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•  This talk makes a few simplifications  

•  Please see papers for complete results 
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•  Fixed-capacity links 
•  Variable delay due to waiting time in buffers 
•  Delay depends on 

1.  Traffic  
2.  Scheduling 
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•  Sequence of buffered links with fixed capacity 

•  Traffic arrivals in time interval (s,t] is 

Peak rate 

Mean rate 
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Regulated 
arrivals 

Flows are 
shaped 

Buffered Link 

Flow 1 

Flow N 

C 
. 
. 
. 

Traffic       is constrained by an envelope        such that:  

Popular envelope: “leaky bucket” 

•  Link capacity C 
•  Each flows j has 

•  arrival function Aj  

•  envelope Ej 

•  delay requirement dj 

What is the maximum number of 
regulated flows with delay 
requirements that can be put on a 
single buffered link? 
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•  Blind Multiplexing (BMux):  
 All “other traffic” has higher priority 
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Optimal scheduler with respect to posed question.  

• Consider arrival from flow i at t with t+di: 

• Tagged arrival departs by t+di if 

Arrivals from flow j 

Tagged 
arrival 

Limit 
(Scheduler Dependent) 

Deadline of 
Tagged arrival 

• Consider a work-conserving scheduler with rate C 
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Arrivals from flow j 

with 

FIFO: 

Static Priority: 

EDF: 

We have: 

An arrival from class i never has a delay bound 
violation if 

Therefore: 

Condition is tight, when Ej is concave 
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C = 45 Mbps 

MPEG 1 traces: 

Lecture: 
d = 30 msec 

Movie  
(Jurassic Park): 
d = 50 msec 

Type 1 flows 

strong  
effective 
envelopes 

EDF 
Static Priority 

(SP) Peak Rate 

Deterministic 
worst-case 

Expected  
case 

Probable worst-
case 
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Flow 1 
Worst 
case 
arrivals 

Flow 2 
Flow 3 

Time 

Without statistical multiplexing 

B
ac

kl
og

 

Worst-case 
backlog 

Flow 1 
Flow 2 
Flow 3 

Time 

B
ac

kl
og

 

Arrivals 

With statistical multiplexing 

Backlog 

What is the maximum number of 
flows with delay requirements that 
can be put on a buffered link and 
considering statistical multiplexing? 

 Arrivals                      from a flow j  are a random 
process 

•  Stationarity: The      are stationary random 
processes 

•  Independence: The      and                   are 
stochastically independent 
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Statistical envelopes are non-random functions 

Statistical envelope bounds arrival from flow j with 
high certainty 

Multiplexing gain is the raison d’être for packet networks. 
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E(t) =min (Pt, σ+ρt) 

Type 1 flows: 
P =1.5 Mbps 
ρ = .15 Mbps 
σ =95400 bits 

Type 2 flows: 
P = 6 Mbps 
ρ = .15 Mbps 
σ = 10345 bits 

Type 1 flows 

statistical 
envelopes 
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Traffic rate at t = 50 ms 
Type 1 flows 

•  Work-conserving scheduler with  
unit rate that serves Q classes 

•  Class-q traffic has delay bound dq 
•  Scheduling algorithm 

Scheduler 

€ 

EQ (s)

. 

. 

. 

Deterministic Service 
Never a delay bound violation if: 

Statistical Service 
Delay bound violation with      if: 
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Statistical multiplexing  
makes a big difference 

Scheduling  
has small impact 

Example: MPEG videos with delay constraints at C= 622 Mbps 
    Deterministic service vs. statistical service (ε = 10-6)   

Thick lines: EDF Scheduling 
Dashed lines: SP scheduling 

dterminator=100 ms  
dlamb=10 ms 

•  So far: Traffic of each flow was regulated  
•  Next:  

•  On-Off traffic 
•  Fraction Brownian Motion (FBM) traffic  

Approach:  
•  Exploit literature on  

Effective Bandwidth  
•  Derived for many traffic  

types 

Peak rate 

Mean rate 

effective 
bandwidth 
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Effective Bandwidth (Kelly 1996) 

Given          , an effective envelope is given by 

Comparisons of statistical service guarantees for 
different schedulers and traffic types 

Schedulers: 
SP- Static Priority 
EDF – Earliest 
Deadline First 
GPS – Generalized 
Processor Sharing 

Traffic: 
Regulated – leaky 
bucket 
On-Off – On-off 
source 
FBM – Fractional 
Brownian Motion 

C= 100 Mbps,  ε = 10-6 
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Delays on a long path with multiple 
nodes: 

•  Role of Scheduling 
•  Impact of Statistical Multiplexing  

•  How do delays scale?  
•  Does scheduling still matter in a large network?  

S(t) 

A(t) D(t) 

•  Cruz, Chang, 
LeBoudec (90’s) 

•  Worst case delay 
and backlog 
bounds for fluid 
flow traffic  
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•  Worst-case view of  
•  arrivals:  
•  service :  

•  Implies worst-case bounds 
•  backlog: 
•  delay :  

•  (min,+) formulation with 
•  convolution operator: 

•  deconvolution operator: 

•  Main result: 
•  If S1, S2 and S3 describes the service at each node, then 

Snet = S1 * S2 * S3 describes the service given by the 
network as a whole. 

