1

Capturing Traffic with Wireshark

Prepared for UCC Networking Course, June - August 2012.

Purpose of this lab:

The purpose of this lab is to gain practical experience with the Wireshark traffic analyzer
which allows the observation of network traffic.

Software Tools:
e Wireshark traffic analyzer.

o Wireshark is installed on the computers of the classroom.

What to turn in:

e A report with your answers to the questions in this lab, including the plots, copies of
your MATLAB code, and the anonymous feedback form.

e The symbol 77 findicates questions for the lab report.
e The lab exercises and the lab reported are to be completed individually.

e The estimated time to complete the lab is 3 hours.

This lab uses

o Wireshark Lab: Getting Started v6.0

e Wireshark Lab: Ethernet and ARP v6.01

e Wireshark Lab: ICMP v6.0
Supplement to Computer Networking: A Top-Down Approach, 6™ ed., J.F. Kurose and
K.W. Ross, © 2005-21012, J.F Kurose and K.W. Ross, All Rights Reserved



Part 1. Getting Started with Wireshark

One’s understanding of network protocols can often be greatly deepened by “seeing
protocols in action” and by “playing around with protocols” — observing the sequence of
messages exchanged between two protocol entities, delving down into the details of
protocol operation, and causing protocols to perform certain actions and then observing
these actions and their consequences. This can be done in simulated scenarios or in a
“real” network environment such as the Internet. In the Wireshark labs you’ll be doing in
this course, you’ll be running various network applications in different scenarios using
your own computer (or you can borrow a friends; let me know if you don’t have access to
a computer where you can install/run Wireshark). You’ll observe the network protocols
in your computer “in action,” interacting and exchanging messages with protocol entities
executing elsewhere in the Internet. Thus, you and your computer will be an integral
part of these “live” labs. You’ll observe, and you’ll learn, by doing.

In this first Wireshark lab, you’ll get acquainted with Wireshark, and make some simple
packet captures and observations.

The basic tool for observing the messages exchanged between executing protocol entities
is called a packet sniffer. As the name suggests, a packet sniffer captures (“sniffs”)
messages being sent/received from/by your computer; it will also typically store and/or
display the contents of the various protocol fields in these captured messages. A packet
sniffer itself is passive. It observes messages being sent and received by applications and
protocols running on your computer, but never sends packets itself. Similarly, received
packets are never explicitly addressed to the packet sniffer. Instead, a packet sniffer
receives a copy of packets that are sent/received from/by application and protocols
executing on your machine.

Figure 1 shows the structure of a packet sniffer. At the right of Figure 1 are the protocols
(in this case, Internet protocols) and applications (such as a web browser or ftp client)
that normally run on your computer. The packet sniffer, shown within the dashed
rectangle in Figure 1 is an addition to the usual software in your computer, and consists
of two parts. The packet capture library receives a copy of every link-layer frame that
is sent from or received by your computer. Recall from the discussion from section 1.5 in
the text (Figure 1.24") that messages exchanged by higher layer protocols such as HTTP,
FTP, TCP, UDP, DNS, or IP all are eventually encapsulated in link-layer frames that are
transmitted over physical media such as an Ethernet cable. In Figure 1, the assumed
physical media is an Ethernet, and so all upper-layer protocols are eventually
encapsulated within an Ethernet frame. Capturing all link-layer frames thus gives you all
messages sent/received from/by all protocols and applications executing in your
computer.

! References to figures and sections are for the 6" edition of our text, Computer Networks, A Top-down
Approach, 6" ed., J.F. Kurose and K.W. Ross, Addison-Wesley/Pearson, 2012.



packet sniffer

packet S application (e.g., www
analyzer EETIEEIE browser, ftp client)
A I
operating
' i system Transport (TCP/UDP)
i | packet Network (IP)
p—_ 0 capture 1 _copy of all Etherr_]et Link (Ethernet)
— ! (pcap) 1 frames sent/received
i i Physical
—
to/from network to/from network

Figure 1: Packet sniffer structure

The second component of a packet sniffer is the packet analyzer, which displays the
contents of all fields within a protocol message. In order to do so, the packet analyzer
must “understand” the structure of all messages exchanged by protocols. For example,
suppose we are interested in displaying the various fields in messages exchanged by the
HTTP protocol in Figure 1. The packet analyzer understands the format of Ethernet
frames, and so can identify the IP datagram within an Ethernet frame. It also understands
the IP datagram format, so that it can extract the TCP segment within the IP datagram.
Finally, it understands the TCP segment structure, so it can extract the HTTP message
contained in the TCP segment. Finally, it understands the HTTP protocol and so, for
example, knows that the first bytes of an HTTP message will contain the string “GET,”
“POST,” or “HEAD,” as shown in Figure 2.8 in the text.

We will be using the Wireshark packet sniffer [http://www.wireshark.org/] for these labs,
allowing us to display the contents of messages being sent/received from/by protocols at
different levels of the protocol stack. (Technically speaking, Wireshark is a packet
analyzer that uses a packet capture library in your computer). Wireshark is a free network
protocol analyzer that runs on Windows, Linux/Unix, and Mac computers. It’s an ideal
packet analyzer for our labs — it is stable, has a large user base and well-documented
support that includes a user-guide (http://www.wireshark.org/docs/wsug_html_chunked/),
man pages (http://www.wireshark.org/docs/man-pages/), and a detailed FAQ
(http://www.wireshark.org/fag.html), rich functionality that includes the capability to
analyze hundreds of protocols, and a well-designed user interface. It operates in
computers using Ethernet, serial (PPP and SLIP), 802.11 wireless LANSs, and many other
link-layer technologies (if the OS on which it's running allows Wireshark to do so).



http://www.wireshark.org/
http://www.wireshark.org/docs/wsug_html_chunked/
http://www.wireshark.org/docs/man-pages/
http://www.wireshark.org/faq.html

Getting Wireshark

In order to run Wireshark, you will need to have access to a computer that supports both
Wireshark and the libpcap or WinPCap packet capture library. The libpcap software will
be installed for you, if it is not installed within your operating system, when you install
Wireshark. See http://www.wireshark.org/download.html for a list of supported
operating systems and download sites

Download and install the Wireshark software:
e Go to http://www.wireshark.org/download.html and download and install the
Wireshark binary for your computer.
The Wireshark FAQ has a number of helpful hints and interesting tidbits of information,
particularly if you have trouble installing or running Wireshark.

