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Abstract—New adaptive filters for color image processing are
introduced and analyzed in this paper. The proposed adaptive
methodology constitutes a unifying and powerful framework for
multichannel signal processing. Using the proposed methodol-
ogy, color image filtering problems are treated from a global
viewpoint that readily yields and unifies previous, seemingly
unrelated, results. The new filters utilize Bayesian techniques
and nonparametric methodologies to adapt to local data in the
color image. The principles behind the new filters are explained
in detail. Simulation studies indicate that the new filters are
computationally attractive and have excellent performance.

I. INTRODUCTION

M ULTICHANNEL signal processing has been the subject
of extensive research during the last ten years, primarily

due to its importance to color image processing. The amount of
research published to date indicates a great interest in the areas
of color image filtering and analysis. It is widely accepted that
color conveys information about the objects in a scene and that
this information can be used to further refine the performance
of an imaging system. Color images are studied in this paper
using a vector approach. The value at each image pixel is
represented by a three-channel vector, transforming the color
image to a vector field in which each vector’s direction and
length is related to the pixel’s chromatic properties [1]. Being
a two-dimensional (2-D), three-channel signal, a color image
requires increased computation and storage, as compared to a
grey-scale image during processing.

In particular, the most common processing tasks are noise
filtering and enhancement, since these are essential functions
of any image processing system, regardless of whether the pro-
cessed image is utilized for visual interpretation or automatic
analysis [2].

Consider the following commonly used model for a color
image corrupted by additive noise [3]:

(1)

where the notation is used for simplicity to denote the three-
channel uncorrupted image vector located at position
of the 2-D color image, is the corresponding noisy vector
to be filtered, and is an additive noise vector at position
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of the image. In our analysis, it is assumed that the
color image vectors are unknown and that the noise vectors
are uncorrelated and signal independent at all image locations
[3], [4].

The type and degree of noise corruption depends on many
factors, such as the measurement apparatus, the signal levels,
and the experimental procedure under consideration. The ap-
pearance of the noise and its effect on the image is related
to its frequency characteristics, which is commonly assumed
to be Gaussian. However, the noise encountered in image
processing applications cannot always be described in terms
of the Gaussian model, rather, it can be characterized in terms
of “impulsive” sequences, which occur in the form of short-
duration, high-energy spikes attaining large amplitudes with
probability higher than that predicted by a Gaussian density
model [5].

Numerous filtering techniques have been proposed to date
for color image processing. Specifically, nonlinear filters ap-
plied to color images have been designed to preserve edges
and details, and remove impulsive and Gaussian noise. It has
been recognized by many researchers that vector processing of
color images is probably a more effective way (as compared
to scalar) to filter out noise and to enhance color images. A
number of different vector processing filters based on order
statistics (OS) have been introduced recently for color image
processing [5]–[13]. By implementing a temporal window
which moves across the image, the filtered estimateat each
location index is typically obtained by processing the noisy
image vectors

(2)

that are present in a window of size centered
around the image location The best known filter from this
class is the vector median filter (VMF) developed as a direct
extension of the corresponding single-channel median filter
[5]. It is well known that the VMF discards impulses and
preserves edges. However, its performance in the suppression
of Gaussian noise is inferior to that of the arithmetic (linear)
mean filter (AMF). If an image is corrupted by additive
Gaussian noise and impulsive noise, another member of the
OS family can be used, namely the-trimmed mean filter

-TMF), which replaces the noisy input vector-valued signal
with a linear combination of the sample vectors
closest to the median value. The trimming operation causes this
nonlinear filter to have good performance in the presence of
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impulsive noise, while the linear (mean) operation causes the
filter to also perform well in the presence of Gaussian noise.
Depending on the situation at hand, a different percentage of
the inputs can be trimmed out, resulting in an adaptive, data-
dependent filter. Recently, a new family of color image filters
called vector directional filters (VDF) has been introduced.
The new filters use the angle between the image vectors as
an ordering criterion [7], [8]. The basic vector directional
filter (BVDF) minimizes the sum of angles with all the other
vectors within the processing window. The BVDF output can
be obtained using the maximum likelihood (ML) principle
and it is, in essence, the spherical median of the population
[9]. This family also includes the distance directional filter
(DDF) [8], which utilizes a hybrid structure to combine the
VMF and the VDF. Finally, another member of the family,
the generalized vector directional filter (GVDF), combines
the directional processing of the BVDF with an adaptive
magnitude processing module [9], and thus can be considered
as a modified chromaticity trimmed filter, analogous to the-
trimmedmean filter. The GVDF selects a subset of the input
vectors and then processes them with the optimal magnitude
processing module, depending on the noise characteristics, to
generate the filter output. Similar to the VMF and BVDF,
which were derived using the ML principle, a number of filters
have been derived using the maximuma posterioriapproach
and the Gibbs random field model [10], [11]. These filters
can be viewed as weighted median filters [10]. In such a
filter, the weights are based on the “clique energies” observed
within the neighbor structure. Such designs requirea priori
decisions regarding the form of the “clique” function, which
best matches the data. Although good results can be obtained,
there is no methodology available for the on-line (adaptive)
modification of the assumed clique function.

