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Disclaimer

* This talk makes a few simplifications

- Please see papers for complete results
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Packet Switch
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Fixed-capacity links

Variable delay due to waiting time in buffers
Delay depends on

1. Traffic

2. Scheduling

Network




Simplified Network

Cross Cross Cross
traffic traffic traffic

Through
flow

+ Sequence of buffered links with fixed capacity

Traffic Arrivals

MPEG-Compressed Video Trace
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* Traffic arrivals in time interval (s;t1is A(s,t)




Regulated Arrivals

Flow 1 ——»IE AL+ T)\
‘ ™~ (Cr—
. A (1,1 +7) A =
FlowN——] E,(7) | iRRE? o
Flows are Regulated Buffered Link
shaped arrivals

Traffic A; is constrained by an envelope E; such that:
E(t —s) > sup {A(s, 1)}
s<t

Popular envelope: “leaky bucket”
E(s)=min(P s, o+ p s)

What is the maximum number of
regulated flows with delay
requirements that can be put on a
single buffered link?

* Link capacity C
+ Each flows j has

A~ E;
+ arrival function A; \ 4@><
* envelope £; s P

* delay requirement d,




First-In-First-Out

Static Priority (SP)

+ Blind Multiplexing (BMux):
All "other traffic" has higher priority




Earliest Deadline First (EDF)

23

a;=10
=20
a3=30

Optimal scheduler with respect to posed question.

Scheduling Algorithms

* Consider a work-conserving scheduler with rate C
* Consider arrival from flow i at ¢ with ¢+d:

|
Arrivals from flow
d;
[ >
-y P s A t+d;
Tagged Limit Deadline of

arrival (Scheduler Dependent) Tagged arrival




Scheduling Algorithms

< >

[
| Arrivals from flow j

-y t t+ Ay t_|_dl.

sup{E At -y, t+A,)-C(y+ d,.)} <0

with YUY

FIFO: A, =0.

Static Priority: A, = — o0 (higher) , 0 (higher) , d, (higher).

Condition for meeting a delay bound

We have: 4,(¢,1+7T) < E,(7) Vi, V.

Therefore:

An arrival from class i never has a delay bound
violation if

sup{z E, (y+Aj)- Cy} =< (d,
T

Condition is tight, when EJ. is concave




Numerical Result (Sigmetrics 1995)
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Statistical Multiplexing Gain

Without statistical multiplexing

Wor:
orst Flow 1

case Flow 2 || || | || |||

arrivals  Flow 3

Time
o0

=}
Worst-case =
backlog 2

What is the maximum number of
flows with delay requirements that
can be put on a buffered link and
considering statistical multiplexing?

Arrivals A;(t,t+ 7) from a flow / are a random
process

Stationarity: The A; are stationary random
processes

Independence: The A; and A;(i 7 j) are
stochastically independent
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Envelopes for random arrivals

Statistical envelope bounds arrival from flow j with
high certainty

- Statistical envelope G :

Pr{A(s,t) > Gt —3s)+ o} <e(o) Vs,t

. Statistical sample path envelope H
Pr{sup{A(s,t) —H(t—3s)} >0} <e(o)
s<t

Statistical envelopes are non-random functions

Statistical Multiplexing Gain

Resources needed Resources needed
to support to support
<<N-
guarantees guarantees
for N flows for1flow

Multiplexing gain is the raison d'étre for packet networks.

Arrivals from group of flows:  A¢ = ) A;
J

Deterministic envelope: Ec =) E;
J

Statistical envelope: Ge <> G << Eg
J
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Statistical envelope for group of indepenent
(shaped) flows

- Exploit independence and extract statistical
multiplexing gain when calculating 9¢

For example, using the Chernoff Bound, we can
obtain

Ge(t) = inf E(Z log M (s,t) —loge)
s>0 s jec

pjt
E;(t)

M;(s,t) = 1+ (esEi) _ 1)

Statistical vS. Deterministic
Envelope Envelopes (JSAC 2000)
E(T) :min (PT' G+p1.) //l Peak Rate

= ’/ (Deterministic Envelope)
Type 1 flOWS: ésa— //l:/
P =15 Mbps :
p = 15 MbPS § ’ statistical
0295400 bits envelopes

Type 2 flows:

P =6 Mbps
p = _15 Mbps % 1‘0 2 30 x?‘c %0 £ 7 % % 100
o= 10345 bi_rs Time Interval (ms)