Running Wireshark

When you run the Wireshark program, you’ll get a startup screen, as shown below:

i The Wireshark Network Analyzer [Wireshark 1.6.2 (SVM Rev 38931 from /ftrunk-1. _: -‘

File Edit View Go Capture Analyze Statistics Telephony Tools Intemals Help
Beose cExXZE Qe R Qaan @Eme

Filter [+] pression... lear Apply

The World's Most Popular Network Protocol Analyzer

Version 1.6.2 (SVN Rev 38931 from /ftrunk-1.6)

Copture File  ouie
= Interface List = Open Website
' Live fist of the capture interfaces Open a previcusly captursd file Visit the project’s website
{counts incoming packets)
Open Recent: s . -
Start capture on interface: @ User's Guide
Intel(R) 82567LM Gigabit N L : C\Umass'classeshfal ... hark_labs\Wireshark_labd_wifi_trace.pcap (622 KB} The User's Guide (local version, if installed)
it it Metu ti
] ToteitRy gebit Metwork Lonnection ¢4 Users\kurase\DownloadstWireshark_Iabd wifi trace.pcap (622 KB)
£ Microsoft s -
Ci\Umassclasses\fal .. CMPSCI_453_Fall 2010_Ethernet_trace.pcap (22 KB) @ ecurity =
m Capture Options C\Umass\classesifal ... _3_CMPSCI_453_Fall 2010_partl_trace pcap [not found] Waork with Wireshark as securely sc possible l
Start & capture with detalied optins Ci\temp'\Wireshark_labd_wifi_trace.pcap (622 KE)

C\Usershkurose\AppD ... \Local\ Temp\wzafbe\Wireshark 802_11.pcap [not found]

Capture Help @ Sample Captures

A rich assortment of example capture files on the wiki

How to Capture
Step by step to & successful capture setup

Network Media

@ Speciic information for capturing an:
Ethemet WLAN.

« i r

("] Ready to load or capture No Packets Profile: Default

Figure 2: Initial Wireshark Screen -

Take a look at the upper left hand side of the screen — you’ll see an “Interface list”. This
is the list of network interfaces on your computer. Once you choose an interface,
Wireshark will capture all packets on that interface. In the example above, there is an
Ethernet interface (Gigabit network Connection) and a wireless interface (“Microsoft”).

If you click on one of these interfaces to start packet capture (i.e., for Wireshark to begin
capturing all packets being sent to/from that interface), a screen like the one below will


http://www.wireshark.org/download.html
http://www.wireshark.org/download.html

be displayed, showing information about the packets being captured. Once you start
packet capture, you can stop it by using the Capture pull down menu and selecting Stop.

command
menus

7 {Untitled) - Wireshark =] E3

File Edit Yiew Go Capture Analyze  Statistics  Help
%ﬁ&@é@i\@ﬁlx%|@¢®m§g\@@|©‘qqg|

Ellter:| ¥ Expression... Clear Apply

display filter
specification

listing of )

captured (_*

packets

details of <

selected
packet
header
\
p

packet content
in hexadecimal
and ASCII

L

Mo, - | Time | Source | Destination | Protocal | Info

1 0. 000000 162.168.1.46 128.121.50.122 TCP 1163 > http [SYN] Seq=0 Len=0 M55 (6]
1 50.122 > 116 i
a6

PDU]
ntinuatic

Frame 4 (710 bytes on wire, 710 bytes captured)
Ethernet II, Src: Netgear_61:8e:6d (00:09:5b:61:8e:6d), Dst: WestellT_9F:02:00 (00:0f:db:5f:92:h9)
Internet Protocol, Src: 192.168.1.46 (192.168.1.46), Dst: 128.121.50.122 (128.121.50.122)
Transmission Control Protocol, Src Port: 1163 (11630, Dst Port: http (80), Seq: 1, Ack: 1, Len: 656
[ Hypertext Transfer Protocol
® GET Anews/ HTTP/Ll.1%r%n
Host: www.wireshark. orgirin
User-agent: Mozilla /5.0 (windows; U; windows NT 5.1; en-us; rvw:1l.8.1.4) Gecko /20070515 Firefoxs2.0.0.4"%
Accept: text/xml,applicationsxm1, application/xhtml+xml, text /html;g=0.9,text/plain;g=0.8, imagespng, %/ *;t
Accept-Language: en-us,en;g=0.5%rn
Accept-Encoding: gzip, deflatedryn
Accept-Charset: IS0-8859-1,utf-8;g=0.7,%;g=0.75r\n
keep-alive: 300%Yn
connection: keep-aliwevrin
referer: http:/ www.wireshark.org/Fag. htmisrin
Cookie: __utma=87653150.62471437,. 1181007382, 1181007382.1181169142. 2; __utmz=87653150.1181007382.1.1. utr

N
il | ol
0000 00 OF db 5F 92 bG 00 0% S5b 61 8e &6d O 00 45 00 ........ [a.m..E. =
0010 02 b3 of 25 40 00 80 06 74 51 <O af QL 2e 80 79 e EEL L TQ.. .. Vi
0020 32 7a 04 Bb 00 50 ed bc 8e 1b 4e c6 f1 18 50 18 2Z...P.. LUNLLLPL
0030 ff ff 77 74 00 00 47 45 54 20 2f 6e 65 77 73 2f LoWEL L GE T Shews/

0040 20 48 54 54 50 2f 31 2e 31 0d 0a 48 6F 73 74 3a HTTR/L1. 1..Host:
0050 20 77 77 77 2e FF 69 72 65 73 68 61 72 6h 2e &f www.wir ashark.o
0060 72 67 Od 0a 55 73 65 72 2d 41 67 65 6e 74 3a 20 rg..User —agent:

0070 4d 6f 7a 69 6c 6c 61 2f 35 2e 30 20 28 57 69 &e mozi1lay/ 5.0 Cwin
0080 B4 &6f 77 73 3b 20 55 3b 20 57 @9 6e 64 &f 77 73 dows; U; windows
0090 20 d4e 54 20 35 22 31 3h 20 65 Ge 2d 55 53 3b 20 MT 5.1; en-us;

00a0 72 76 3a 31 2e 38 2e 31 2e 34 29 20 47 65 63 6h ryvil.8.1 .40 Geck
00bo  &f 2f 32 30 30 37 30 35 31 35 20 46 €9 72 65 &§ 0/200705 15 Firef

File: "C:\DOCUME~1|PALLAW~11LOCALS~1|Templethersa00324" 453 KB 00:00; |P: 671 4 671 M; 0 Drops: O

Ll

Figure 3: Wireshark Graphical User Interface, during packet capture and analysis

The Wireshark interface has five major components:

e The comm

and menus are standard pulldown menus located at the top of the

window. Of interest to us now are the File and Capture menus. The File menu

allows you

to save captured packet data or open a file containing previously

captured packet data, and exit the Wireshark application. The Capture menu

allows you

to begin packet capture.

e The packet-listing window displays a one-line summary for each packet
captured, including the packet number (assigned by Wireshark; this is not a
packet number contained in any protocol’s header), the time at which the packet
was captured, the packet’s source and destination addresses, the protocol type,
and protocol-specific information contained in the packet. The packet listing can
be sorted according to any of these categories by clicking on a column name. The
protocol type field lists the highest-level protocol that sent or received this packet,
i.e., the protocol that is the source or ultimate sink for this packet.

e The packet-header details window provides details about the packet selected
(highlighted) in the packet-listing window. (To select a packet in the packet-
listing window, place the cursor over the packet’s one-line summary in the

packet-listi

ng window and click with the left mouse button.). These details




include information about the Ethernet frame (assuming the packet was
sent/received over an Ethernet interface) and IP datagram that contains this
packet. The amount of Ethernet and IP-layer detail displayed can be expanded or
minimized by clicking on the plus minus boxes to the left of the Ethernet frame or
IP datagram line in the packet details window. If the packet has been carried over
TCP or UDP, TCP or UDP details will also be displayed, which can similarly be
expanded or minimized. Finally, details about the highest-level protocol that sent
or received this packet are also provided.

e The packet-contents window displays the entire contents of the captured frame,
in both ASCII and hexadecimal format.

e Towards the top of the Wireshark graphical user interface, is the packet display
filter field, into which a protocol name or other information can be entered in
order to filter the information displayed in the packet-listing window (and hence
the packet-header and packet-contents windows). In the example below, we’ll
use the packet-display filter field to have Wireshark hide (not display) packets
except those that correspond to HTTP messages.