Other weighted mean filters with adaptively determined
coefficients have recently been proposed for robust multi-
channel estimation. In [12], an adaptive filter, known as
the adaptive nearest neighbor filter (ANNF) utilizes nearest-
neighbor techniques to adaptively calculate data dependent
weights. Similarly, a heuristically derived multichannel filter,
the distance dependent multichannel filter (DDMF), has been
proposed in [13]. This adaptive filter uses the inverse of the
Euclideandistance to weight the vectors in the final output.
These adaptive designs deliver good results in a variety of
application scenarios, and they are much simpler and more
computationally efficient than the weighted medians of [10]
and [11]. However, it is not clear, as yet, how to select their
distance-based weights in an optimal way.

The plethora of filters available poses some application
difficulties. Since most of them are designed to perform
well in a specific application, their performance deteriorates
rapidly under different operation scenarios. Thus, a nonlinear
adaptive filter, which performs equally well in a wide variety
of applications, is of great importance. Our goal is to devise
computationally efficient and reliable filter structures, which
will deliver acceptable results without requiring specifica
priori information about the signal or the noise characteristics.

This paper introduces such filters using both an adaptive
Bayesian inference procedure and nonparametric techniques

to adaptively update the filter parameters in a data-dependent
way. For the image degradation model described in (1), the
objective of the adaptive filter is to perform as well as
the optimum estimator, which has been constructed with the
knowledge of the actual noise density function Since,
in the case of color image processing some impartiala priori
knowledge regarding the noise characteristics is available, we
aim to derive adaptive filters that are efficient over a certain
family of probability densities. This family consists of the
Gaussian density, the double exponential density, and all the
densities “in between” that naturally arise in image processing
applications [14].

The proposed adaptive filter employs a number of differ-
ent multichannel filters operating in parallel, and Bayesian
adaptive procedures are utilized to provide the overall fil-
tered output. The Bayesian approach to the development of
multichannel filters for color image processing is discussed
in Section II, along with motivation, design characteristics,
and implementation details. In Section III, a different adaptive
filter is introduced where nonparametric techniques are utilized
in order to derive an efficient, data-adaptive nonlinear filter.
A generalized multiple filter structure, which can be used to
adaptively combine different filters operating in parallel, is
also studied in this section. The behavior of the new filters for
color image filtering is the subject of Section IV. Extended
simulation results are included in order to demonstrate the
effectiveness of the proposed adaptive methodologies. Com-
parisons, in terms of performance with other commonly used
filters, are also provided. Finally, conclusions are drawn in
Section V.

II. THE BAYESIAN PARAMETRIC APPROACH

In all the adaptive schemes defined in this paper, a “loss
function,” which depends on the noiseless color vector and
its filtered estimate, is used to penalize errors during the
filtering procedure. It is natural to assume that if one penalizes
estimation errors through a loss function, then the optimum
filter is that function of the measurements that minimizes
the expected or average loss. If (1) represents the noise
degradation model, the optimal estimator that minimizes the
average or expected quadratic loss is defined as [15]

(3)

or

(4)

with

(5)

As in the case of OS filters, we assume a sliding window
of size is available. Through this, a set of noisy multivariate
vectors as described in (2), become available. By assuming
that the actual image vectors remain constant within the filter
window, determination of the at the window center



PLATANIOTIS et al.: ADAPTIVE MULTICHANNEL FILTERS 935

corresponds to the problem of estimating the constant signal
from noisy observations present in the filter window

(6)

Central to the solution discussed above is the determina-
tion of the probability density function of the image vectors
conditioned on the available noisy image data. If thisa
posterioridensity function is known, then the optimal estimate,
for the performance criterion selected, can be determined.
Unfortunately, in a realistic application scenario, sucha priori
knowledge about the process is usually not available. In
our adaptive formulation, the requested probability density
function is assumed to be of a known functional form but
with a set of unknown parameters. This “parent” distribution
provides a partial description, where the full knowledge of
the underlying phenomenon is achieved through the specific
values of the parameters. Given the form of (1) and the
assumptions about the noise, knowledge of the actual noise
distribution is sufficient for the parametric description of the
image vectors conditioned on the observations.

In image processing, a certain family of noise models are
often encountered. Thus, we can introduce a symmetric parent
distribution, which includes the most commonly encountered
noise distributions as special cases [16]. This distribution
function can be characterized by alocationparameter, ascale
parameter, and a third parameterthat measures the degree
of nonnormality of the distribution.

The multivariate “generalized Gaussian” function, which
can be viewed as an extension of the scalar distribution
introduced in [17], is defined as

(7)

where is the dimension of the measurement space,the
variance, is an matrix, which can be considered as
diagonal with elements with while the
rest of the parameters are defined as

with

and
This is a two-sided symmetric density that offers great

flexibility. By altering the “shape” parameter different
members of the family can be derived. For example, a value of

results in the Gaussian distribution. If , the double
exponential is obtained, and as the distribution tends
to the rectangular. For , intermediate symmetrical
distributions can be obtained [16].