Type 1 flows
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Statistical vs. Deterministic

Envelope Envelopes (JSAC 2000)
Traffic rate at + = 50 ms
Type 1 flows
Peak Rate
& lof
oy Strong Effective Envelope ——
2 Effective Envelope  — — -
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Number of connections

Scheduling Algorithms

Work-conserving scheduler with
unit rate that serves Q classes

Class-q traffic has delay bound d,
Scheduling algorithm

Ny 1

|:—>
— £ —~

Scheduler

Deterministic Service

Never a delay bound violation if: Delay bound violation with € if:

sup {Z Ec,(Agp+ Cs) — s} < Cdg] |sup {ZHCP(AQP +Cs) — s} < Cdy
P J s %

Statistical Service
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Number of Terminator connections

Statistical Multiplexing vs. Scheduling (7s4c 2000)

Example: MPEG videos with delay constraints at C= 622 Mbps
Deterministic service vs. statistical service (¢ = 10-9)

2500

.S'I;; . . X dTermina'for: 100 ms
‘ﬁé’gp‘, Thick lines: EDF Scheduling dimp=10 ms
Yo Dashed lines: SP scheduling 1

20001

Statistical multiplexing
makes a big difference

15001

Scheduling
has small impact
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More interesting traffic types

+ So far: Traffic of each flow was regulated
* Next:

+ On-Off traffic

- Fraction Brownian Motion (FBM) traffic

o
&
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Approach:

Exploit literature on
Effective Bandwidth

Derived for many traffic
types
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Statistical Envelopes and Effective Bandwidth

Effective Bandwidth (Kelly 1996)

a(s, 7) = sup {i log E[eS(A(t-FT)—A(t))]}
t>0 \sT

5,7 € (0,00)

Given a(s,7), an effective envelope is given by

G°(r) = inf{ra(s,7) -

log e

}

Statistical Envelopes and Effective Bandwidth (Ton 2007)

Comparisons of statistical service guarantees for
different schedulers and traffic types

Number of Type—2 Flows

e= 10-¢

Schedulers:

SP- Static Priority
EDF — Earliest
Deadline First
GPS — Generalized
Processor Sharing

Traffic:

Regulated — leaky
bucket

On-Off — On-off
source

FBM - Fractional
Brownian Motion
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Delays on a long path with multiple
hodes:

* Role of Scheduling
* Impact of Statistical Multiplexing

* How do delays scale?
+ Does scheduling still matter in a large network?

Deterministic Network Calculus /3

* Cruz, Chang, A
LeBoudec (90's)

* Worst case delay o delay=W(s) =/

and backlog ‘:}amOg:B(S) SN
bounds for fluid : - >0
flow traffic )

A(t) ‘ D(t)

S(t)




Deterministic Network Calculus @/3

Worst-case view of
- arrivals: A(s,t)

< G(t—s) A
+ service: D(t) > Ax S’(t} arrivals departures

S

Implies worst-case bounds
+ backlog: B(t) < G©S(0)
« delay: W(t) < inf{d | G(s) <S(s+d) Vs> 0}

(min+) formulation with

+ convolution operator:
Frg@) = Jinf (f(s)+9(t—s))

0<s<
+ deconvolution operator:

fog(t) =sup(f(t+s)—g(s))
s>0

D

Deterministic Network Calculus ¢/3

Main result:

- If S!, S2 and S3 describes the service at each node, then
Sret = §1 * 52 * §3 describes the service given by the
network as a whole.

D D
Snet
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Stochastic Network Calculus

Probabilistic view on arrivals and service
+ Statistical Sample Path Envelope
Pr(Vs <t:A(s,t) > H(t—s)) <e

- Statistical Service Curve
Pr(D(t) < AxS8()) <e

Results on performance bounds carry over, e.g.:
* Backlog Bound
Pr(B(t) > H® S8(0)) <e

Stochastic Network Calculus

Hard problem: Find S™! so that s7¢t — S1 48524

Technical difficulty:

N N

D2(t) = oInf, (A%(s) + 8%(t - 9))

= A?(sg) + S3(t — s0) —— spisa
At 8 (s0) + 8(t - s0) random
AL« 814 82(1) variablel

x SH
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Statistical Network Service Curve (sigmetrics 2005)

* Notation: S_5(t) = S(t) — it

* Theorem: If S!,S2,...,8 are statistical service
curves, then for any é > 0:

S"t = ST« 85w x STy 1y

is a statistical network service curve with some
finite violation probability.