Taking Wireshark for a Test Run

The best way to learn about any new piece of software is to try it out! We’ll assume that
your computer is connected to the Internet via a wired Ethernet interface. Indeed, |
recommend that you do this first lab on a computer that has a wired Ethernet connection,
rather than just a wireless connection. Do the following

1. Start up your favorite web browser, which will display your selected homepage.

2. Start up the Wireshark software. You will initially see a window similar to that
shown in Figure 2. Wireshark has not yet begun capturing packets.

3. To begin packet capture, select the Capture pull down menu and select Interfaces.
This will cause the “Wireshark: Capture Interfaces” window to be displayed, as
shown in Figure 4.

“ Wireshark: Capture Inlerh“ o i S

Description P Packets Packets/s Stop
Lp | Intel(R) 82567LM Gigabit Metwork Connection feB0:844a:123%abl1%7dea 28 0 Start | | Options | | Details
a B
] Microsoft 192.168.1.100 17 0 |start| | Options | | Details |

Figure 4: Wireshark Capture Interface Window

4. You’ll see a list of the interfaces on your computer as well as a count of the
packets that have been observed on that interface so far. Click on Start for the
interface on which you want to begin packet capture (in the case, the Gigabit



network Connection). Packet capture will now begin - Wireshark is now
capturing all packets being sent/received from/by your computer!

Once you begin packet capture, a window similar to that shown in Figure 3 will
appear. This window shows the packets being captured. By selecting Capture
pulldown menu and selecting Stop, you can stop packet capture. But don’t stop
packet capture yet. Let’s capture some interesting packets first. To do so, we’ll
need to generate some network traffic. Let’s do so using a web browser, which
will use the HTTP protocol that we will study in detail in class to download
content from a website.

. While Wireshark is running, enter the URL.:
http://gaia.cs.umass.edu/wireshark-labs/INTRO-wireshark-filel.html

and have that page displayed in your browser. In order to display this page, your
browser will contact the HTTP server at gaia.cs.umass.edu and exchange HTTP
messages with the server in order to download this page, as discussed in section
2.2 of the text. The Ethernet frames containing these HTTP messages (as well as
all other frames passing through your Ethernet adapter) will be captured by
Wireshark.

. After your browser has displayed the INTRO-wireshark-filel.html page (it is a
simple one line of congratulations), stop Wireshark packet capture by selecting
stop in the Wireshark capture window. The main Wireshark window should now
look similar to Figure 3. You now have live packet data that contains all protocol
messages exchanged between your computer and other network entities! The
HTTP message exchanges with the gaia.cs.umass.edu web server should appear
somewhere in the listing of packets captured. But there will be many other types
of packets displayed as well (see, e.g., the many different protocol types shown in
the Protocol column in Figure 3). Even though the only action you took was to
download a web page, there were evidently many other protocols running on your
computer that are unseen by the user. We’ll learn much more about these
protocols as we progress through the text! For now, you should just be aware that
there is often much more going on than “meet’s the eye”!

Type in “http” (without the quotes, and in lower case — all protocol names are in
lower case in Wireshark) into the display filter specification window at the top of
the main Wireshark window. Then select Apply (to the right of where you entered
“http”). This will cause only HTTP message to be displayed in the packet-listing
window.

Find the HTTP GET message that was sent from your computer to the
gaia.cs.umass.edu HTTP server. (Look for an HTTP GET message in the “listing
of captured packets” portion of the Wireshark window (see Figure 3) that shows
“GET” followed by the gaia.cs.umass.edu URL that you entered. When you
select the HTTP GET message, the Ethernet frame, IP datagram, TCP segment,


http://gaia.cs.umass.edu/wireshark-labs/INTRO-wireshark-file1.html

and HTTP message header information will be displayed in the packet-header
window?. By clicking on +* and “-¢ right-pointing and down-pointing arrowheads
to the left side of the packet details window, minimize the amount of Frame,
Ethernet, Internet Protocol, and Transmission Control Protocol information
displayed. Maximize the amount information displayed about the HTTP protocol.
Your Wireshark display should now look roughly as shown in Figure 5. (Note, in
particular, the minimized amount of protocol information for all protocols except
HTTP, and the maximized amount of protocol information for HTTP in the
packet-header window).

10. Exit Wireshark

Congratulations! You’ve now completed the first lab.

I ) 5256711 Gt ek Commecion WA 122 N Ry SSST om et Lo T =] |

File Edit View Go Capture Analyze Statistics Telephony Tools Internals Help

BEel BEREE AesTL Qaa | @§®®%l B

Filter: http |Z|Expre;sion..‘ Clear Apply

No. Time Source Destination Protocol Length Info o
816 43. 096668 66.103.80.47 192.168.1.101 HTTP 60 HTTP/1.1 200 oK (text/plain)
828 44.507171 204.9.163.166 192.168.1.101 HTTP 271 HTTP/1.1 200 OK
835 45.629833 192.168.1.101 128.119.245.12 HTTP 489 GET /wireshark-1abs/INTRO-wireshark-fil
837 45.646802 128.119.245.12 192.168.1.101 HTTP 434 HTTP/1.1 200 OK (text/html)

839 45. 687572 128.119.245.12 192.168.1.101 564 HTTP/1.1 404 Not Found (text/html)

841 45.739188 128.119.245.12 192.168.1.101 564 HTTP/1.1 404 Not Found (text/html)

1 [m]

848 48. 689680 128.119.245.12 192.168.1.101 564 HTTP/1.1 404 Not Found (text/html)
4] 1 | b l

o Frame 835: 489 bytes on wire (3912 bits), 489 bytes captured (3912 bits)

& Ethernet II, Src: HonHaiPr_Od:ca:8f (00:22:68:0d:ca:8f), Dst: Cisco-Li_45:1f:1b (00:22:6b:45:1f:1b)

®

& Transmission Control Protocol, Src Port: 57522 (57522), Dst Port: http (80), Seq: 1, Ack: 1, Len: 435

= Hypertext Transfer Protocol

GET /wireshark-labs/INTRO-wireshark-filel.html HTTP/1.1\r\n

HosT: gaia.cs.umass.edulrin l
user-agent: Mozilla/5.0 (windows; u; windows NT 6.1; en-us; rv:l.9.2.22) Gecko/20110902 Firefox/3.6.22 (.NET CLR 3.5.30729)\r\n
Accept: text/html,application/xhtml+xml,application/xml;g=0.9,*%/%;g=0.8"r\n
Accept-Language: en-us,en;g=0.54\rn
Accept-Encoding: gzip,deflate’\rin
Accept-Charset: IS0-8859-1,utf-8;g=0.7,%;g=0.7\r\n
Keep-aAlive: 115\r\n
Connection: keep-alive\rin
Wrhn
[Full request URI: http://gaia.cs.umass. edu/wireshark-labs/INTRO-wireshark-filel.html]

