

Traffic Shaping (Part 1)

Purpose of this lab:
In this lab you will build (program) a network element for traffic shaping, called a leaky
bucket, that runs over a real network. The traffic for testing the leaky bucket will be the
Poisson, VBR video, and LAN traffic traces from Lab 1.

Note: Lab 2b will be a continuation of this lab.

Software Tools:
• The programming for this lab is done in Java and requires the use of Java

datagrams.

What to turn in:
• Turn in a report with your answers to the questions in this lab, including the plots,

hard copies of all your Java code, and the anonymous feedback form.

Version 1 (January 27, 2007)
Version 2 (January 28, 2011)

© Jörg Liebeherr, 2007-2-11. All rights reserved. Permission to use all or portions of this material for
educational purposes is granted, as long as use of this material is acknowledged in all derivative works.

Lab

2a

ECE 466 LAB 2A - PAGE 2 J. Liebeherr

Table of Content

Table of Content __ 2 

Preparing for Lab 2a__ 2 

Comments ___ 2 

Part 1. Programming with Datagram Sockets and with Files ___________________________ 3 

Part 2. Traffic generators___ 5 

Part 3. Leaky Bucket Traffic Shaper ___ 7 

Feedback Form for Lab 2a __13 

Preparing for Lab 2a

This lab requires network programming with Java datagram sockets. There is an informative
and short tutorial on Java datagrams is available at:
http://java.sun.com/docs/books/tutorial/networking/datagrams/index.html

Java datagram sockets use the UDP transport protocol to transmit traffic. The relationship
between Java datagrams and the UDP protocol is described in:
http://www.roseindia.net/java/example/java/net/udp/

Comments

• Quality of plots in lab report: This lab asks you to produce plots for a lab report. It is
important that the graphs are of high quality. All plots must be properly labeled. This
includes that the units on the axes of all graphs are included, and that each plot has a
header line that describes the content of the graph.

• Feedback: To be able to improve the labs for future years, we collect data on the
current lab experience. You must submit an anonymous feedback form for each lab.
Please use the feedback form at the end of the lab, and return the form with your lab
report.

• Extra credit: Complete the optional Part 4 for 10% extra credit.

• Java: In the Unix lab, the default version of the Java installation is relatively old. To
access a more recent version use the command:

o Compiling: /local/java/jdk1.5.0_09/bin/javac
o Running: /local/java/jdk1.5.0_09/bin/java

liebeherr
Cross-Out

ECE 466 LAB 2A - PAGE 3 J. Liebeherr

Part 1. Programming with Datagram Sockets and with Files

The purpose of this part of the lab is to become familiar with programming Datagram sockets
and with writing Java programs that read and write data to/from a file. The programs provided
in this part intend to offer guidance for the programming tasks needed later on.

Exercise 1.1 Programming with datagram sockets
Compile and run the following two programs. The program Sender.java transmits a string to
the receiver over a datagram socket. The program Receiver.java displays the string when it is
received.

Sender.java

import java.io.*;
import java.net.*;
public class Sender {
 public static void main(String[] args) throws IOException {
 InetAddress addr = InetAddress.getByName(args[0]);
 byte[] buf = args[1].getBytes();
 DatagramPacket packet =
 new DatagramPacket(buf, buf.length, addr, 4444);
 DatagramSocket socket = new DatagramSocket();
 socket.send(packet);
 }
}

Receiver.java

import java.io.*;
import java.net.*;
public class Receiver {
 public static void main(String[] args) throws IOException {
 DatagramSocket socket = new DatagramSocket(4444);
 byte[] buf = new byte[256];
 DatagramPacket packet = new DatagramPacket(buf, buf.length);
 System.out.println("Waiting ...");
 socket.receive(packet);
 String s = new String(p.getData(), 0, p.getLength());
 System.out.println(p.getAddress().getHostName() + ": " + s);
 }
}

• Compile the programs.

• Start the receiver by running “java Receiver”.

• Assuming that the receiver is running on a host with IP address 128.100.13.131, start
the sender by running:
 java Sender 128.100.13.131 “My String”

• The receiver program should now display the string “My String”.

• Repeat this exercise, with the difference, that you run the sender and receiver on two
different hosts.

ECE 466 LAB 2A - PAGE 4 J. Liebeherr

Exercise 1.2 Reading and Writing data from a file
Download the Java program ReadFileWriteFile.java. The program reads an input file
"data.txt" which has entries of the form

 0 0.000000 I 536 98.190 92.170 92.170
 4 133.333330 P 152 98.190 92.170 92.170
 1 33.333330 B 136 98.190 92.170 92.170

… … …
The file is read line-by-line, the values in a line are parsed and assigned to variables. Then
the values are displayed, and written to a file with name output.txt.