EBB model

* Traffic with Exponentially Bounded Burstiness
(EBB)

P(A(s,t) —p(t —s) >0) < Me™*°

for constants M, a
+ Envelope:  G(t;0) =pt, e(o)=Me 7

+ EBB model gives closed bounds for E2E delays.
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Example: Scaling of Delay Bounds

Cross Cross Cross
Flows Flows Flows
Through
i | Flows
»| Node 1 »| Node 2 4; 4,' NodeH[— 0
Through
Flows
Cross Cross Cross
Flows Flows Flows

« Traffic is Markov Modulated On-Off Traffic
(EBB model)

+ Fixed capacity link
* Through flow has lower priority

Compare delay with network service curve to a summation of per-node
bounds

Example: Scaling of Delay Bounds  (Sigmetrics 2005)

Peak rate: P = 1.5 Mbps + € =100 Mbps
Average rate: p = 0.15 Mbps * Cross traffic = through traffic
T=1/u+ 1/A = 10 msec - ¢=10"°
1000 ;
900F ; Addition of per-
800l \D X !,-" adding per-node node bounds
200 ?? 8/ festls grows O(H3)
r i 0}
D s00. S Network service
g j curve bounds
e A , grow O(H log H)
] }'l with network service curve

300

2000 =50%
1000 / ,
L e U=10%
= 4 t T T T 1 I
% 10 20 30 40 5 60 70 8 90 100

Total nodes H
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Result: Lower Bound on E2E Delay (Infocom 2007)

+ Tandem network of M/M/1 queues with identical
service times

Wh is the E2E delay for H queues

Theorem: E2E delay Wr satisfies forall 0 <z <1

P?“(WH <mvH |09(72H)) <z

Corollary: z-quantile w (z) of Wy satisfies
wy(z) = QL(Hlog H)

Numerical examples

Node 1 Node 2
—_— > —_— . —

Through
flow

Node H

+ Tandem network without cross traffic
* Node capacity: C
* Arrivals are compound Poisson process
- Packets arrival rate: A
- Packet size: Y; ~ exp(p)
- Utilization: p =X/ (pC)
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Upper and Lower Bounds on E2E Delays (Infocom 2007)

501 .

- = =Upper bound e Capacity
— Simulation e .
a0(| -~ Lower bound e C =100 Mbps

Mean packet size
% = 400 Bytes

Delay (ms)

Load factor
p=90%

Violation probability
e=10"°

10 20 30 40 50
Number of nodes

> Delays in Networks scale as 2(H log H)

Superlinear Scaling of Network Delays

+ For traffic satisfying "Exponential Bounded
Burstiness”, E2E delays follow a scaling law of
©(H log H)

+ EZ2E delays indeed scale differently
than worst-case delays

than delays with independent cross traffic
and service times
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Can we compute scaling of delays for
very difficult traffic ?

Heavy-Tailed Self-Similar Traffic

- A heavy-tailed process X satisfies

Pr(X(t) >z)~ Kx™¢

W<a<?2

- A self-similar process satisfies
X () ~gist =" X (at)

a>0
H € (0, 1) Parameter

23



End-to-End Delays

Cross Cross Cross
traffic traffic traffic
, [ Node , [ Node _ [ Node L
Through > 4 > 5 eoe > H >
traffic

| Exponentially bounded traffic
" | ©(Nlog N)
(Sigmetrics 2005, Infocom 2007)

v

] Worst-case delays
1eN)
(e.g., LeBoudec and Thiran 2000)

End-to-end delay bound

Number of nodes (N)

htts Traffic Envelope

Heavy-tailed self-similar (htss) envelope:

— _/

~

Gg(t—s;0) e(o)

Main difficulty: Backlog and delay bounds require
sample path envelopes of the form

Pr(supg<¢ {A(s,t) = G(t—s;0)} > 0) <e(o)

Key contribution (not shown):
Derive sample path bound for htss traffic
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Example: Pareto Traffic

Size of i-th arrival: Pr(X;,>xz) = <%> e
x>b
i N() l<a<?2
Arrivals are evenly spaced
with gap \: A(t) = Z Xi
=1

With Generalized Central ~ 1/a
Limit Theorem ... A) = ALE [X] + ca(At)

.. and tail bound Pr(Sq > o0) ~ (cao)™@
a-stable

distribution

... we get htss envelope G(t:0) = ME[X]t+ otl/a

e(c) = o @

Example: Envelopes for Pareto Traffic (tnfocom 2010)

