

Capturing Traffic with Wireshark

Prepared for UCC Networking Course, June - August 2012.

Purpose of this lab:

The purpose of this lab is to gain practical experience with the Wireshark traffic analyzer
which allows the observation of network traffic.

Software Tools:

 Wireshark traffic analyzer.

 Wireshark is installed on the computers of the classroom.

What to turn in:

 A report with your answers to the questions in this lab, including the plots, copies of
your MATLAB code, and the anonymous feedback form.

 The symbol indicates questions for the lab report.

 The lab exercises and the lab reported are to be completed individually.

 The estimated time to complete the lab is 3 hours.

This lab uses

 Wireshark Lab: Getting Started v6.0

 Wireshark Lab: Ethernet and ARP v6.01

 Wireshark Lab: ICMP v6.0

Supplement to Computer Networking: A Top-Down Approach, 6
th

 ed., J.F. Kurose and

K.W. Ross, © 2005-21012, J.F Kurose and K.W. Ross, All Rights Reserved

Lab

1

Part 1. Getting Started with Wireshark

One’s understanding of network protocols can often be greatly deepened by “seeing

protocols in action” and by “playing around with protocols” – observing the sequence of

messages exchanged between two protocol entities, delving down into the details of

protocol operation, and causing protocols to perform certain actions and then observing

these actions and their consequences. This can be done in simulated scenarios or in a

“real” network environment such as the Internet. In the Wireshark labs you’ll be doing in

this course, you’ll be running various network applications in different scenarios using

your own computer (or you can borrow a friends; let me know if you don’t have access to

a computer where you can install/run Wireshark). You’ll observe the network protocols

in your computer “in action,” interacting and exchanging messages with protocol entities

executing elsewhere in the Internet. Thus, you and your computer will be an integral

part of these “live” labs. You’ll observe, and you’ll learn, by doing.

In this first Wireshark lab, you’ll get acquainted with Wireshark, and make some simple

packet captures and observations.

The basic tool for observing the messages exchanged between executing protocol entities

is called a packet sniffer. As the name suggests, a packet sniffer captures (“sniffs”)

messages being sent/received from/by your computer; it will also typically store and/or

display the contents of the various protocol fields in these captured messages. A packet

sniffer itself is passive. It observes messages being sent and received by applications and

protocols running on your computer, but never sends packets itself. Similarly, received

packets are never explicitly addressed to the packet sniffer. Instead, a packet sniffer

receives a copy of packets that are sent/received from/by application and protocols

executing on your machine.

Figure 1 shows the structure of a packet sniffer. At the right of Figure 1 are the protocols

(in this case, Internet protocols) and applications (such as a web browser or ftp client)

that normally run on your computer. The packet sniffer, shown within the dashed

rectangle in Figure 1 is an addition to the usual software in your computer, and consists

of two parts. The packet capture library receives a copy of every link-layer frame that

is sent from or received by your computer. Recall from the discussion from section 1.5 in

the text (Figure 1.24
1
) that messages exchanged by higher layer protocols such as HTTP,

FTP, TCP, UDP, DNS, or IP all are eventually encapsulated in link-layer frames that are

transmitted over physical media such as an Ethernet cable. In Figure 1, the assumed

physical media is an Ethernet, and so all upper-layer protocols are eventually

encapsulated within an Ethernet frame. Capturing all link-layer frames thus gives you all

messages sent/received from/by all protocols and applications executing in your

computer.

1
 References to figures and sections are for the 6

th
 edition of our text, Computer Networks, A Top-down

Approach, 6
th

 ed., J.F. Kurose and K.W. Ross, Addison-Wesley/Pearson, 2012.

operating
system

application

 packet
capture
(pcap)

copy of all Ethernet
frames sent/received

application (e.g., www
browser, ftp client)

Transport (TCP/UDP)

Network (IP)

Link (Ethernet)

Physical

packet
analyzer

packet sniffer

Figure 1: Packet sniffer structure

to/from network to/from network

The second component of a packet sniffer is the packet analyzer, which displays the

contents of all fields within a protocol message. In order to do so, the packet analyzer

must “understand” the structure of all messages exchanged by protocols. For example,

suppose we are interested in displaying the various fields in messages exchanged by the

HTTP protocol in Figure 1. The packet analyzer understands the format of Ethernet

frames, and so can identify the IP datagram within an Ethernet frame. It also understands

the IP datagram format, so that it can extract the TCP segment within the IP datagram.