0000 -
0010 00 00 cO aB 01 65 BO 77 =1
0020 89 b3 d9 41 bl 83 50 18

0030

PLCINGE 61 72 6b 2d 6c 61 62 73 2f 49 4e 54 52 4f 2d

@ | Frame (frame), 489 bytes Packets: 850 Displayed: 132 Marked: 0 Dropped: 0 Profile: Default

Figure 5: Wireshark window after step 9

% Recall that the HTTP GET message that is sent to the gaia.cs.umass.edu web server is contained within a
TCP segment, which is contained (encapsulated) in an IP datagram, which is encapsulated in an Ethernet
frame. If this process of encapsulation isn’t quite clear yet, review section 1.5 in the text



?zf What to hand in

The goal of this first lab was primarily to introduce you to Wireshark. The following
questions will demonstrate that you’ve been able to get Wireshark up and running, and
have explored some of its capabilities. Answer the following questions, based on your
Wireshark experimentation:

1.

2.

List 3 different protocols that appear in the protocol column in the unfiltered
packet-listing window in step 7 above.

How long did it take from when the HTTP GET message was sent until the HTTP
OK reply was received? (By default, the value of the Time column in the packet-
listing window is the amount of time, in seconds, since Wireshark tracing began.
To display the Time field in time-of-day format, select the Wireshark View pull
down menu, then select Time Display Format, then select Time-of-day.)

What is the Internet address of the gaia.cs.umass.edu (also known as www-
net.cs.umass.edu)? What is the Internet address of your computer?

Print the two HTTP messages (GET and OK) referred to in question 2 above. To
do so, select Print from the Wireshark File command menu, and select the
“Selected Packet Only” and “Print as displayed” radial buttons, and then click
OK.



Part 2: Ethernet and ARP

In this lab, we’ll investigate the Ethernet protocol and the ARP protocol. Before
beginning this lab, you’ll probably want to review sections 5.4.1 (link-layer addressing
and ARP) and 5.4.2 (Ethernet) in the text®. RFC 826 (ftp://ftp.rfc-editor.org/in-
notes/std/std37.txt) contains the gory details of the ARP protocol, which is used by an IP

device to determine the IP address of a remote interface whose Ethernet address is
known.

1. Capturing and analyzing Ethernet frames
Let’s begin by capturing a set of Ethernet frames to study. Do the following®:

e First, make sure your browser’s cache is empty. To do this under Mozilla Firefox
V3, select Tools->Clear Recent History and check the box for Cache. For Internet
Explorer, select Tools->Internet Options->Delete Files. Start up the Wireshark
packet sniffer

e Enter the following URL into your browser
http://gaia.cs.umass.edu/wireshark-labs/HT TP-ethereal-lab-file3.html
Your browser should display the rather lengthy US Bill of Rights.

® References to figures and sections are for the 6" edition of our text, Computer Networks, A Top-down
Approach, 6" ed., J.F. Kurose and K.W. Ross, Addison-Wesley/Pearson, 2012.

il you are unable to run Wireshark live on a computer, you can download the zip file
http://gaia.cs.umass.edu/wireshark-labs/wireshark-traces.zip and extract the file ethernet--ethereal-trace-1.
The traces in this zip file were collected by Wireshark running on one of the author’s computers, while
performing the steps indicated in the Wireshark lab. Once you have downloaded the trace, you can load it
into Wireshark and view the trace using the File pull down menu, choosing Open, and then selecting the
ethernet-ethereal-trace-1 trace file. You can then use this trace file to answer the questions below.



ftp://ftp.rfc-editor.org/in-notes/std/std37.txt
ftp://ftp.rfc-editor.org/in-notes/std/std37.txt
http://gaia.cs.umass.edu/ethereal-labs/ethereal-traces.zip

e Stop Wireshark packet capture. First, find the packet numbers (the leftmost
column in the upper Wireshark window) of the HTTP GET message that was sent
from your computer to gaia.cs.umass.edu, as well as the beginning of the HTTP
response message sent to your computer by gaia.cs.umass.edu. You should see a
screen that looks something like this (where packet 4 in the screen shot below
contains the HTTP GET message)

1] {Untitled) - Wireshark =13
File Edit View Go Capture Analyze Statistics  Help

CR 2" x % 8 B ¢« » » F & BE &8 Q0
Filter: | ¥  Expression... Clear Apply

Mo, - |Time |Source |Destinati0n |Pr0t0c0| |InF0 -

L 000000

192.168. 128.1105. 2038 > http

.145 ;
. .245.12 . L2, > 2038 [ACK] Seg=l Ac 52 Win=6432
134167 .245.12 segment of a reassembled PouU]
150302 245,12 segment of a reassembled POU]
15 i . L1455 =453 i 2
. 213639 . .245.12

3 . = -

]
5

g 128, T HTTP L
.403428 . . . L2, HTTR/L.1 404 mot Found (texthtmld
> http
B .14 128, 1] ; nttp
. 383584 188, 2. LBE, 12, http
1% 5,352197 152.168.2.145 http
10.38%131  128.11%9.245.12

0 HHBHMH

Frame 4 (506 bytes on wire, 506 bytes captured)
Ethernet II, Src: Wetgear_61l:8e:6d (00:09:5b:61:8e:6d), Dst: LinksysG_45:90:a8 (00:0c:41:45:90:a8)
Internet Protocol, Src: 192.168.2.145 (192.168.2.145), Dst: 128.119.245.12 (1285.119.245.12)
Transmission Control Protocol, Src Port: 2038 (2038), Dst Port: http (80D, Seqg: 1, Ack: 1, Len: 452
Hypertext Transfer Protocol
= GET i -la TTP-ethereal-Tab-f41
Reguest Method: GET
Reguest URI: Swireshark-Tlabs/HTTP-ethereal-Tab-file3.html
Reguest version: HTTR/1.1
Host: gaia.cs.umass. edusriyn
User-agent: Mozillas5.0 (windows; U; windows NT 5.1; en-uUs; rv:1.8.1.4) Gecko/20070515 Firefox/2.0.0.¢
Accept: text/xml, applications«ml, application/xhtml+xm], text /html;gq=0.9, text, /plain; g=0. 8, image,png, ¥/~
Accept-Language: en-us,en;o=0.5%"n
Accept-Encoding: gzip,deflatesrin
Accept-Charset: ISO-8859-1,utf-8;q=0.7,%;g=0.7%r\n
Keep-Alive: 300%ryn
connection: keep-alive“ryn

AN

050 67 65 Ge 74 3a 20 %q af Fa 69 6c 6c 6l 2f 35 Ze gent: Mo %%11§X51

Ll

|P:21D: 21 M: O Drops: 0

sl




e Since this lab is about Ethernet and ARP, we’re not interested in IP or higher-
layer protocols. So let’s change Wireshark’s “listing of captured packets” window
so that it shows information only about protocols below IP. To have Wireshark do
this, select Analyze->Enabled Protocols. Then uncheck the IP box and select OK.
You should now see an Wireshark window that looks like:

1 {Untitled) - Wireshark = O]
File Edit Wisw GO Capture  Analyze  Statistics  Help
= C 5 Ed x 4 8 @ « » » F & EE & aa
Eilter:| ¥  Expression... Clear Apply
MNo. - |Time |Source |Destinati0n |Pr0t0c0| |Info =
1 0.000000 Metgear_6l:8e:6d LinksysG_45:90:a8 0x0800 IP
2 0.050606 LinksysG_45:90:a8 Metgear_&1l:8e:6d  O0x0800 IP
3 0.050729 Metgear_&l:8e:6d  Linksysc_45:90:a8 Ox0800 IP
4 0.033906 Hetfear el:8e:od  LirKsysa 4519048 UxXUS00 IR
5 0.128700 LinksysG_45:90:a8 Metgear_©l:8e:6d  0x0800 IP
6 0.134167 LinksysG_45:90:a8 MNetgear_&1l:8e:6d  O0x0800 IP
7 0.150302 LinksysG_45:90:a8 Metgear_&l:8e:6d  O0x0800 IP
3 0.150487 Metgear_61:8e:6d  LinksysG_45:90:a8 (Ox0B00 IF
9 0,213639 LinksysG_45:90:a8 Metgear_©l:8e:6d  0x0800 IP
10 0.215724 LinksysG_45:90:a8 Metgear_&1:8e:6d  O0x0800 IP
11 0.215947 Metgear_&l:8e:6d  Linksysc_45:90:a8 0Ox0800 IP
12 0.231749 LinksysG_45:90:a8 netgear_6l:8e:6d  Ox0B00 IF
13 0.232145 Metgear_6l:8e:6d  LinksysG_45:90:a8 0x0800 IP
14 0.320470 Metgear_6l:8e:6d  Linksysc_45:90:a8 0x0800 IP
15 0.403428 LinksysG_45:90:a8 Metgear_&l:8e:6d  O0x0800 IP
16 0.423532 Metgear_61:8e:6d  LinksysG_45:90:a8 (Ox0B00 IP
17 0.579522 Metgear_61:8e:6d  LinksysG_45:90:a8 Ox0B00 IP
18 3.383584 Metgear_6l:8e:6d  Linksysc_45:90:a8 0x0800 IP
19 9.392197 Metgear_&l:8e:6d  Linksysc_45:90:a8  0Ox0800 IP
20 10.389131  LinksysG_45:90:a8 Netgear_6l:8e:6d  Ox0BC0O IP
21 10.389258  Netgear_6l:8e:6d  LinksysG_45:90:a8 0Ox0BC00 IP -
| | i |
* Frame 4 (506 bytes on wire, 506 bytes captured) 1=
= Ethernet II, sSrc: Wetgear_8l:8e:6d (00:09:5b:61:8e:6d), Dst: LinksysG_45:90:a8 (00:0c:41:45:90:a8)
= bestination: LinksysG_45:90:a8 (00:0C:41:45:90:a8)
Address: LinksysG_45:90:a8 (00:0cC:41:45:90:a8)
....... 0 ive viee veee wew. = IG bit: Individual address (unicast)
T .= L bit: Globally unigque address (factory default)
= Source: Metgear_&l:8e:6d (00:09:5h:61:8e:6d)
Address: Metgear_8l:8e:6d (00:09:5b:61:8e:6d)
....... O vivr vine veen wew. = IG bit: Individual address (unicast)
P o= g bit: globally unigue address (factory default)
Type: IP (0x0800)
Data (492 bytes) E
| I ©

0000 00 Oc 41 45
0010 01 ec BY 29
o020 3 0c OF T8
o030 ff ff 33 9¢
0040 &8 &8l ¥2 ab
0050 74 68 65 72
0060 33 2e 68 74
0070 0a 48 af ¥3

90 ag 00 09 5Sh &l
40 00 BO 0& 3B &5
00 50 7a 74 <4 58
00 00 47 45 54 20
2d &ac 8l 82 Fs T
65 61 6c 2d Bc 61
a6d 6c 20 48 54 54
74 3a 20 67 &1 &9

=]
..... Pzt X)L P
... GE T Awires
hark-labh s/HTTP-g&
thereal- Tab-file
3. html H TTPAL.1.
.Host: g aia.cs.u

File: " DOCUME~ 1\ PALLAW~ 11 LOCALS~ 1} Templether¥xXa02620" 8584 Bytes 00:... |P: 21 D: 21 M: 0 Drops: 0

=]
4

In order to answer the following questions, you’ll need to look into the packet details and
packet contents windows (the middle and lower display windows in Wireshark).

Select the Ethernet frame containing the HTTP GET message. (Recall that the HTTP
GET message is carried inside of a TCP segment, which is carried inside of an IP
datagram, which is carried inside of an Ethernet frame; reread section 1.5.2 in the text if
you find this encapsulation a bit confusing). Expand the Ethernet 1l information in the
packet details window. Note that the contents of the Ethernet frame (header as well as
payload) are displayed in the packet contents window.



7? fAnswer the following questions, based on the contents of the Ethernet frame containing
the HTTP GET message. Whenever possible, when answering a question you should
hand in a printout of the packet(s) within the trace that you used to answer the question
asked. Annotate the printout® to explain your answer. To print a packet, use File->Print,
choose Selected packet only, choose Packet summary line, and select the minimum
amount of packet detail that you need to answer the question.

1. What is the 48-bit Ethernet address of your computer?

2. What is the 48-bit destination address in the Ethernet frame? Is this the Ethernet
address of gaia.cs.umass.edu? (Hint: the answer is no). What device has this as its
Ethernet address? [Note: this is an important question, and one that students
sometimes get wrong. Re-read pages 468-469 in the text and make sure you
understand the answer here.]

3. Give the hexadecimal value for the two-byte Frame type field. What upper layer
protocol does this correspond to?

4. How many bytes from the very start of the Ethernet frame does the ASCII “G” in
“GET” appear in the Ethernet frame?

Next, answer the following questions, based on the contents of the Ethernet frame
containing the first byte of the HTTP response message.

5. What is the value of the Ethernet source address? Is this the address of your
computer, or of gaia.cs.umass.edu (Hint: the answer is no). What device has this
as its Ethernet address?

6. What is the destination address in the Ethernet frame? Is this the Ethernet address
of your computer?

7. Give the hexadecimal value for the two-byte Frame type field. What upper layer
protocol does this correspond to?

8. How many bytes from the very start of the Ethernet frame does the ASCII “O” in
“OK” (i.e., the HTTP response code) appear in the Ethernet frame?

®> What do we mean by “annotate™? If you hand in a paper copy, please highlight where in the printout
you’ve found the answer and add some text (preferably with a colored pen) noting what you found in what
you ‘ve highlight. If you hand in an electronic copy, it would be great if you could also highlight and
annotate.



2. The Address Resolution Protocol

In this section, we’ll observe the ARP protocol in action. We strongly recommend that
you re-read section 5.4.1 in the text before proceeding.