• Run the program with the VBR video trace from Lab 1 as input. The video trace is
available at:
http://www.comm.utoronto.ca/%7Ejorg/teaching/ece466/labs/lab1/movietrace.data

• Modify the program so that it computes and displays the average size of the following
frame types:

o I frames;

o P frames;

o B frames.

ECE 466 LAB 2A - PAGE 5 J. Liebeherr

Part 2. Traffic generators

The goal in this part of the lab is to build a traffic generator that emulates realistic traffic
sources.

The traffic generator is driven by a traffic trace file, i.e., one of the trace files from Lab 1. The
entries in the file permit to determine the size of transmitted packets and the elapsed time
between packet transmissions. For each entry in the trace file, the traffic generator creates a
UDP datagram of the indicated size and transmits the datagram to the traffic sink. The traffic
sink records time and size of each incoming datagram, and writes the information into a file.
The scenario is depicted in the figure below.

In this part of the lab, you will build a traffic generator for the trace files with Poisson traffic. In
Part 3, you work with the Bellcore trace file. In Part 4, you use the VBR video traffic.

Exercise 2.1 Traffic Generator for Poisson traffic
Write a program that is a traffic generator for the compound Poisson traffic source (see Lab 1,
Exercise 1.4) and that transmits the traffic using Java datagrams to a traffic sink. The traffic
sink has to be programmed as well.

• A trace for the compound Poisson source is available at URL
http://www.comm.utoronto.ca/%7Ejorg/teaching/ece466/labs/lab1/poisson3.data

The file has the format:
SeqNo Time (in µsec) Size (in Bytes)

 1 273 30
 2 934 99
 3 2293 27

 …

This results in a compound Poisson process with packet arrival rate λ = 1250
packets/sec, and the packet size has an exponential distribution with average size
1/µ =100 Bytes.

liebeherr
Cross-Out

ECE 466 LAB 2A - PAGE 6 J. Liebeherr

• The traffic generator reads each line from the trace file, re-scales the values, and

transmits a UDP datagram packet using the following considerations:

o The size of the transmitted datagram is equal to the (re-scaled) packet size
value;

o The time of transmission is determined from the (re-scaled) time values. (The
first packet should be transmitted without delay).

Exercise 2.2 Build the Traffic Sink
Write a program that serves as traffic sink for the traffic generator from the previous exercise.
The requirements for the traffic sink are as follows:

• Read packets from a specified UDP port;

• For each incoming packet, write a line to an output file that records the size of the
packet and the time since the arrival of the previous packet (For the first packet, the
time is zero).

• Test the traffic sink with the traffic generator from Exercise 2.1.

Exercise 2.3 Evaluation
Run experiments where you transmit traffic from the traffic generator to the traffic sink.
Evaluate the accuracy of the traffic generator by comparing the entries in the trace file (at the
traffic generator) to the results written to the output file (at the sink).

• Use at least 10,000 data points for your evaluation.

• Prepare a plot that shows the difference of trace file and the output file. For
example, you may create two functions that show the cumulative arrivals of the
trace file and the output file, respectively, and plot them as a function of time.

• Try to improve the accuracy of the traffic generator. Evaluate and graph your
improvements by comparing them to the initial plot.

Exercise 2.4 Account for packet losses.
Packet losses may occur due to bit errors, buffer overflows, collisions of transmissions, or
other reasons. Packet losses are less likely if both the sender and the receiver are on the
same machine. The UDP protocol does not recover packet losses.

• Indicate in your plots from the evaluation any packet losses.

Lab Report:

Provide discussions and graphs as requested in Exercise 2.3 and Exercise 2.4.

liebeherr
Cross-Out

liebeherr
Cross-Out

liebeherr
Cross-Out

ECE 466 LAB 2A - PAGE 7 J. Liebeherr

Part 3. Leaky Bucket Traffic Shaper

In this part of the lab, you familiarize yourself with a reference implementation of a Leaky
Bucket. The implementation of the leaky bucket (in Java) and documentation for using
the implementation is available at:
http://www.comm.utoronto.ca/%7Ejorg/teaching/ece466/labs/lab2/leakyb
ucket

In the next lab (Lab 2b) you will modify the source code of the implementation. Right now,
the objective is to run the code of the reference implementation, but without a need to
modify the provided source code.