•  Performance bounds obtained with the network service curve 
Snet can improve by orders of magnitude (e.g. O(n) vs. O(n2))  
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•  Probabilistic view on arrivals and service 
•  Statistical Sample Path Envelope 

•  Statistical Service Curve 

•  Results on performance bounds carry over, e.g.: 
•  Backlog Bound 

•  Hard problem: Find          so that 

•  Technical difficulty: 

     is a 
random 
variable! 
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•  Notation:


•  Theorem: If                        are statistical service 
curves, then for any         : 

    is a statistical network service curve with some 
finite violation probability. 

•  Traffic with Exponentially Bounded Burstiness 
(EBB) 

  for constants M, α


•  Envelope:   

•  EBB model gives closed bounds for E2E delays.
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•  Traffic is Markov Modulated On-Off Traffic  
(EBB model) 

•  Fixed capacity link 
•  Through flow has lower priority  
•  Compare delay with network service curve to a summation of per-node 

bounds  

•  Peak rate: P = 1.5 Mbps 
Average rate: ρ = 0.15 Mbps 

•  T= 1/µ + 1/λ = 10 msec 

•  C = 100 Mbps 
•  Cross traffic = through traffic  
•   ε = 10-9 

•  Addition of per-
node bounds 
grows O(H3) 

•  Network service 
curve bounds 
grow O(H log H) 
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Theorem: E2E delay        satisfies for all  

Corollary:  -quantile           of        satisfies  

•  Tandem network of M/M/1 queues with identical 
service times 

•         is the E2E delay for     queues 

•  Tandem network without cross traffic 
•  Node capacity:     
•  Arrivals are compound Poisson process 

•  Packets arrival rate: 
•  Packet size:                     

•  Utilization: 
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 Delays in Networks scale as  

•  For traffic satisfying “Exponential Bounded 
Burstiness”,  E2E delays follow a scaling law of 

•  E2E delays indeed scale differently  
 …  than worst-case delays 
 …  than delays with independent cross traffic 

 and service times 
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Can we compute scaling of delays for 
very  difficult traffic ? 

•  A heavy-tailed process      satisfies 
        
      
     with 

•  A self-similar process satisfies   

            
     Hurst Parameter 



24 

Cross 
traffic 

Node        
1 

Node        
2 

Node        
H … 

Cross 
traffic 

Cross 
traffic 

Through 
traffic 

Number of nodes (N) 

En
d-

to
-e

nd
 d
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Worst-case delays 
Θ (N) 

  (e.g., LeBoudec and Thiran 2000) 

Exponentially bounded  traffic  
Θ (N log N) 
 (Sigmetrics 2005, Infocom 2007) 

•  Heavy-tailed self-similar (htss) envelope: 

•  Main difficulty: Backlog and delay bounds require 
sample path envelopes of the form  

•  Key contribution (not shown):  
Derive sample path bound for htss traffic  
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•  Size of i–th arrival: 

•  Arrivals are evenly spaced 
with gap    : 

•  With Generalized Central 
Limit Theorem …   
 … and tail bound 

•  ... we get htss envelope 

α-stable  
distribution 

Parameters: 

Comparison of envelopes: 
•  htss GCLT envelope 
•  Average rate 
•  Trace-based 

•  deterministic envelope  
•  htts trace envelope  
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•  htss envelope: 

•  ht service curve:  

•  Delay bound:  

Traffic parameters: 

Node: 
•  Capacity C=100 Mbps 

with packetizer 
•  No cross traffic 

Compared with: 
•  Lower bound from  

Infocom 2007 
•  Simulations  
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Parameters: 

Compared with: 
•  Lower bound  from  

Infocom 2007 
•  Simulation traces of 108 

packets  

Upper Bound:    

Lower Bound:   

Bounds: α = 1.5 


Θ (N) 

Lower Bound 

Θ (N log N) 

Upper 
Bound 
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So far:  
Through traffic has lowest  
priority and gets leftover  
capacity 

 Leftover Service 
 or Blind Multiplexing 

BMux C 

How do end-to-end delay bounds look 
like for different schedulers?  
Does link scheduling matter on long 
paths?  

•  How well can a service curve describe a scheduler? 

•  For schedulers considered earlier, the following is 
ideal:  

 with indicator function             and parameter 
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•  Traffic is Markov Modulated On-Off Traffic  
(EBB model) 

•  Fixed capacity link 

•  Peak rate: P = 1.5 Mbps 
Average rate: ρ = 0.15 Mbps 

•  C = 100 Mbps 
•    
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•  Peak rate: P = 1.5 Mbps 
Average rate: ρ = 0.15 Mbps 

•  C = 100 Mbps 
•   ε = 10-9 

•  Peak rate: P = 1.5 Mbps 
Average rate: ρ = 0.15 Mbps 

•  C = 100 Mbps 
•   ε = 10-9 
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Requirements Queueing 
networks 

Effective 
bandwidth 

Network 
calculus 

Traffic classes (incl. 
self-similar, heavy-tailed) 

Limited Broad Broad 
(but loose) 

Scheduling Limited No Yes 

QoS (bounds on loss, 
throughput delay) 

Very 
limited 

Loss, 
throughput Deterministic 

Statistical 
Multiplexing 

Some Yes No 

Stochastic 
network 
calculus 

Broad 

Yes 

Yes 

Yes 