Parameters:
a = 16 w00l

b = 150 Byte
A = 75 Mbps

X
htss trace

300+

2
£
. 2 200}
Comparison of envelopes: ¢
htss GCLT envelope ~ ~ -
Average rate 00| TR L
. e htss GCLT ...
Trace-based = et

+ deterministic envelope I

- a\‘m‘:{go rate
htts trace envelope o 200 400 500 500 7000
Time (ms)




Single Node Delay Bound

* htss envelope:

- ht service curve: S(

A~gG

+ Delay bound:

G(t;o) = rt+ ot

e(c) = Ko™ ©

to) = [Rt—o]4
e(o) = Lo P

S(t)—»

Pr(W(t) > w) < M(Rw)~ Mina(l-H),5}

Example: Node with Pareto Traffic (Infocom 2010)
Traffic parameters: e
8 = 1 . 6 - ."’~r.,_lggpe1' bound

b — 150 Byt@ e simulations

A = 75 Mbps

Node:
Capacity €=100 Mbps
with packetizer
No cross traffic

Pr(Wd(t) > w)

Compared with:

s

Lower bound from 075
Infocom 2007

Simulations
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Example: Nodes with Pareto Traffic (End-to-end)

Parameters:
N=1,2,4,8

Pr(W(t) > w)

Compared with:

+ Lower bound from
Infocom 2007

Simulation traces of 108

packets

Tllustration of scaling bounds  (znfocom 2010)

a+1 1
Upper Bound: O (No—1(log N)a—1)
Lower Bound: ©(Na-T)

Upper a=15
Bound

6 (N log N)
e (N)

End-to-end delay bound

L L !

14 16 18 20

8 10 12
Number of nodes (N)
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Bring back scheduling

So far: He
Through traffic has lowest |
priority and gets leftover c
capacity N

- Leftover Service S; = [Ct - Hc(t)]_|_

or Blind Multiplexing

How do end-to-end delay bounds look
like for different schedulers?

Does link scheduling matter on long
paths?

Service curves vs. schedulers

« How well can a service curve describe a scheduler?
2 | 1
B — = —(&)—

* For schedulers considered earlier, the following is
ideal:

Sj(t;0) = [Ct —Hc(t — 0+ A ()] I(t > 6)

with indicator function I(expr) and parameter ¢ >0
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Example: End-to-End Bounds

Cross Cross Cross
Flows Flows Flows
Through
i | Flows
»| Node 1 »| Node 2 4; 4,' NodeH[— 0
Through
Flows
Cross Cross Cross
Flows Flows Flows

« Traffic is Markov Modulated On-Off Traffic
(EBB model)

+ Fixed capacity link

Example: Deterministic E2E Delays (IEDCS 2010)

Peak rate: P = 1.5 Mbps * €=100 Mbps
Average rate: p = 0.15 Mbps

500 \ T .
%+ Upper bound (optimization)
- = =Upper bound (closed—form)
400+ — Lower bound

300

200

100

End-to-end delay bound (ms)

20

10
Path length (H)
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Example: Statistical E2E Delays (ICDCS 2010)

* Peak rate: P = 1.5 Mbps + € =100 Mbps
Average rate: p= 0.15 Mbps * £° 10°

500 . 7 . —
% New convolution (optimization)

- = =New convolution (closed—form)
400} — Existing convolution

300

200

100

End-to—end delay bound (ms)

Example: Statistical Output Burstiness (rcocs 2010)

Peak rate: P = 1.5 Mbps - C= 1009Mbps
Average rate: p = 0.15 Mbps * ¢=10°
3500 i
mmmm H=5
3000} g H = 10
2500} = H=15
3 —3 H=20
< 2000}
(2]
[%2]
[0}
£ 1500t
(2]
5
@ 1000}
500 =
[oX
- B |
0 'Iﬂ\ Q )
> ey /\0 P /\ //Q _x X;\ \0
b/ bé b/ b b/ bé 7/,(




Conclusions

Requirements

Queueing Effective
networks bandwidth

Network
calculus

Stochastic
network
calculus

s Sases i | Limited | Broad | Broad | Broad
Scheduling Limited No Yes Yes
ﬁooihﬁ;u;:;;;‘ S li:'/nei:Z d fhrtzzshlpu + Deterministic Yes
ASAL(;I::ESSLQ Some Yes No Yes
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