Finally, it understands the TCP segment structure, so it can extract the HTTP message

contained in the TCP segment. Finally, it understands the HTTP protocol and so, for

example, knows that the first bytes of an HTTP message will contain the string “GET,”

“POST,” or “HEAD,” as shown in Figure 2.8 in the text.

We will be using the Wireshark packet sniffer [http://www.wireshark.org/] for these labs,

allowing us to display the contents of messages being sent/received from/by protocols at

different levels of the protocol stack. (Technically speaking, Wireshark is a packet

analyzer that uses a packet capture library in your computer). Wireshark is a free network

protocol analyzer that runs on Windows, Linux/Unix, and Mac computers. It’s an ideal

packet analyzer for our labs – it is stable, has a large user base and well-documented

support that includes a user-guide (http://www.wireshark.org/docs/wsug_html_chunked/),

man pages (http://www.wireshark.org/docs/man-pages/), and a detailed FAQ

(http://www.wireshark.org/faq.html), rich functionality that includes the capability to

analyze hundreds of protocols, and a well-designed user interface. It operates in

computers using Ethernet, serial (PPP and SLIP), 802.11 wireless LANs, and many other

link-layer technologies (if the OS on which it's running allows Wireshark to do so).

http://www.wireshark.org/
http://www.wireshark.org/docs/wsug_html_chunked/
http://www.wireshark.org/docs/man-pages/
http://www.wireshark.org/faq.html

Getting Wireshark

In order to run Wireshark, you will need to have access to a computer that supports both

Wireshark and the libpcap or WinPCap packet capture library. The libpcap software will

be installed for you, if it is not installed within your operating system, when you install

Wireshark. See http://www.wireshark.org/download.html for a list of supported

operating systems and download sites

Download and install the Wireshark software:

 Go to http://www.wireshark.org/download.html and download and install the

Wireshark binary for your computer.

The Wireshark FAQ has a number of helpful hints and interesting tidbits of information,

particularly if you have trouble installing or running Wireshark.

Running Wireshark

When you run the Wireshark program, you’ll get a startup screen, as shown below:

Figure 2: Initial Wireshark Screen

Take a look at the upper left hand side of the screen – you’ll see an “Interface list”. This

is the list of network interfaces on your computer. Once you choose an interface,

Wireshark will capture all packets on that interface. In the example above, there is an

Ethernet interface (Gigabit network Connection) and a wireless interface (“Microsoft”).

If you click on one of these interfaces to start packet capture (i.e., for Wireshark to begin

capturing all packets being sent to/from that interface), a screen like the one below will

http://www.wireshark.org/download.html
http://www.wireshark.org/download.html

be displayed, showing information about the packets being captured. Once you start

packet capture, you can stop it by using the Capture pull down menu and selecting Stop.

listing of

captured

packets

details of

selected

packet

header

packet content

in hexadecimal

and ASCII

display filter

specification

command

menus

Figure 3: Wireshark Graphical User Interface, during packet capture and analysis

The Wireshark interface has five major components:

 The command menus are standard pulldown menus located at the top of the

window. Of interest to us now are the File and Capture menus. The File menu

allows you to save captured packet data or open a file containing previously

captured packet data, and exit the Wireshark application. The Capture menu

allows you to begin packet capture.

 The packet-listing window displays a one-line summary for each packet

captured, including the packet number (assigned by Wireshark; this is not a

packet number contained in any protocol’s header), the time at which the packet

was captured, the packet’s source and destination addresses, the protocol type,

and protocol-specific information contained in the packet. The packet listing can

be sorted according to any of these categories by clicking on a column name. The

protocol type field lists the highest-level protocol that sent or received this packet,

i.e., the protocol that is the source or ultimate sink for this packet.

 The packet-header details window provides details about the packet selected

(highlighted) in the packet-listing window. (To select a packet in the packet-

listing window, place the cursor over the packet’s one-line summary in the

packet-listing window and click with the left mouse button.). These details

include information about the Ethernet frame (assuming the packet was

sent/received over an Ethernet interface) and IP datagram that contains this

packet. The amount of Ethernet and IP-layer detail displayed can be expanded or

minimized by clicking on the plus minus boxes to the left of the Ethernet frame or

IP datagram line in the packet details window. If the packet has been carried over

TCP or UDP, TCP or UDP details will also be displayed, which can similarly be

expanded or minimized. Finally, details about the highest-level protocol that sent

or received this packet are also provided.