Based in this generalized “parent” distribution, an adaptive
estimator can be devised utilizing Bayesian inference tech-
niques. Let us assume that (1) describes the image degradation

process and that the noise density function belongs to the
generalized family of (7). Assuming that the shape parameter

and the location and scale parameters of this function are
independent, the adaptively filtered
result for a “quadratic loss function” is given as

(8)

(9)

(10)

with

(11)

The computational complexity of the adaptive filter depends
on the information available about the shape parameterIn
applications such as image processing, whereis naturally
discrete, the exact realization of the adaptive estimator can
be obtain in a computationally efficient way. If the number
of shape values is finite then it is possible to
obtain the overall adaptive filtered output by combining the
conditional filtering results with the Bayesian learning of the
unknown shape parameters. The form of the adaptive filter
therefore becomes that of a weighted sum

(12)

In cases where a continuous parameter space for the shape
parameter is assumed, thea priori density function can be
quantized using the form

to obtain discrete values. Using the quantized values of the
shape parameter, the approximate adaptive algorithm takes the
form of (12).

Assume that for a given image location, a window
consisting of noisy image vectors is available. Let us further
assume that based on these measurements, intermediate
estimates, conditioned on various are available. For ex-
ample, conditioned on , the mean value of the
measurements can be considered as the best estimate of the
location. Alternatively, if , the median value of the
set is essentially accepted as the best estimator. In such a
scenario, the main objective of the adaptive procedure is the
calculation of the posterior densities that arise for different
shape parameters. Assuming a uniform reference prior in the
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range of for the conditional densities are
calculated through the following rule:

(13)

with

(14)

where

are the observations obtained from the window andis the
conditional filtered result for the image vector at the window
center using a specific value of the shape parameter

The above result was obtained using Baye’s rule

(15)

Further application of Baye’s rule results with

(16)

or

(17)

To complete the adaptive determination of thea posteriori
density in (13) the predictive density
must be computed. From (1)

(18)

where denotes the conditional probability density
function (pdf) of given and when and

are independent. Thus, the density can be
considered to be generalized Gaussian with shape parameter

and location estimate the conditional filter output.
The Bayesian inference procedure described above allows

for the selection of the appropriate density from the family
of densities considered. If the densities corresponding to the
different shape values assumed are representative of the class
of densities encountered in image processing applications, then
the Bayesian procedure should provide good results regardless

of the underlying density, resulting in a robust adaptive
estimation procedure.

The adaptive filter described in this section can be viewed
as a linear combination of specified, elemental filtered values.
The weights in the adaptive design are nonlinear functions of
the difference between the measurement vector and the ele-
mental filtered values determined by conditioning on various

In this context, the Bayesian adaptive filter can be viewed as
a generalization of radial basis neural networks [18] or fuzzy
basis functions networks [19].

If it is desired, the minimum mean square error (MMSE) of
the unknown scalar shape parameter can be determined as

with the error in the shape parameter estimation calculated
through

(19)

In a similar manner, the maximuma posteriori likelihood
estimate of the shape parameter can be
obtained through the adaptive filter.

The following comments can be made regarding the adap-
tive filter.

1) The adaptive filter of (12) is optimum in the Bayes sense
every time it is used inside the window and its optimality
is independent of the convergence. The weights that
regulate the contribution of the elemental filters are not
derived heuristically. Rather, the weights are determined
through Bayes theorem using the assumptions on the
noise density functions. The adaptive filter weights are
dependent on the local image information and thus, as
the filter window moves from one pixel to the next, a
different adaptive filter output is obtained.

2) Through the adaptive design, the problem of determining
the appropriate distribution for the noise is transformed
into the problem of combining a collection of admissible
distributions. This constitutes a problem of considerably
reduced complexity, since specific noise models, such as
additive Gaussian noise, impulsive noise, or a combina-
tion of both are often encountered in image processing
applications.

3) The proposed adaptive design is a scalable one. The
designer controls the complexity of the procedure by
determining the number and form of the individual
filters. Depending on the problem specification and the
computational constraints imposed by the design, an
appropriate number of elemental filters can be selected.
The filter requires noa priori training signals or test
statistics and its parallel structure makes it suitable for
real-time image applications.
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The proposed Bayesian adaptive procedure is simple, com-
putationally efficient, easy-to-use, and reasonably robust. In
the proposed approach, the posterior probabilities are more
important than the manner in which the designer can obtain the
elemental estimates that are used in the procedure. Different
methodologies can be utilized to obtain these estimates. Filters
derived using the ML principle, (e.g. VMF, BVDF), robust
estimators, (e.g. -TMF), and estimators based on adaptive
designs, such as the ANNF or the DDMF, can all be used to
provide these needed elemental estimates.

From the large number of filters that can be designed using
the adaptive procedure, a filter of great practical importance
is the one that combines a VMF with an AMF. Extensive
experimentation in the past has proven that, in the homo-
geneous regions of the image, a mean filter is probably the
most suitable estimator, whereas in areas where edges or fine
details are present, a median filter is preferable. Through the
adaptive design in (12), these two filters can be combined.
By using local image information in the current processing
window, such an adaptive filter, which we call BFMA, can
switch between the two elemental filters in a data dependent
manner, offering enhanced filtering performance.