ARP Caching

Recall that the ARP protocol typically maintains a cache of IP-to-Ethernet address
translation pairs on your comnputer The arp command (in both MSDOS and
Linux/Unix) is used to view and manipulate the contents of this cache. Since the arp
command and the ARP protocol have the same name, it’s understandably easy to confuse
them. But keep in mind that they are different - the arp command is used to view and
manipulate the ARP cache contents, while the ARP protocol defines the format and
meaning of the messages sent and received, and defines the actions taken on message
transmission and receipt.

Let’s take a look at the contents of the ARP cache on your computer:

e MS-DOS. The arp command is in c:\windows\system32, so type either “arp” or
“c:\windows\system32\arp” in the MS-DOS command line (without quotation
marks).

e Linux/Unix/MacOS. The executable for the arp command can be in various
places. Popular locations are /sbin/arp (for linux) and /usr/etc/arp (for some Unix
variants).

The Windows arp command with no arguments will display the contents of the ARP
cache on your computer. Run the arp command.

9. Write down the contents of your computer’s ARP cache. What is the meaning of
each column value?

In order to observe your computer sending and receiving ARP messages, we’ll need to
clear the ARP cache, since otherwise your computer is likely to find a needed IP-Ethernet
address translation pair in its cache and consequently not need to send out an ARP
message.

e MS-DOS. The MS-DOS arp —d * command will clear your ARP cache. The —d
flag indicates a deletion operation, and the * is the wildcard that says to delete all
table entries.

e Linux/Unix/MacOS. The arp —d * will clear your ARP cache. In order to run
this command you’ll need root privileges. If you don’t have root privileges and
can’t run Wireshark on a Windows machine, you can skip the trace collection part
of this lab and just use the trace discussed in the earlier footnote.



Observing ARP in action
Do the following®;

e Clear your ARP cache, as described above.

e Next, make sure your browser’s cache is empty. To do this under Mozilla Firefox
V3, select Tools->Clear Recent History and check the box for Cache. For Internet
Explorer, select Tools->Internet Options->Delete Files.

e Start up the Wireshark packet sniffer

e Enter the following URL into your browser
http://gaia.cs.umass.edu/wireshark-labs/HT TP-wireshark-lab-file3.html
Your browser should again display the rather lengthy US Bill of Rights.

e Stop Wireshark packet capture. Again, we’re not interested in IP or higher-layer
protocols, so change Wireshark’s “listing of captured packets” window so that it
shows information only about protocols below IP. To have Wireshark do this,
select Analyze->Enabled Protocols. Then uncheck the IP box and select OK.
You should now see an Wireshark window that looks like:

6 The ethernet-ethereal-trace-1 trace file in http://gaia.cs.umass.edu/wireshark-labs/wireshark-traces.zip
was created using the steps below (in particular after the ARP cache had been flushed).



http://gaia.cs.umass.edu/ethereal-labs/ethereal-traces.zip

72 ethernet-ethereal-trace-1 - Wireshark

File Edit Wew Go Capture Analyze  Statistics  Help

=13

o o o BB x

%y

B R @« » » T & |

Blaaaf|

Filker: | <

Expressian, ..

Clear  Apply ‘

Mo, - Destination

Eroadcast

Source

AMDITTMIC_ad:so:6i

2 0.001018

Protocol | Info

who has T52.T65.1.17 U, les,. 1. ]
192.168.1.1 is at 00 06:25: da af: ?3

LinksysG_da:af:73 ambitmMic_a%:3d:68 ARP
3 0.001028 ambitMic_a%:3d:68 LinksysG_da:af:73  0Ox0BOO IP
4 2.962850 ambitmic_a®:3d:68 LinksysG_da:af:73 Ox0800 IP
5 B.971488 AmbitMic_a%:3d:68 Linksysc_da:af:73  0x0800 IP
5 13,542%74  Telebit_¥3:8d:ce  Broadcast ARP who has 1%2.168.1.1177 Tell 152.168.1.104
7A7.4444235 ambitmMic_a9:3d:68 Linksysc_da:af:?3  0Ox0800 IP
8 17.465902  Linksysc_da:af:73 ambitmic_a®:3d:68 0x0800 IP
9 17.465927  ambitMic_a%9:3d:68 LinksysG_da:af:73 Ox0800 IF
10 17.466468  ambitMic_a%:3d:68 LinksysG_da:af:73 0Ox0BOO IP
11 17.484766  LinksysG_da:af:73 ambitmic_a®:3d:68 0x0800 IP
12 17.498935 LinksysG_da:af:73 ambitmic_a9:3d:68 0x0800 IP
13 17.500025 LinksysG_da:af:73 ambitmic_a%:3d:68 0x0BOO IP
14 17.50006%  ambitMic_a%9:3d:68 Linksysc_da:af:73  0Ox0800 IP
15 17.527057  LinksysG_da:af:73 ambitMic_a%9:3d:68 0x0800 IP
16 17.527422  LinksysG_da:af:73 ambitmic_a%:3d:68 0x0B00 IP
17 17.527457 ambitMic_a%9:3d:68 Linksysc_da:af:73  0Ox0800 IP
[-]
20| I |
® Frame 1 (42 bytes on wire, 42 bytes captured)
# Ethernet II, src: ambitmMic_a%9:3d:68 (00:d0:59:a9:3d:68), Dst: Broadcast (ff:ff:ff:ff:FF:FfD
E address resolution Protocol (reguest)
Hardware type: Ethernet (Ox0001)
Protocal type: IF (0x0500)
Hardware size: &
Protocol size: 4
opcode: request (0x0001)
sender MaC address: ambitMmic_a9:3d:68 (00:d0:59:a9:3d:68)
Sender IP address: 162.168.1.105 (1%2.168.1.105%)
Target MAC address: 00:00:00_00:00:00 (00:00:00:00:00:00)
Target IF address: 1%2,168.1.1 (152.1658.1.1)
cooo fFF FF £ £F F 7 00 do 59 a9 3d 68 08 06 00 01 ..., .. ¥.=h..
0010 08 00 06 04 00 0L 00 d0 5% a% 3d &8 c0 aB 01 69  ........ v.=h...1
0020 00 00 00 00 00 00 cO a8 0101 e
File: "Ci\Documents and SettingsiPaula WingiMy Documentswiresharkitraces - ethereall... |P: 170 17M: 0 A

In the example above, the first two frames in the trace contain ARP messages (as does the
6" message). The screen shot above corresponds to the trace referenced in footnote 1.

sz Answer the following questions:

10. What are the hexadecimal values for the source and destination addresses in the
Ethernet frame containing the ARP request message?

11. Give the hexadecimal value for the two-byte Ethernet Frame type field. What
upper layer protocol does this correspond to?

12. Download the ARP specification from

ftp://ftp.rfc-editor.org/in-notes/std/std37.txt. A readable, detailed discussion of

ARRP is also at http://www.erg.abdn.ac.uk/users/gorry/course/inet-pages/arp.html.

a)
b)

ARP opcode field begin?

