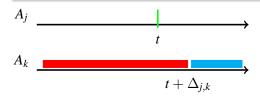
A scheduler whose operation is entirely determined by a matrix of constants $(\Delta_{j,k})_{j,k\in\mathcal{N}}.$

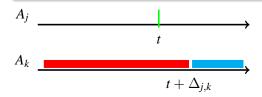

• The followings are Δ -schedulers:

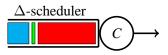
• GPS is not a Δ -scheduler.

▶ FIFO: $\Delta_{j,k} = 0$ ▶ SP, BMux: $\Delta_{j,k} = \begin{cases} -\infty \\ +\infty \\ +\infty \end{cases}$ if flow j has higher priority if flow k has higher priority
 ▶ EDF: $\Delta_{j,k} = d_j^* - d_k^*$

イロト 不得 トイヨト イヨト

A scheduler whose operation is entirely determined by a matrix of constants $(\Delta_{j,k})_{j,k\in\mathcal{N}}.$

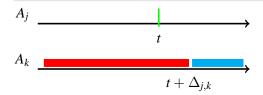

• The followings are Δ -schedulers:

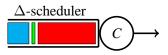

- ► FIFO:

• GPS is not a Δ -scheduler.

► SP, BMux: ∆_{j,k} = +∞
 if flow j has higher priority
 if flow k has higher priority
 if flow k has higher priority
 EDF: ∆_{j,k} = d^{*}_j - d^{*}_k

A scheduler whose operation is entirely determined by a matrix of constants $(\Delta_{j,k})_{j,k\in\mathcal{N}}.$


• The followings are Δ -schedulers:

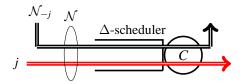

- ► FIFO: $\Delta_{j,k} = 0$

• GPS is not a Δ -scheduler.

► SP, BMux: ∆_{j,k} = +∞
 if flow j has higher priority
 if flow k has higher priority
 if flow k has higher priority
 EDF: ∆_{j,k} = d^{*}_j - d^{*}_k

A scheduler whose operation is entirely determined by a matrix of constants $(\Delta_{j,k})_{j,k\in\mathcal{N}}.$

- The followings are Δ -schedulers:
 - ► FIFO: $\Delta_{j,k} = 0$


 - $\begin{array}{l} \bullet \text{ SP, BMux:} \quad \Delta_{j,k} = \begin{cases} -\infty \\ +\infty \end{cases} \\ \bullet \text{ EDF:} \qquad \Delta_{j,k} = d_j^* d_k^* \end{array}$

if flow j has higher priority if flow k has higher priority

< D > < (2) > < (2) > < (2) >

• GPS is not a Δ -scheduler.

A Service Curve for Δ -Schedulers

 Δ -service curve (Liebeherr, Ghiassi, Burchard'10)

For each $\theta \ge 0$, the following is a minimum service curve for flow *j*

$$\mathcal{S}_{j}(t;\sigma_{s}) = \left[Ct - \sum_{k \in \mathcal{N}_{-j}} \mathbb{E}_{k}(t - \theta + \Delta_{j,k}(\theta))\right]_{+} I_{t > heta}$$

-j

where $\Delta(a) = \min(a, \Delta)$

Provides necessary and sufficient delay bound constraints.

(University of Toronto)