III. T HE NONPARAMETRIC APPROACH

The adaptive formulation presented in the previous section
was based on the assumption that a certain class of densities
can be used to describe the noise corrupting color images.
Thus, a Bayesian adaptive procedure has been utilized to
determine on line the unknown parameters that are used
to describe the noise density function. However, in a more
general formulation, we may also not know the functional form
of the noise density. In such a case, the densities involved
in the derivation of the optimal estimator of (6) can not be
determined through a parametric technique, such as the one
described in Section II. Rather, we have to estimate them
from available sample observations using a nonparametric
technique.

Among the plethora of the different nonparametric schemes,
we adopt the kernel estimator. The notation of nonparamet-
ric estimation remains relatively unknown, therefore a brief
overview is included.

If the objective is the nonparametric determination of an
unknown multivariate density from a set of independent
samples drawn from the unknown underly-
ing density, the form of a data-adaptive nonparametric kernel
estimator is

(20)

where is the dimensionality of the measurement
space for color images), is a function
centered at zero that integrates to one andis the smoothing
term [20]–[23].

The form for the data-dependent smoothing parameter is of
great importance for the nonparametric estimator. To this end,
a new smoothing factor suitable for multichannel estimation is
proposed in this paper. For the sample point defined in (20),
we define a smoothing factor that is a function of the aggregate

distance between the local observation under consideration and
all the other vectors inside the set, excluding the point at
which the density is evaluated. The smoothing parameter is
therefore given by

(21)

where for is the
absolute distance metric) between the two vectors, and
is a parameter to be determined. The resulting variable kernel
estimator exhibits local smoothing that depends both on the
point at which the density estimate is taken and information
local to each sample observation in theset.

In addition to the smoothing parameter discussed above,
the form of the kernel selected also affects the result. Usually,
positive kernels are selected for the density approximation. The
most common choices are kernels from symmetric distribution
functions, such as the Gaussian or the double exponential. For
the simulation studies reported in this paper, the multivariate
exponential kernel and the multivariate
Gaussian kernel were selected [22].

As for any estimator, the behavior of the nonparametric
estimator of (20) is determined through the study of its
statistical properties. Certain restrictions should apply to the
design parameters, such as the smoothing factor, in order
to obtain an asymptotically unbiased and consistent estima-
tor. According to the analysis introduced in [22], if the
conditions (asymptotic consis-
tency), (uniform consistency), and

(asymptotic unbiasedness) are sat-
isfied, then becomes an asymptotically unbiased and
consistent estimate of The multiplier in (21)
with guarantees the satisfaction of the conditions
for an asymptotically unbiased and consistent estimator [22].
The selection of the for the same design parameter does
not affect the asymptotic properties of the estimator in (20).
However, for a finite number of samples, as in our case, the
function is the dominant parameter that determines the
performance of the nonparametric estimator.

After this brief introduction let us return to the problem
of nonparametric evaluation of the densities involved in the
derivation of the optimal estimator in (6). This time, no
assumption regarding the functional form of the noise present
in the image is made.

It is only assumed that pairs of image vectors
are available through a sliding window of length

centered around the noisy observationBased on this sample,
the densities and will be approximated using
sample point adaptive nonparametric kernel estimators.

Our first task is to approximate the joint density
As a nonparametric density approximation we may choose the
following:

(22)
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Assuming a product kernel estimator [24], the nonparametric
approximation of the joint density has as follows:

(23)

The marginal density in the denominator of (4) can then
be approximated using the results in (23) as follows:

(24)

since assuming that the kernel results from a
real density.

The determination of the numerator in (4) is now feasible.
The assumption that

implies [24] that

(25)

Thus, the numerator of (6) becomes

(26)

Utilizing (22)–(26), the sample point adaptive nonparametric
estimator of can be defined as

(27)

(28)

(29)

where and is a weighting function defined in
the interval [0, 1].

From (29), it can be seen that the nonparametric estimator,
often called the Nadaraya–Watson estimator [25], [26], is
given as a weighted average of the samples in the window
selected. The inputs in the mixture are the noise-free vectors

This estimator is linear with respect to the, and can be
considered therefore as a linear smoother. The basis functions,
on the other hand, determined by the kernel function
and the smoothing parameter can be either linear or
nonlinear on the noisy measurementsIt is easy to recognize
the similarity between the Bayesian adaptive parametric filter
discussed in Section II with the Nadaraya–Watson estimator.
The Bayesian adaptive filter is also a linear smoother with
respect to a function of the (the elemental filtered results)
and utilizes nonlinear basis functions, which are determined
by the unknown “shape” parameter from the generalized
“parent” distribution assumed.

Although the existence of a consistent estimate in mean
square has been proven, there are noa priori guidelines on the
selection of design parameters, such as the smoothing vector
or the kernel, on the basis of a finite set of data. Smoothing
factors, other than the aggregated distance introduced here,
such as the minimum distance or the maximum distance
between the and the th nearest neighbors, constitute valid
solutions and can be used instead [27].

