LA |
 +---
 | Dest LA |
 +---+

• Common Header of “Overlay Message”:

Version (4 bit): Version of the protocol (current Version is 0x0)
LAS (2 bit): Size of logical address field
Dmd (4bit) Delivery Mode (Multicast, Flood, Unicast, Anycast)
Traffic Class (8 bit): Specifies Quality of Service class (default: 0x00)
Flow Label (8 bit): Flow identifier
Next Header (8 bit) Specifies the type of the next header following this header
OL Message Length (8 bit) Specifies the type of the next header following this header.
Hop Limit (16 bit): TTL field
Src LA ((LAS+1)*4 bytes) Logical address of the source
Dest LA ((LAS+1)*4 bytes Logical address of the destination

Loosely modeled after IPv6
minimal header with extensions

17

Denali Retreat, April 2002 D E N A L I

Message Formats: “Raw Message”

· Payload Length: Length of the Payload field in bytes

 1 2 3
1 2 3 4 5 6 7 8 9 0 1 2 3 4 5 6 7 8 9 0 1 2 3 4 5 6 7 8 9 0 1 2
+--------------+------------------------------+----------------+
| Next Header | Payload length |///Payload//////|
+--+

Denali Retreat, April 2002 D E N A L I

Monitor and Control Infrastructure

• Loosely modeled after SNMP, but more modern

– Each Socket component collects statistics
– Statistics are accessible via a statistics interface
– Statistics are accessed at a portal by a monitor
– Monitor and portal send queries and responses in XML

messages

18

Denali Retreat, April 2002 D E N A L I

Statistics Interface

• Each component of socket
provides statistics

• Statistics are accessed
and changes with 3 calls:
– getStat()
– setStat()
– getSchema()

• All parameters are strings

• Statistics have an hierarchical
structure

OLSocket

Forwarding Engine

Overlay Socket Interface

St
at

is
tic

s
In

te
rf

ac
e

Messages of
the Overlay
Protocol

Application
Receive
Buffer

Overlay Node

Overlay Node
Interface

Network Adapter

Adapter Interface

Network Adapter

Adapter Interface

Application
Messages

mySocket.getStat
("Node.Heartbeat")

St
at

is
tic

s
In

te
rf

ac
e

St
at

is
tic

s
In

te
rf

ac
e

St
at

is
tic

s
In

te
rf

ac
e

Statistics
Interface

Statistics
Interface

myNode.getStat
("Heartbeat")

"10"
"10"

Denali Retreat, April 2002 D E N A L I

Naming of statistics

• Statistics are given as name-value
pairs:
(“mySocket.Node.Heartbeat”, “20”)
indicates that 20 is the value of
Heartbeat in the overlay node
component of an overlay socket.

• Calling
mySocket.getStat(“Node.Heartbeat”)
to the overlay socket requests the value
of the statistics “Heartbeat” in the
overlay node component of an overlay
socket with name “mySocket”

AdapterNode

OL Socket

RecvBuf Config

Adapter

19

Denali Retreat, April 2002 D E N A L I

XML

• When transmitted over the network all statistics requests and changes are
sent as XML documents

• 3 types of XML messages: GetValue, SetValues, GetSchema
• We use schemas to describe format of documents
• Possible interaction:

– What statistics do you have (“GetSchema”)
– Look at schema and ask for specific value (“GetValue”)

MonitorUser

User
interface

commands

XML
messages

in DOM tree
format

XML

XML
Socket

XML
Socket Portal

I_Stats
requests

DOM tree
+ Seqence

#

Overlay
SocketNetwork

Denali Retreat, April 2002 D E N A L I

Comparison with SNMP

Portal
Monitor

Schema
Hierarchical names

XML messages

Agent
Monitor
MIB
Object identifier
SNMP protocol

20

Denali Retreat, April 2002 D E N A L I

Running and Monitoring Experiments

Portal

OL_Socket

Special Test
Application

Testing
Socket

Messages

Process
Boundary

OL_Socket

Stats
Interface

Stats
Interfaces

Monitor
XML messages

over UDP

Denali Retreat, April 2002 D E N A L I

Running and Monitoring Experiments

Monitor Portal OL_Socket

Application
Code

XML messages
over UDP

Monitoring

Socket
Messages

Process
Boundary

Stats
Interface

Send,
Receive

21

Denali Retreat, April 2002 D E N A L I

Dynamic Discovery of Monitors

Run ServerRun Server

Run ServerRun Server

Run ServerRun Server

Run ServerRun Server

Run
Controller

Run
Controller

PortalList
Manager

PortalList
Manager

AdvertiseRS (1)

AliveRC (2)

AliveRS (3)