 The packet-contents window displays the entire contents of the captured frame,

in both ASCII and hexadecimal format.

 Towards the top of the Wireshark graphical user interface, is the packet display

filter field, into which a protocol name or other information can be entered in

order to filter the information displayed in the packet-listing window (and hence

the packet-header and packet-contents windows). In the example below, we’ll

use the packet-display filter field to have Wireshark hide (not display) packets

except those that correspond to HTTP messages.

Taking Wireshark for a Test Run

The best way to learn about any new piece of software is to try it out! We’ll assume that

your computer is connected to the Internet via a wired Ethernet interface. Indeed, I

recommend that you do this first lab on a computer that has a wired Ethernet connection,

rather than just a wireless connection. Do the following

1. Start up your favorite web browser, which will display your selected homepage.

2. Start up the Wireshark software. You will initially see a window similar to that

shown in Figure 2. Wireshark has not yet begun capturing packets.

3. To begin packet capture, select the Capture pull down menu and select Interfaces.

This will cause the “Wireshark: Capture Interfaces” window to be displayed, as

shown in Figure 4.

 Figure 4: Wireshark Capture Interface Window

4. You’ll see a list of the interfaces on your computer as well as a count of the

packets that have been observed on that interface so far. Click on Start for the

interface on which you want to begin packet capture (in the case, the Gigabit

network Connection). Packet capture will now begin - Wireshark is now

capturing all packets being sent/received from/by your computer!

5. Once you begin packet capture, a window similar to that shown in Figure 3 will

appear. This window shows the packets being captured. By selecting Capture

pulldown menu and selecting Stop, you can stop packet capture. But don’t stop

packet capture yet. Let’s capture some interesting packets first. To do so, we’ll

need to generate some network traffic. Let’s do so using a web browser, which

will use the HTTP protocol that we will study in detail in class to download

content from a website.

6. While Wireshark is running, enter the URL:

http://gaia.cs.umass.edu/wireshark-labs/INTRO-wireshark-file1.html

and have that page displayed in your browser. In order to display this page, your

browser will contact the HTTP server at gaia.cs.umass.edu and exchange HTTP

messages with the server in order to download this page, as discussed in section

2.2 of the text. The Ethernet frames containing these HTTP messages (as well as

all other frames passing through your Ethernet adapter) will be captured by

Wireshark.

7. After your browser has displayed the INTRO-wireshark-file1.html page (it is a

simple one line of congratulations), stop Wireshark packet capture by selecting

stop in the Wireshark capture window. The main Wireshark window should now

look similar to Figure 3. You now have live packet data that contains all protocol

messages exchanged between your computer and other network entities! The

HTTP message exchanges with the gaia.cs.umass.edu web server should appear

somewhere in the listing of packets captured. But there will be many other types

of packets displayed as well (see, e.g., the many different protocol types shown in

the Protocol column in Figure 3). Even though the only action you took was to

download a web page, there were evidently many other protocols running on your

computer that are unseen by the user. We’ll learn much more about these

protocols as we progress through the text! For now, you should just be aware that

there is often much more going on than “meet’s the eye”!

8. Type in “http” (without the quotes, and in lower case – all protocol names are in

lower case in Wireshark) into the display filter specification window at the top of

the main Wireshark window. Then select Apply (to the right of where you entered

“http”). This will cause only HTTP message to be displayed in the packet-listing

window.

9. Find the HTTP GET message that was sent from your computer to the

gaia.cs.umass.edu HTTP server. (Look for an HTTP GET message in the “listing

of captured packets” portion of the Wireshark window (see Figure 3) that shows

“GET” followed by the gaia.cs.umass.edu URL that you entered. When you

select the HTTP GET message, the Ethernet frame, IP datagram, TCP segment,

http://gaia.cs.umass.edu/wireshark-labs/INTRO-wireshark-file1.html

and HTTP message header information will be displayed in the packet-header

window
2
. By clicking on ‘+’ and ‘-‘ right-pointing and down-pointing arrowheads

to the left side of the packet details window, minimize the amount of Frame,

Ethernet, Internet Protocol, and Transmission Control Protocol information

displayed. Maximize the amount information displayed about the HTTP protocol.