The adjustable parameters of the proposed filter are
and The degree of the smoothness is controlled

by the smoothing factor It can easily be seen that by
appropriately modifying the smoothing factor we can force the
nonparametric estimator to match a given sample arbitrarily
close. To accomplish this, we modify the kernel by adjusting
through an exponent the effect of the smoothing parameter

In this case, the form of the estimator is as follows:

(30)

where the parameterregulates the smoothness of the kernel.
Since the nonparametric filter is a regression estimator, which
provides a smooth interpolation among the observed vectors
inside the processing window, theparameter can provide the
required balance between smoothing and detail preservation.
Because is a one-dimensional (1-D) parameter, it is usually
not difficult to determine an appropriate value for a practical
application. By increasing the value of the, we can force the
nonparametric estimator to approximate arbitrary close any
one of the vectors inside the filtering window. To this end, let
us suppose that a nonparametric estimator with given value

exists, given the available input set Then the
following relation holds:

(31)

with Assuming that for Then
for arbitrary and any with and
we can force since by properly choosing a
value the kernel as if
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TABLE I
NOISE DISTRIBUTIONS

Thus, we can conclude that there exists some value of
such that the nonparametric regressor approaches arbitrary

close to an existing vector.
To obtain the final estimate, we must assume that, in the

absence of noise, the actual image vectorsare available.
As is the case for the adaptive/trainable filters, a training
record can be obtained in some cases during some calibration
procedure in a controlled environment. In a real-time image
processing application, however, that is not always possible.
Therefore, alternative suboptimal solutions are introduced. In
a first approach, each vectors in (29) is replaced with its
noisy measurement The resulting suboptimal estimator,
called adaptive multichannel nonparametric filter (hereafter
AMNF), is solely based on the available noisy vectors and
the form of the data-adaptive kernel selected for the density
approximations. Thus, the AMNF form is as follows:

AMNF (32)

A different form of the adaptive nonparametric estimator
can be obtained if a reference vector is used instead of the
actual color vector in (29). A robust estimate of the location,
usually evaluated in a smaller subset of the input set, is utilized
instead of the Usually the median is the preferable choice,
since it smoothes out impulsive noise and preserves edges and
details. However, unlike scalars, the most central vector in a
set of vectors can be defined in more than one way. Thus,
the VMF or the marginal median filter (MAMF) operating
in a 3 3 window centered around the current pixel can
be used to provide the requested reliable reference. In this
paper, the VMF evaluated in a 3 3 window was selected to
provide the reference vector. The new adaptive multichannel
nonparametric filter, (hereafter AMNF2), has the following
form:

AMNF (33)

The AMNF2 can be viewed as a double-window (DW),
two-stage estimator. First, the original image is filtered by a
multichannel median filter in a small processing window in

order to reject possible outliers, and then the adaptive filter of
(33) is utilized to provide the final filtered output. The AMNF2
filter can be viewed as an extension to the multichannel
case of the DW filtering structures extensively used for gray-
scale image processing. As in gray-scale processing, with this
adaptive filter we can distinguish between two operators: i)
the computation of the median in a smaller window, and ii)
the adaptive averaging in a second processing window.

In the derivation of the data-adaptive nonparametric esti-
mator presented in (29), (32), and (33), a number of design
parameters have been introduced. They are as follows:

• the window size, and therefore the number of noisy
measurement vectors, available for the evaluation of the
approximate density;

• the form of the smoothing factor where decisions
about the multiplier and the distance measure utilized can
greatly affect the performance of the density estimator;

• the type of kernel used in (29);
• the vectors used instead of the actual, unavailable color

vectors in the derivation of (29).

All these elements affect the filtering process, since they deter-
mine the output of the estimator. In an adaptive formulation,
we can define as the parameter vector, which is the abstract
representation of all elements listed above. It is not necessary
that all these elements be treated as parameters in a specific
design. Problem specifications and design objectives can be
used to determine the elements included in the parameter
vector

By varying the different parameters on the design of the
nonparametric kernel, different results can
be obtained. Let us suppose that are
different nonparametric estimators, all based on the same
sample record but possibly with differ-
ent kernels and different smoothing factors

An overall estimator based on these values
can be obtained as the expected value
calculated over the given nonparametric values determined by
the different techniques.

Assuming that the different estimated values are
available and that they are related to the observed sample
through the model

(34)

with additive corruption noise, we can claim that the
minimization of the expected error leads to a solution for
as

(35)

with

(36)
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TABLE II
FILTERS COMPARED

TABLE III
EXISTING FILTERS: NMSE 10

�2 FOR THE LENA IMAGE, 3 � 3

To calculate the exact value of the multiple nonparametric
estimator, the function must be evaluated. Since it is
generally unknown, we approximate it in a nonparametric
fashion based on the set of the elemental values avail-
able. If elemental estimates are available, with

we introduce the nominal parameter
Therefore, our objective is the nonparametric

evaluation of the density using the set of the available
data points The approximation task can
be carried out by using any standard nonparametric approach,
such as the different kernel estimators discussed in (29)–(33).
For the simulation studies discussed in the next section, we
decided to utilize our sample point adaptive kernel estimator of
(20). Thus, the following estimate of the density
is used:

(37)

with the smoothing parameter calculated as

(38)

where for and is the
absolute distance metric) between the two vectors.