A leaky bucket traffic shaper with burst size LBmax and rate r is shown in the figure.
Tokens are fed into the bucket at rate r. No more tokens are added if the bucket contains
LBmax tokens. Data can be transmitted only if there are sufficient tokens in the bucket. To
transmit a packet of L bytes, the bucket must contain at least L tokens. If there are not
sufficient tokens, the packet must wait until there are enough tokens in the bucket. The
maximum size of the buffer is Bmax.
Initially, the leaky bucket is full and the buffer is empty, i.e., LB(t) = LBmax bytes and B(t) =
0 bytes. Note that L should not be smaller than the maximum packet size.

The leaky bucket for this Lab receives data from a traffic generator on a UDP port and
transmits the output to a traffic sink, specified in terms of a an IP address and a UDP port.
This is illustrated below.

ECE 466 LAB 2A - PAGE 8 J. Liebeherr

An implementation of the Leaky bucket for packet sizes with a variable length is sketched
in the following figure. The traffic generator (TG) generates packets that are transmitted to
the Leaky Bucket, which sends the packets to the traffic sink (TS) after applying a
shaping policy. The leaky bucket is comprised of four components: Bucket Receiver
(BR), Bucket Sender (BS), the Token Bucket, and a Buffer. Upon arrival to the leaky
bucket, packets are handled by BR which stores packets into the buffer or sends them
out immediately. The Buffer works as a FIFO queue with limited capacity and holds
packets until they can be send. The Token Bucket generates tokens at a given rate (r)
and holds up to LBmax tokens. BS takes packets out of buffer and sends them when
enough tokens are available.

The reference implementation of the Leaky Bucket implements the above functions, but
which is missing details on the method for updating the value of LB and for computing the
time t* for waking up the Bucket Sender. This implementation is provided by the package
LeakyBucket, which consists of four Java classes:

• Class LeakyBucket
Creates the components of the leaky bucket and starts BR, BS, and TokenBucket
in different threads. An instant of LeakyBucket is created with the following
parameters:

ECE 466 LAB 2A - PAGE 9 J. Liebeherr

• inPort – UDP Port number, where BR expects arriving packets.
• outAddress - IP address to which BS sends packets.
• outPort – UDP port number to which BS sends packets
• maxPacketSize - Maximum size of packet that can be processed.
• bufferCapacity - Capacity of buffer in bytes (Bmax).
• bucketSize – Maximum number of tokens in leaky bucket (LBmax).
• bucketRate - Token generating rate in tokens/sec (r).
• fileName - Name of file, where arrival times are recorded.

• Buffer

Thread safe implementation of a FIFO buffer that is meant to be used in
producer/consumer scenario. This buffer stores packets that must not exceed
MAX_PACKET_SIZE and has inherent capacity of MAX_VALUE packets. The
capacity of the buffer can be specified explicitly in bytes. The buffer has methods
for adding packets to the tail of the buffer and removing packets from the head of
the buffer, peeking at the first packet (without removing it), and querying the
currently occupied buffer size (in terms of packets or bytes).

• LeakyBucketReceiver (BR)

Waits on a specified UDP port for incoming packets. When a packet arrives, it
records its arrival time, size, buffer backlog (B), and the number of tokens in the
bucket (LB) to a file. A received packet is processed in the following way:

 if (buffer_is_empty && not(sendingInProgress) &&
 enough_tokens_available)
 consume tokens;
 send packet;
 else
 add packet in buffer;

Whether a transmission is in progress is checked by reading the
SendingInProgress variable of BucketSender. Note that BucketReceiver and
BucketSender never send at the same time, since BucketReceiver only transmits
when the buffer is empty. If a packet cannot be added to the buffer, e.g., because
the buffer is full, the packet is dropped and an error message displayed.

• LeakyBucketSender (BS)

Removes packets from buffer and transmits them to a specified address (IP
address and UDP port), when there are enough tokens. The procedure for
transmission is as follows:

If (buffer_is_not_empty)
 if (enough_tokens)
 consume tokens;
 sendingInProgress = true;
 remove packet form buffer;
 send packet;
 sendingInProgress = false;
 else
 get expected time when there will be enough tokens;
 sleep for this time;

ECE 466 LAB 2A - PAGE 10 J. Liebeherr

else
 wait for packet to arrive to buffer;
 // buffer wakes up BS when packet arrives

• TokenBucket
This class updates the content of the tokens in the token bucket. A token bucket is
created with two parameters size and rate, where

o size is the maximum content of the token bucket (LBmax),
o rate is the token generation rate in tokens per second (r).