Your Wireshark display should now look roughly as shown in Figure 5. (Note, in

particular, the minimized amount of protocol information for all protocols except

HTTP, and the maximized amount of protocol information for HTTP in the

packet-header window).

10. Exit Wireshark

Congratulations! You’ve now completed the first lab.

Figure 5: Wireshark window after step 9

2
 Recall that the HTTP GET message that is sent to the gaia.cs.umass.edu web server is contained within a

TCP segment, which is contained (encapsulated) in an IP datagram, which is encapsulated in an Ethernet

frame. If this process of encapsulation isn’t quite clear yet, review section 1.5 in the text

What to hand in

The goal of this first lab was primarily to introduce you to Wireshark. The following

questions will demonstrate that you’ve been able to get Wireshark up and running, and

have explored some of its capabilities. Answer the following questions, based on your

Wireshark experimentation:

1. List 3 different protocols that appear in the protocol column in the unfiltered

packet-listing window in step 7 above.

2. How long did it take from when the HTTP GET message was sent until the HTTP

OK reply was received? (By default, the value of the Time column in the packet-

listing window is the amount of time, in seconds, since Wireshark tracing began.

To display the Time field in time-of-day format, select the Wireshark View pull

down menu, then select Time Display Format, then select Time-of-day.)

3. What is the Internet address of the gaia.cs.umass.edu (also known as www-

net.cs.umass.edu)? What is the Internet address of your computer?

4. Print the two HTTP messages (GET and OK) referred to in question 2 above. To

do so, select Print from the Wireshark File command menu, and select the

“Selected Packet Only” and “Print as displayed” radial buttons, and then click

OK.

Part 2: Ethernet and ARP

In this lab, we’ll investigate the Ethernet protocol and the ARP protocol. Before

beginning this lab, you’ll probably want to review sections 5.4.1 (link-layer addressing

and ARP) and 5.4.2 (Ethernet) in the text
3
. RFC 826 (ftp://ftp.rfc-editor.org/in-

notes/std/std37.txt) contains the gory details of the ARP protocol, which is used by an IP

device to determine the IP address of a remote interface whose Ethernet address is

known.

1. Capturing and analyzing Ethernet frames

Let’s begin by capturing a set of Ethernet frames to study. Do the following
4
:

 First, make sure your browser’s cache is empty. To do this under Mozilla Firefox

V3, select Tools->Clear Recent History and check the box for Cache. For Internet

Explorer, select Tools->Internet Options->Delete Files. Start up the Wireshark

packet sniffer

 Enter the following URL into your browser

http://gaia.cs.umass.edu/wireshark-labs/HTTP-ethereal-lab-file3.html

Your browser should display the rather lengthy US Bill of Rights.

3
 References to figures and sections are for the 6

th
 edition of our text, Computer Networks, A Top-down

Approach, 6
th

 ed., J.F. Kurose and K.W. Ross, Addison-Wesley/Pearson, 2012.
4
 If you are unable to run Wireshark live on a computer, you can download the zip file

http://gaia.cs.umass.edu/wireshark-labs/wireshark-traces.zip and extract the file ethernet--ethereal-trace-1.

The traces in this zip file were collected by Wireshark running on one of the author’s computers, while

performing the steps indicated in the Wireshark lab. Once you have downloaded the trace, you can load it

into Wireshark and view the trace using the File pull down menu, choosing Open, and then selecting the

ethernet-ethereal-trace-1 trace file. You can then use this trace file to answer the questions below.

ftp://ftp.rfc-editor.org/in-notes/std/std37.txt
ftp://ftp.rfc-editor.org/in-notes/std/std37.txt
http://gaia.cs.umass.edu/ethereal-labs/ethereal-traces.zip

 Stop Wireshark packet capture. First, find the packet numbers (the leftmost

column in the upper Wireshark window) of the HTTP GET message that was sent

from your computer to gaia.cs.umass.edu, as well as the beginning of the HTTP

response message sent to your computer by gaia.cs.umass.edu. You should see a

screen that looks something like this (where packet 4 in the screen shot below

contains the HTTP GET message)

 Since this lab is about Ethernet and ARP, we’re not interested in IP or higher-

layer protocols. So let’s change Wireshark’s “listing of captured packets” window

so that it shows information only about protocols below IP. To have Wireshark do

this, select Analyze->Enabled Protocols. Then uncheck the IP box and select OK.