From (37), we can claim that integrates to one, given
the form of the approximation and the fact that the kernel
results from a real density. Thus, the set of weights has
the following properties: i) Each weight is a positive number,

and ii) the summation of all the weights is equal
to one, , and can be interpreted as posterior
probabilities used to incorporate prior information concerning
local smoothness. Thus, each weight in (35) regulates the
contribution of the associated filter by its posterior component
density.

The following comments can be made regarding the mul-
tiple nonparametric filter.
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TABLE IV
NEW FILTERS: NMSE 10

�2 FOR THE LENA IMAGE, 3 � 3

TABLE V
EXISTING FILTERS: NMSE 10

�2 FOR THE LENA IMAGE, 5 � 5

• The general form of the filter is given as a linear combina-
tion of nonlinear basis functions. The weights in the above
mixture are the elemental filtered values obtained by the
different nonparametric estimators applied to the problem.
The nonlinear basis function is determined by the form of
the approximate density , and can take many different
forms, such as Gaussian, exponential, or triangular. It is
not hard to see that in the case of a Gaussian kernel the
multiple estimator of (35) can be viewed as a radial basis
function (RBF) neural network.

• The adaptive procedure can be used to combine a va-
riety of nonparametric estimators, each one of them
developed for a different value set of the parameter
vector For example, such a structure can be used
to combine elemental nonparametric filters derived for
different window sizes The number of color vector
samples utilized in the development of the nonparametric
estimator depends on the window centered around
the pixel under consideration. Usually a square 33
or 5 5 window is selected. However, such a decision
affects the filter’s performance. In smooth areas or when
Gaussian noise is anticipated, a larger window (e.g., 5
5) is preferable. On the other hand, near edges or when
impulsive noise is assumed a smaller window (usually
3 3 window) is more appropriate. An adaptive filter
that utilizes elemental filters with different window sizes
(hereafter, MAMNF35), is most probably a better choice
in an unknown or mixed noise environment. Using the
same approach other practical adaptive filters, such as the
MAMNFEG, which utilizes two elemental nonparametric
filters with an exponential and a Gaussian kernel, respec-
tively, can be devised. Due to the specific form of the
kernel, it is anticipated that a nonparametric filter with a
Gaussian kernel is probably a better choice for Gaussian
noise smoothing. Similarly, a filter with an exponential
kernel will provide better filtering results when impulsive
or long-tailed noise is present. An adaptive design that

allows for both filters to be utilized simultaneously is of
paramount importance in an unknown noise environment.
Such examples emphasize the versatility of the proposed
adaptive approach, which can provide a wide range of
different practical filters.

• Although the filter in (35) has been derived as a gen-
eralization of a nonparametric estimator, it can be used
to combine different heterogeneous estimators applied
to the same task. Specifically, the designer can utilize
a number of different elemental filters, such as order
statistic-based filters, the Bayesian adaptive filter, nearest-
neighbor filters, and nonparametric estimators, and then
combine all the different results using (35) and (36). The
effectiveness of the adaptive scheme is determined by the
validity of the elemental filtered results and the approx-
imation required in (36). However, due to the different
justification of the elemental filters, extensive simulation
results are the only way to examine the performance
of the filter in practical applications. Experimentation
with color images will be used in the next section to
demonstrate the effectiveness of the multiple filter and
to access the improvement in terms of the performance
achieved using a multiple nonparametric filter, vis-a-
vis a simple nonparametric filter. We believe that the
multiple filter can be a powerful design tool since it
allows the combination of filters designed using different
methodologies and different design parameters. This is
of paramount importance in practical applications, since
it allows for the development of efficient adaptive filters
when no indication for the selection of a suitable filtering
approach is available.

IV. A PPLICATION TO COLOR IMAGES

In this section the performance of the proposed adaptive
filters is evaluated in the most important area of multichannel
processing, namely color image filtering. The noise attenuation
properties of the different filters are examined by utilizing the
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TABLE VI
NEW FILTERS: NMSE 10

�2 FOR THE LENA IMAGE, 5 � 5

Fig. 1. The Lena image corrupted with Gaussian noise� = 30 mixed with
4% impulsive noise.

Fig. 2. GVDF of (1) with a 3� 3 window.

color image Lena. The test image has been contaminated using
various noise source models in order to assess the performance
of the filters under different scenarios (see Table I). Gaussian
noise implies corruption by zero mean additive noise with

standard deviation The impulsive noise has been simulated
in two steps. In the first step, each image channel is corrupted
independently using spikes with magnitude 255. The program
assumes that both negative and positive spikes are equally
likely to occur. Data clipping is used to limit the samples’
value in the range [0, 255]. In a second step, a correlation
factor is used to determine the corruption of the pixel

in channel if the same pixel is corrupted in any of the
other two channels [7], [9]. The original image, as well as its
noisy versions, are represented in the red–green–blue (RGB)
color space. This color coordinate system is considered to be
objective, since it is based on the physical measurements of
the color attributes. The filters operate on the images in the
RGB color space.