How many bytes from the very beginning of the Ethernet frame does the

What is the value of the opcode field within the ARP-payload part of the

Ethernet frame in which an ARP request is made?

c)

Does the ARP message contain the IP address of the sender?


ftp://ftp.rfc-editor.org/in-notes/std/std37.txt
http://www.erg.abdn.ac.uk/users/gorry/course/inet-pages/arp.html

d) Where in the ARP request does the “question” appear — the Ethernet
address of the machine whose corresponding IP address is being queried?

13. Now find the ARP reply that was sent in response to the ARP request.

a) How many bytes from the very beginning of the Ethernet frame does the
ARP opcode field begin?

b) What is the value of the opcode field within the ARP-payload part of the
Ethernet frame in which an ARP response is made?

€) Where in the ARP message does the “answer” to the earlier ARP request
appear — the IP address of the machine having the Ethernet address whose
corresponding IP address is being queried?

14. What are the hexadecimal values for the source and destination addresses in the

15.

Ethernet frame containing the ARP reply message?

Open the ethernet-ethereal-trace-1 trace file in
http://gaia.cs.umass.edu/wireshark-labs/wireshark-traces.zip. The first and second
ARP packets in this trace correspond to an ARP request sent by the computer
running Wireshark, and the ARP reply sent to the computer running Wireshark by
the computer with the ARP-requested Ethernet address. But there is yet another
computer on this network, as indicated by packet 6 — another ARP request. Why
is there no ARP reply (sent in response to the ARP request in packet 6) in the
packet trace?



http://gaia.cs.umass.edu/ethereal-labs/ethereal-traces.zip

Part 3. ICMP

In this lab, we’ll explore several aspects of the ICMP protocol:

e ICMP messages generating by the Ping program;
e [ICMP messages generated by the Traceroute program;
e the format and contents of an ICMP message.

Before attacking this lab, you’re encouraged to review the ICMP material in section 4.4.3
of the text’. We present this lab in the context of the Microsoft Windows operating
system. However, it is straightforward to translate the lab to a Unix or Linux
environment.

ICMP and Ping

Let’s begin our ICMP adventure by capturing the packets generated by the Ping program.
You may recall that the Ping program is simple tool that allows anyone (for example, a
network administrator) to verify if a host is live or not. The Ping program in the source
host sends a packet to the target IP address; if the target is live, the Ping program in the
target host responds by sending a packet back to the source host. As you might have
guessed (given that this lab is about ICMP), both of these Ping packets are ICMP packets.

Do the following®;

e Let’s begin this adventure by opening the Windows Command Prompt application
(which can be found in your Accessories folder).

e Start up the Wireshark packet sniffer, and begin Wireshark packet capture.

e The ping command is in c:\windows\system32, so type either “ping —n 10
hostname” or “c:\windows\system32\ping —n 10 hostname” in the MS-DOS
command line (without quotation marks), where hostname is a host on another
continent. If you’re outside of Asia, you may want to enter www.ust.hk for the
Web server at Hong Kong University of Science and Technology. The argument
“-n 10” indicates that 10 ping messages should be sent. Then run the Ping
program by typing return.

e When the Ping program terminates, stop the packet capture in Wireshark.

" References to figures and sections are for the 6" edition of our text, Computer Networks, A Top-down
Approach, 6" ed., J.F. Kurose and K.W. Ross, Addison-Wesley/Pearson, 2012.

If you are unable to run Wireshark live on a computer, you can download the zip file
http://gaia.cs.umass.edu/wireshark-labs/wireshark-traces.zip and extract the file ICMP-ethereal-trace-1.
The traces in this zip file were collected by Wireshark running on one of the author’s computers, while
performing the steps indicated in the Wireshark lab. Once you have downloaded the trace, you can load it
into Wireshark and view the trace using the File pull down menu, choosing Open, and then selecting the
ICMP-ethereal-trace-1 trace file. You can then use this trace file to answer the questions below.



http://gaia.cs.umass.edu/ethereal-labs/ethereal-traces.zip

At the end of the experiment, your Command Prompt Window should look something
like Figure 1. In this example, the source ping program is in Massachusetts and the
destination Ping program is in Hong Kong. From this window we see that the source ping
program sent 10 query packets and received 10 responses. Note also that for each
response, the source calculates the round-trip time (RTT), which for the 10 packets is on
average 375 msec.

¢ Command Prompt =10l x|

SSUINDOWSSSYSTEMIZ2 >ping —n 18 wuw. ust . hk

inging www_ust.hk [143.89.14.34]1 with 32 hytes of data:

eply from 143.89.14.34: bytes=32 time=415%m= TTL=231
eply from 143.89.14_34: hytes=32 time=424ms TTL=231
eply from 143.89.14.34: bytes=32 time=318m= TTL=231
eply from 143.89.14_34: hytes=32 time=314ms TTL=231
eply from 143.89.14.34: bytes=32 time=336msz TTL=231
eply from 143.89.14_34: hytes=32 time=357ms TTL=231
eply from 143.89.14.34: bhytes=32 time=381ims TTL=231
eply from 143.89.14_34: hytes=32 time=4dims TTL=231
eply from 143.89.14.34: bytes=32 time=488m= TTL=231
eply from 143.89.14_.34: hytes=32 time=407ms TTL=231

ing statistics for 143.89.14_34:

Packetz: Sent = 18, Received = 18, Lost = B8 (Bx loss>.
pproximate round trip times in milli—seconds:

Minimum = 314ms,. MHaximum = 42%ms, Average = 375ms

SSHINDOWSSSYSTEMI2 >
SSWINDOWS-SYSTEM32 >
SSHINDOWSSSYSTEM32 > hd

L4 | 2y

Figure 1 Command Prompt window after entering Ping command.

Figure 2 provides a screenshot of the Wireshark output, after “icmp” has been entered
into the filter display window. Note that the packet listing shows 20 packets: the 10 Ping
queries sent by the source and the 10 Ping responses received by the source. Also note
that the source’s IP address is a private address (behind a NAT) of the form 192.168/12;
the destination’s IP address is that of the Web server at HKUST. Now let’s zoom in on
the first packet (sent by the client); in the figure below, the packet contents area provides
information about this packet. We see that the IP datagram within this packet has
protocol number 01, which is the protocol number for ICMP. This means that the payload
of the IP datagram is an ICMP packet.