You should now see an Wireshark window that looks like:

In order to answer the following questions, you’ll need to look into the packet details and

packet contents windows (the middle and lower display windows in Wireshark).

Select the Ethernet frame containing the HTTP GET message. (Recall that the HTTP

GET message is carried inside of a TCP segment, which is carried inside of an IP

datagram, which is carried inside of an Ethernet frame; reread section 1.5.2 in the text if

you find this encapsulation a bit confusing). Expand the Ethernet II information in the

packet details window. Note that the contents of the Ethernet frame (header as well as

payload) are displayed in the packet contents window.

Answer the following questions, based on the contents of the Ethernet frame containing

the HTTP GET message. Whenever possible, when answering a question you should

hand in a printout of the packet(s) within the trace that you used to answer the question

asked. Annotate the printout
5
 to explain your answer. To print a packet, use File->Print,

choose Selected packet only, choose Packet summary line, and select the minimum

amount of packet detail that you need to answer the question.

1. What is the 48-bit Ethernet address of your computer?

2. What is the 48-bit destination address in the Ethernet frame? Is this the Ethernet

address of gaia.cs.umass.edu? (Hint: the answer is no). What device has this as its

Ethernet address? [Note: this is an important question, and one that students

sometimes get wrong. Re-read pages 468-469 in the text and make sure you

understand the answer here.]

3. Give the hexadecimal value for the two-byte Frame type field. What upper layer

protocol does this correspond to?

4. How many bytes from the very start of the Ethernet frame does the ASCII “G” in

“GET” appear in the Ethernet frame?

Next, answer the following questions, based on the contents of the Ethernet frame

containing the first byte of the HTTP response message.

5. What is the value of the Ethernet source address? Is this the address of your

computer, or of gaia.cs.umass.edu (Hint: the answer is no). What device has this

as its Ethernet address?

6. What is the destination address in the Ethernet frame? Is this the Ethernet address

of your computer?

7. Give the hexadecimal value for the two-byte Frame type field. What upper layer

protocol does this correspond to?

8. How many bytes from the very start of the Ethernet frame does the ASCII “O” in

“OK” (i.e., the HTTP response code) appear in the Ethernet frame?

5
 What do we mean by “annotate”? If you hand in a paper copy, please highlight where in the printout

you’ve found the answer and add some text (preferably with a colored pen) noting what you found in what

you ‘ve highlight. If you hand in an electronic copy, it would be great if you could also highlight and

annotate.

2. The Address Resolution Protocol

In this section, we’ll observe the ARP protocol in action. We strongly recommend that

you re-read section 5.4.1 in the text before proceeding.

ARP Caching

Recall that the ARP protocol typically maintains a cache of IP-to-Ethernet address

translation pairs on your comnputer The arp command (in both MSDOS and

Linux/Unix) is used to view and manipulate the contents of this cache. Since the arp

command and the ARP protocol have the same name, it’s understandably easy to confuse

them. But keep in mind that they are different - the arp command is used to view and

manipulate the ARP cache contents, while the ARP protocol defines the format and

meaning of the messages sent and received, and defines the actions taken on message

transmission and receipt.

Let’s take a look at the contents of the ARP cache on your computer:

 MS-DOS. The arp command is in c:\windows\system32, so type either “arp” or

“c:\windows\system32\arp” in the MS-DOS command line (without quotation

marks).

 Linux/Unix/MacOS. The executable for the arp command can be in various

places. Popular locations are /sbin/arp (for linux) and /usr/etc/arp (for some Unix

variants).

The Windows arp command with no arguments will display the contents of the ARP

cache on your computer. Run the arp command.

9. Write down the contents of your computer’s ARP cache. What is the meaning of

each column value?

In order to observe your computer sending and receiving ARP messages, we’ll need to

clear the ARP cache, since otherwise your computer is likely to find a needed IP-Ethernet

address translation pair in its cache and consequently not need to send out an ARP

message.

 MS-DOS. The MS-DOS arp –d * command will clear your ARP cache. The –d

flag indicates a deletion operation, and the * is the wildcard that says to delete all

table entries.

 Linux/Unix/MacOS. The arp –d * will clear your ARP cache. In order to run

this command you’ll need root privileges. If you don’t have root privileges and

can’t run Wireshark on a Windows machine, you can skip the trace collection part

of this lab and just use the trace discussed in the earlier footnote.