Since it is impossible to discuss all the adaptive filters
resulting from the theory introduced in this paper, we construct
six different filters based on our parametric and nonparametric
designs. These filters are compared, in terms of performance,
with other widely used nonadaptive and adaptive color image
filters (see Table II).

A number of different objective measures can be utilized
to assess the performance of the different filters. All of them
provide some measure of closeness between two digital images
by exploiting the differences in the statistical distributions of
the pixel values [28]. The most widely used measure is the
normalized mean square error (NMSE) defined as

NMSE (39)

where are the image dimensions, and and
denote the original image vector and the estimation at

pixel respectively. Tables III–VI summarize the results
obtained for the color test image Lena.

In many application areas, such as multimedia, telecom-
munications (e.g., high-definition television), motion picture
production, the printing industry, and graphic arts, greater
emphasis is given to perceptual image quality. Consequently,
the perceptual closeness (alternatively perceptual difference or
error) of the filtered image to the uncorrupted original image is
ultimately the best measure of the efficiency of any color image
filtering method. There are basically two major approaches
used for assessing the perceptual error between two color
images. In order to make a complete and thorough assessment
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TABLE VII
EXISTING FILTERS: NCD FOR THE LENA IMAGE, 3 � 3

TABLE VIII
NEW FILTERS: NCD FOR THE LENA IMAGE, 3 � 3

Fig. 3. DDMF of (1) with a 3� 3 window.

of the performance of the various filters, both approaches are
used in this paper.

The first approach is to make an objective measure of the
perceptual error between two color images. This leads us to
the question of how to estimate the perceptual error between
two color vectors. Precise quantification of the perceptual error
between two color vectors is one of the most important and
open research problem. RGB is the most popular color space
used conventionally to store, process, display, and analyze
color images. However, the human perception of color cannot
be described using the RGB model [29]. Therefore, measures
such as the normalized mean square error (NMSE) defined
in the RGB color space are not appropriate to quantify the

perceptual error between images. Thus, it is important to
use color spaces, which are closely related to the human
perceptual characteristics and suitable for defining appropriate
measures of perceptual error between color vectors. A number
of such color spaces are used lately in areas such as com-
puter graphics, motion pictures, graphic arts, and the printing
industry. Among these, perceptually uniform color spaces are
the most appropriate to define simple yet precise measures of
perceptual error. The Commission Internationale de l’Eclairage
(CIE) standardized two color spaces, and as
perceptually uniform. The color space is chosen for
our analysis because it is simpler in computation than
color space, without any sacrifice in perceptual uniformity.

The conversion from nonlinear RGB color space (the non-
linear RGB values are the ones stored in the computer and
applied to the CRT of the monitor to generate the image) to
the color space is explained in detail in [30]. Nonlinear
RGB values of both the uncorrupted original image and the
filtered image are converted to corresponding values
for each of the filtering method under consideration. In the

space, the component defines the lightness, and
the and components together define the chromaticity. In
a uniform color space, such as the perceptual color
error between two color vectors is defined as the Euclidean
distance between them, given by

(40)

where is the color error and and are
the difference in the and components, respectively,
between the two color vectors under consideration. Once the

for each pixel of the images under consideration is
computed, the normalized color difference (NCD) is estimated
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TABLE IX
EXISTING FILTERS: NCD FOR THE LENA IMAGE, 5 � 5

TABLE X
NEW FILTERS: NCD FOR THE LENA IMAGE, 5 � 5

according to the following formula:

NCD (41)

where

is the norm or magnitudeof the uncorrupted original image
pixel vector in the space.

Tables VII–X summarize the results obtained for the test
color image Lena.

Although quantitative measures, such as and NCD,
are close approximations to the perceptual error, they can-
not exactly characterize the complex attributes of human
perception. Therefore, an alternative subjective approach is
commonly used by researchers [31] for estimating the percep-
tual error.

The second evaluation approach is the subjective evaluation
of the two images to be compared in which both images are
viewed, simultaneously, under identical viewing conditions by
a set of observers. A set of color image quality attributes can
be defined for the subjective evaluation [31]. The evaluation
must take into consideration three important factors in regard
to color image filtering, namely, noise attenuation, edge preser-
vation, and detail retention. Thus, the overall quality of the
color image is determined from the following attributes:

• detail preservation, which corresponds to edge and fine
detail preservation;

• sharpness, which refers to the distinctness of boundaries
among colors;

• color uniformity, which refers to the consistency of the
color in uniform areas;

Fig. 4. �-TMF of (1) with a 3� 3 window.

• defects, classified as any imperfections such as blocking
artifacts that were not present in the original (noise-free)
image.

In this study, the color images under consideration were
viewed in parallel, on a Sun SparcStation 5 with a 24-b color
monitor, and the observers were asked to mark scores on a
printed evaluation sheet following the guidelines summarized
in Table XI [32]. To subjectively evaluate the noise-removal
capabilities of the algorithms, a similar procedure was fol-
lowed. Observers were instructed to assign a lower number if
noise was still present in the filtered output (see Table XI).