Other classes can request the TokenBucket about the content of the token bucket,
and can request to remove tokens from the bucket. The following requests are
available:

o getNoTokens: Returns number of tokens in bucket.
o removeTokens(X) : Request to remove X tokens from the bucket. The

method returns false if there are less than X tokens in the bucket.
o getWaitingTime(X): Returns the waiting time (in nanoseconds) until

bucket has X tokens. Note that there is no guarantee that there will be
enough tokens at the returned time (someone else may have removed
tokens).

Exercise 3.1 Running the reference implementation of the Leaky

Bucket
Your task is to execute the reference implementation of the leaky bucket so that it receives
packets from your implementation of the traffic generator from Part 2, and send packets to
your version of the traffic sink.

• The transmissions between traffic generator, leaky bucket, and traffic sink use UDP
datagrams.

• The size and timing of packet transmissions by the traffic generator is done as
described in Part 2.

• Upon each packet arrival, the leaky bucket regulator writes a line to an output file that
records the size of the packet and the time since the arrival of the last packet (For the
first packet, the time is zero). Also recorded are the number of tokens (LB) in the
leaky bucket and the backlog in the buffer (B) after the arrival of the packet.

In your implementation, the traffic sink, the Leaky Bucket, and the traffic generator must be
started separately as independent processes.

The following code segment shows how you start the LeakyBucket of the reference
implementation in a process. The implementation assumes that the class LeakyBucket is in a
subdirectory with name “LeakyBucket”:

import LeakyBucket.LeakyBucket;

public class Main {

ECE 466 LAB 2A - PAGE 11 J. Liebeherr

 public static void main(String[] args) {
 // listen on port 4444, send to localhost:4445,
 // max. size of received packet is 1024 bytes,
 // buffer capacity is 100*1024 bytes,
 // leaky bucket has 10000 tokens, rate 5000 tokens/sec, and
 // records packet arrivals to bucket.txt).
 LeakyBucket lb = new LeakyBucket(4444, "localhost", 4445,
 1024, 100*1024, 10000, 5000, "bucket.txt");
 new Thread(lb).start();
 }
}

Exercise 3.2 Evaluate the reference implementation for the

Poisson traffic file

Consider the transmission of Poisson traffic from Exercise 2.3.

Prepare a single plot that shows the cumulative arrival function as a function of time of:

• The data of the trace file (as read by the traffic generator);

• The arrivals at the leaky bucket;

• The arrivals at the traffic sink.

Provide a second plot that shows the content of the token bucket and the backlog in the
Buffer as a function of time.

Exercise 3.3 Evaluate the reference implementation for the

Ethernet and Video Tracefiles

Repeat the evaluation for the video traffic trace and the Ethernet trace file that were used in
Lab 1, and which are available at:

• Video trace file:
http://www.comm.utoronto.ca/%7Ejorg/teaching/ece466/labs/lab1/movietrace.data

• Ethernet traffic:
http://www.comm.utoronto.ca/%7Ejorg/teaching/ece466/labs/BC-pAug89-small.TL

There are a few things to note:

• The format of the trace files for the Video and the Ethernet traffic is described in the
description of Lab 1.

ECE 466 LAB 2A - PAGE 12 J. Liebeherr

• For the video trace file, the size of a video frame may exceed the maximum size of a
datagram, and you need to send the frame in multiple datagrams.

Lab Report:

• Provide the source code for your source code for Exercise 3.1. Do not include the
sources for the traffic generator and traffic sink. Also, do not include source files of the
reference implementation.

• For Exercises 3.2 and 3.3, provide the set of plots and include a description of the
plots.

ECE 466 LAB 2A - PAGE 13 J. Liebeherr

Feedback Form for Lab 2a
• Complete this feedback form at the completion of the lab exercises and submit the form

when submitting your lab report.

• The feedback is anonymous. Do not put your name on this form and keep it separate
from your lab report.

• For each exercise, please record the following:

Difficulty
(-2,-1,0,1,2)
-2 = too easy
 0 = just fine
 2 = too hard

Interest Level
(-2,-1,0,1,2)
-2 = low interest
 0 = just fine
 2 = high interest

Time to complete
(minutes)

Part 1. Programming with Datagram
Sockets and with Files

Part 2. Traffic generators

Part 3. Leaky Bucket Traffic Regulator

Please answer the following questions:

• What did you like about this lab?

• What did you dislike about this lab?

• Make a suggestion to improve the lab.