Observing ARP in action

Do the following
6
:

 Clear your ARP cache, as described above.

 Next, make sure your browser’s cache is empty. To do this under Mozilla Firefox

V3, select Tools->Clear Recent History and check the box for Cache. For Internet

Explorer, select Tools->Internet Options->Delete Files.

 Start up the Wireshark packet sniffer

 Enter the following URL into your browser

http://gaia.cs.umass.edu/wireshark-labs/HTTP-wireshark-lab-file3.html

Your browser should again display the rather lengthy US Bill of Rights.

 Stop Wireshark packet capture. Again, we’re not interested in IP or higher-layer

protocols, so change Wireshark’s “listing of captured packets” window so that it

shows information only about protocols below IP. To have Wireshark do this,

select Analyze->Enabled Protocols. Then uncheck the IP box and select OK.

You should now see an Wireshark window that looks like:

6
 The ethernet-ethereal-trace-1 trace file in http://gaia.cs.umass.edu/wireshark-labs/wireshark-traces.zip

was created using the steps below (in particular after the ARP cache had been flushed).

http://gaia.cs.umass.edu/ethereal-labs/ethereal-traces.zip

In the example above, the first two frames in the trace contain ARP messages (as does the

6
th

 message). The screen shot above corresponds to the trace referenced in footnote 1.

Answer the following questions:

10. What are the hexadecimal values for the source and destination addresses in the

Ethernet frame containing the ARP request message?

11. Give the hexadecimal value for the two-byte Ethernet Frame type field. What

upper layer protocol does this correspond to?

12. Download the ARP specification from

 ftp://ftp.rfc-editor.org/in-notes/std/std37.txt. A readable, detailed discussion of

ARP is also at http://www.erg.abdn.ac.uk/users/gorry/course/inet-pages/arp.html.

a) How many bytes from the very beginning of the Ethernet frame does the

ARP opcode field begin?

b) What is the value of the opcode field within the ARP-payload part of the

Ethernet frame in which an ARP request is made?

c) Does the ARP message contain the IP address of the sender?

ftp://ftp.rfc-editor.org/in-notes/std/std37.txt
http://www.erg.abdn.ac.uk/users/gorry/course/inet-pages/arp.html

d) Where in the ARP request does the “question” appear – the Ethernet

address of the machine whose corresponding IP address is being queried?

13. Now find the ARP reply that was sent in response to the ARP request.

a) How many bytes from the very beginning of the Ethernet frame does the

ARP opcode field begin?

b) What is the value of the opcode field within the ARP-payload part of the

Ethernet frame in which an ARP response is made?

c) Where in the ARP message does the “answer” to the earlier ARP request

appear – the IP address of the machine having the Ethernet address whose

corresponding IP address is being queried?

14. What are the hexadecimal values for the source and destination addresses in the

Ethernet frame containing the ARP reply message?

15. Open the ethernet-ethereal-trace-1 trace file in

http://gaia.cs.umass.edu/wireshark-labs/wireshark-traces.zip. The first and second

ARP packets in this trace correspond to an ARP request sent by the computer

running Wireshark, and the ARP reply sent to the computer running Wireshark by

the computer with the ARP-requested Ethernet address. But there is yet another

computer on this network, as indicated by packet 6 – another ARP request. Why

is there no ARP reply (sent in response to the ARP request in packet 6) in the

packet trace?

http://gaia.cs.umass.edu/ethereal-labs/ethereal-traces.zip

Part 3. ICMP

In this lab, we’ll explore several aspects of the ICMP protocol:

 ICMP messages generating by the Ping program;

 ICMP messages generated by the Traceroute program;

 the format and contents of an ICMP message.

Before attacking this lab, you’re encouraged to review the ICMP material in section 4.4.3

of the text
7
. We present this lab in the context of the Microsoft Windows operating

system. However, it is straightforward to translate the lab to a Unix or Linux

environment.

 ICMP and Ping

Let’s begin our ICMP adventure by capturing the packets generated by the Ping program.

You may recall that the Ping program is simple tool that allows anyone (for example, a

network administrator) to verify if a host is live or not. The Ping program in the source

host sends a packet to the target IP address; if the target is live, the Ping program in the

target host responds by sending a packet back to the source host. As you might have

guessed (given that this lab is about ICMP), both of these Ping packets are ICMP packets.