7! icmp-ethereal-trace-1 - Wireshark

File Edit WYiew Go Capture pnalyze Statistics  Help

E S 2@ x « & R « » » F & | BE & aq
Eilter: |icmp ¥  Expression... Clear Apply
Mo, - Time Siource Destination Protocol | Info =

4 0.415098 . 192.165.1.101 IcMP Echo (pingd reply

5 1.008279 1592.168.1.101 145, 85.14. 354 ICMP  Echo (ping) reguest

6 1.431684 143.89.14.34 192.168.1.101 ICMP Echo (ping) reply

7 2.008328 1592.168.1.101 143, 89.14.34 ICMP  Echo (ping) reguest

g8 2.324470 143.89.14. 34 192.168.1.101 ICMP Echo {pingld reply

D 3.008356 1%2.1658.1.101 1435, 859.14. 54 ICMF  Echo (ping) reguest

10 3.321121 143.89.14.34 192.168.1.101 ICMP Echo (ping) reply

11 4.008398 192.168,1.101 143.809.14.34 ICMP Echo ping) reguest

12 4.343301 143.89.14.34 192.168.1.101 ICMP Echo Cpingld reply

13 5.006454 192.168.1.101 143.89.14.34 ICMP Echo (ping) reguest

14 5.365480 143.89.14.34 192.168.1.101 ICMP Echo (ping) reply

15 6.022116 192.168,1.101 143.809.14.34 ICMP Echo ping) reguest

16 6.403470 143,89.14.34 1%2,.168.1,101 ICMP Echo {pingld reply

17 7.022213 192.168.1.101 143.89.14.34 ICMP Echo pingd reguest

18 7.425214 143.89.14.34 192.168.1.101 ICMP Echo (ping) reply

19 B.022240 152.168.1.101 143.85.14.34 IZMP Echo {ping) reguest

20 B.423018 143,89.14.34 1%2,.168.1,101 ICMP Echo {pingld reply

21 9.022254 192.168.1.101 143.89.14.34 ICMP Echo pingd reguest

22 9.4352063 143.89.14.34 192.168.1.101 ICMP Echo (pingl) reply -
i | |

Frame 3 (74 bytes aon wire, 74 bytes captured)

0 =

Internet Protocol, src: 192.168.1.101 (192.165.1.1010, Dst: 143.89.14.34 (143.59.14.34)
version: 4
Header length: 20 bytes
# Differentiated serwvices Field: 0x00 (DsCP Ox00: Default; ECNHN: 0x00)
Total Length: &0
Identification: Oxdlfd (537570
F Flags: 0x00
Fragment offset: 0
Time to Tiwve: 128
Protocol: ICMP (0x01)
# Header checksum: 0x093bh [correct]
Source: 192.168.1.101 ¢192.168.1.101)
Cestination: 143.89.14.34 (143.809.14.34)

Ethernet II, src: Dellcomp_4f:36:23 (00:08:74:47:36:23), Dst: LinksysG_da:af:73 (00:06:25:da:af:73)

| »
059 v LELY =
[] L2000
Imn opgrs
efg hi
Internet Control Message Protocol {icmp), 40 bytes | P 22D 20M: 0 2

Figure 2 Wireshark output for Ping program with Internet Protocol expanded.

Figure 3 focuses on the same ICMP but has expanded the ICMP protocol information in
the packet contents window. Observe that this ICMP packet is of Type 8 and Code 0 - a

so-called ICMP “echo request” packet. (See Figure 4.23 of text.) Also note that this
ICMP packet contains a checksum, an identifier, and a sequence number.




E7 4

1 icmp-ethereal-trace-1 - Wireshark

File Edit Wew Go Capture Analyze Statistics Help

2 @ o 5@ x 9 8| 8 ¢« » » F & || [EE & a q
Filter: |icmp >  Expression... Clear Apply
Mo, - Time: Source Destination Protocal | Info -
3 0. 556 168.1.10] 5,14, C .
4 0.415098 143, 89.14.34 152.168.1.101 ICMP Echo (ping) reply
5 1.006279 1592.168.1.101 143.89.14. 34 ICMP Echo ping) reguest
6 1.431684 143.89.14.34 192.168.1.101 ICMP Echo (ping) reply
7 2.006328 192.1658.1.101 143.59.14.34 IcMP Echo (ping) reguest
8 2.324479 14%.89.14.34 152.168.1.101 ICMpP Echo (ping) reply
9 3.0068356 192.1658.1.101 143.59.14.34 IcMP Echo (ping) reguest
10 3.321121 143.89.14.34 152.168.1.101 ICMP Echo (ping) reply
11 4.006398 192.168.1.101 145.89.14.34 ICMP Echo (ping) request
12 4.343501 143.86.14.34 152.168.1.101 ICMP Echo (ping) reply
15 5.006454 192.168.1.101 145.89.14.34 ICMP Echo (ping) request
14 5.353480 143, 89.14.34 152,1658.1.101 IcmP Echo Cping) reply
15 6.022116 152.168.1.101 143.89.14.34 ICMpP Echo (ping) request
16 6.403470 143, 89.14.34 152.168.1.101 ICMP Echo (ping) reply
17 7.022213 152.168.1.101 143.89.14.34 ICMP Echo (ping) reguest
18 7.423214 143.89.14.34 192.168.1.101 ICMP Echo (ping) reply
1% B.022245 152.168.1.101 143.85.14.34 ICMP Echo {ping) reguest
20 B.423018 14%.89.14.34 152.168.1.101 ICMpP Echo (ping) reply
21 9.022254 192.168.1.101 145, 89.14.34 ICMP Echo {ping) reguest
22 9.4320863 143.89.14.34 152.168.1.101 ICMpP Echo (ping) reply i
il | |

= Frame 3 74 bytes on wire, 74 bytes captured)

# Ethernet II, src: DellComp_4f:36:23 (00:08:74:4F:36:23), Dst: LinksysG_da:af:73 (00:06:25:da:af:73)
Internet Protocol, Src: 162.168.1.101 ¢152.168.1.1010, Dst: 143.89.14.34 (143.89.14.34)

8 Internet Control Message Protocol

Type: 8 (Echo (ping) request)
Code: O

Checksum: Oxed45a [correct]
Identifier: 0x0200

Sequence number: 26369 (0xE70L)
pata (32 bytes)

D000 00 0G 25 da af 73 00 O 74 4T 36 23 08 00 43 00 ..%..5.. TOGF..E.
0010 00 3c dl fd 00 00 80 01 09 3h O a8 01 65 &f 59 < ; ¥
TRELERPPRI0S 00 o4 5a 02 00 67 O 3 65 ool

. 0.

0030 ] 'In_m Elpl: r
0040 cdefg hi
Internet Control Message Protocol {icmp), 40 bytes |P: ZZDn20M: 0 A

Figure 3 Wireshark capture of ping packet with ICMP packet expanded.

What to Hand In:

You should hand in a screen shot of the Command Prompt window similar to Figure 1
above. Whenever possible, when answering a question below, you should hand in a
printout of the packet(s) within the trace that you used to answer the question asked.
Annotate the printout® to explain your answer. To print a packet, use File->Print, choose
Selected packet only, choose Packet summary line, and select the minimum amount of
packet detail that you need to answer the question.

You should answer the following questions:

® What do we mean by “annotate™? If you hand in a paper copy, please highlight where in the printout
you’ve found the answer and add some text (preferably with a colored pen) noting what you found in what
you ‘ve highlight. If you hand in an electronic copy, it would be great if you could also highlight and
annotate.



. What is the IP address of your host? What is the IP address of the destination

host?

. Why is it that an ICMP packet does not have source and destination port

numbers?

. Examine one of the ping request packets sent by your host. What are the ICMP
type and code numbers? What other fields does this ICMP packet have? How

many bytes are the checksum, sequence number and identifier fields?

Examine the corresponding ping reply packet. What are the ICMP type and code

numbers? What other fields does this ICMP packet have? How many bytes are the

checksum, sequence number and identifier fields?