Do the following
8
:

 Let’s begin this adventure by opening the Windows Command Prompt application

(which can be found in your Accessories folder).

 Start up the Wireshark packet sniffer, and begin Wireshark packet capture.

 The ping command is in c:\windows\system32, so type either “ping –n 10

hostname” or “c:\windows\system32\ping –n 10 hostname” in the MS-DOS

command line (without quotation marks), where hostname is a host on another

continent. If you’re outside of Asia, you may want to enter www.ust.hk for the

Web server at Hong Kong University of Science and Technology. The argument

“-n 10” indicates that 10 ping messages should be sent. Then run the Ping

program by typing return.

 When the Ping program terminates, stop the packet capture in Wireshark.

7
 References to figures and sections are for the 6

th
 edition of our text, Computer Networks, A Top-down

Approach, 6
th

 ed., J.F. Kurose and K.W. Ross, Addison-Wesley/Pearson, 2012.
8
 If you are unable to run Wireshark live on a computer, you can download the zip file

http://gaia.cs.umass.edu/wireshark-labs/wireshark-traces.zip and extract the file ICMP-ethereal-trace-1.

The traces in this zip file were collected by Wireshark running on one of the author’s computers, while

performing the steps indicated in the Wireshark lab. Once you have downloaded the trace, you can load it

into Wireshark and view the trace using the File pull down menu, choosing Open, and then selecting the

ICMP-ethereal-trace-1 trace file. You can then use this trace file to answer the questions below.

http://gaia.cs.umass.edu/ethereal-labs/ethereal-traces.zip

At the end of the experiment, your Command Prompt Window should look something

like Figure 1. In this example, the source ping program is in Massachusetts and the

destination Ping program is in Hong Kong. From this window we see that the source ping

program sent 10 query packets and received 10 responses. Note also that for each

response, the source calculates the round-trip time (RTT), which for the 10 packets is on

average 375 msec.

Figure 1 Command Prompt window after entering Ping command.

Figure 2 provides a screenshot of the Wireshark output, after “icmp” has been entered

into the filter display window. Note that the packet listing shows 20 packets: the 10 Ping

queries sent by the source and the 10 Ping responses received by the source. Also note

that the source’s IP address is a private address (behind a NAT) of the form 192.168/12;

the destination’s IP address is that of the Web server at HKUST. Now let’s zoom in on

the first packet (sent by the client); in the figure below, the packet contents area provides

information about this packet. We see that the IP datagram within this packet has

protocol number 01, which is the protocol number for ICMP. This means that the payload

of the IP datagram is an ICMP packet.

Figure 2 Wireshark output for Ping program with Internet Protocol expanded.

Figure 3 focuses on the same ICMP but has expanded the ICMP protocol information in

the packet contents window. Observe that this ICMP packet is of Type 8 and Code 0 - a

so-called ICMP “echo request” packet. (See Figure 4.23 of text.) Also note that this

ICMP packet contains a checksum, an identifier, and a sequence number.

Figure 3 Wireshark capture of ping packet with ICMP packet expanded.

What to Hand In:

You should hand in a screen shot of the Command Prompt window similar to Figure 1

above. Whenever possible, when answering a question below, you should hand in a

printout of the packet(s) within the trace that you used to answer the question asked.

Annotate the printout
9
 to explain your answer. To print a packet, use File->Print, choose

Selected packet only, choose Packet summary line, and select the minimum amount of

packet detail that you need to answer the question.

You should answer the following questions:

9
 What do we mean by “annotate”? If you hand in a paper copy, please highlight where in the printout

you’ve found the answer and add some text (preferably with a colored pen) noting what you found in what

you ‘ve highlight. If you hand in an electronic copy, it would be great if you could also highlight and

annotate.

1. What is the IP address of your host? What is the IP address of the destination

host?

2. Why is it that an ICMP packet does not have source and destination port

numbers?

3. Examine one of the ping request packets sent by your host. What are the ICMP

type and code numbers? What other fields does this ICMP packet have? How

many bytes are the checksum, sequence number and identifier fields?

4. Examine the corresponding ping reply packet. What are the ICMP type and code

numbers? What other fields does this ICMP packet have? How many bytes are the

checksum, sequence number and identifier fields?