The results of the subjective evaluation is summarized in
Tables XII and XIII, and is used to complement the results
obtained from the objective evaluation using quantitative mea-
sures such as NMSE and NCD.
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TABLE XI
SUBJECTIVE IMAGE EVALUATION GUIDELINES

Fig. 5. AMNFG of (1) with a 3� 3 window.

Fig. 6. MAMNFEG of (1) with a 3� 3 window.

Now, having defined the measures for the assessment of
performance by various filters, we proceed to the assessment
itself. One of the obvious observations from the results in

Fig. 7. BFMA of (1) with a 3� 3 window.

Fig. 8. The RGB color image of peppers.

Tables III–XIII is the effect of window size on the performance
of the filter. In the case of nonadaptive filters, the bigger
window size (5 5) gives considerably better results for the
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Fig. 9. Peppers image corrupted with Gaussian noise� = 30 mixed with
4% impulsive noise.

Fig. 10. BVDF of (9) with a 3� 3 window.

TABLE XII
FIGURE OF MERIT

removal of Gaussian noise (noise model 1), while decreasing
the performance for the removal of impulsive noise (noise
model 2). Although a similar pattern follows for the adaptive
filters, the effect of window size on performance is less
dramatic as compared to the nonadaptive filters.

TABLE XIII
SUBJECTIVE EVALUATION

Fig. 11. GVDF of (9) with a 3� 3 window.

The AMF is theoretically the best nonadaptive filter for the
removal of pure Gaussian noise (noise model 1). The results
in Tables III, V, VII, and IX confirms this. In other words,
the NMSE, NCD, and the subjective measure all indicate best
performance by the AMF. So, the performance of the AMF
filter is used as a benchmark to compare the performance of
the new adaptive filters in the same noise environment. The
results in Tables IV, VI, VII, and X indicate that the new
adaptive filters perform better or close enough to the AMF
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Fig. 12. �-TMF of (9) with a 3� 3 window.

Fig. 13. AMNFE2 of (9) with a 3� 3 window.

and outperform existing adaptive filters, such as the ANNF or
DDMF in NMSE, NCD and in the subjective sense. Clearly,
the new AMNFG2 adaptive filter is the best for Gaussian noise
and performs exceptionally well, outperforming the existing
filters (both adaptive and nonadaptive), with respect to all three
error measures and for both window sizes.

Similarly, in the case of pure impulsive noise (noise model
2), the VMF gives the best performance among nonadaptive
filters according to the results, as well the theory, and is thus
used as a benchmark to evaluate the adaptive filters. As for the
Gaussian noise case, the new adaptive filters perform better
or close enough to the VMF and outperform the existing
adaptive filters with respect to all three error measures and for
both window sizes. For a 3 3 square window the proposed
AMNFE2 adaptive filter emerges as the best contender for the

Fig. 14. BFMA of (9) with a 3� 3 window.

removal of impulsive noise, outperforming other nonadaptive
and adaptive filters. For the case of a 55 square processing
window our MAMNF35 filter clearly outperforms all other
filters.

For the mixture of Gaussian and impulsive noise (noise
models 3–5), the new adaptive filters consistently outperform
any of the existing listed filters, both adaptive and nonadaptive,
with respect to NMSE, NCD, and subjective measures, for
both window sizes (see Figs. 1–7). This is demonstrated by the
simple fact that, for noise models 3–5 (see Table I), the highest
error among the new adaptive filters is lower than the lowest
error among the existing filters, both adaptive and nonadaptive.
Herein lies the real advantage of the new adaptive filters.
As mentioned before, in real applications, the noise model
is unknowna priori. Nevertheless, the most common noise
types encountered in real situations are Gaussian or impulsive
or a mixture of both. Therefore, the use of these new adaptive
filters guarantees near optimal performance for the removal
of any kind of noise encountered in practical applications. On
the contrary, application of a “noise-mismatched” nonadap-
tive filter, such as a VMF for Gaussian noise or AMF for
impulsive noise, can have profound consequences leading to
unacceptable results.

In a final example, we compare the performance of the
different filters in noise attenuation using a different color
image. The test RGB image of peppers (see Fig. 8) is corrupted
by a mixture of additive Gaussian noise (standard deviation,

and 4% impulsive noise (see Fig. 9). All the filters
considered operate using a square 33 processing window.
Filtering results using different estimators are depicted in
Figs. 10–14. A comparison of the images clearly favors our
adaptive designs over existing techniques.

The following important conclusions can be drawn from the
results listed above, regarding our adaptive designs.

• The proposed adaptive filters attenuate both impulsive and
additive Gaussian noise with or without outliers present
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Fig. 15. BFMA of (8) with a 3� 3 window.

Fig. 16. MAMNFEG of (8) with a 3� 3 window.

in the test image. It must be noted that if no assumption
about the noise characteristics is made, the new adaptive
filters provide results better than the results obtained
by any other filter under consideration. The proposed
adaptive filters can effectively remove impulses, smooth
out nominal noise and keep edges and details unchanged
as can be seen from the results obtained through the
application of the BFMA and MAMNFEG filters on the
noise-free peppers image (see Figs. 15 and 16).

• Results also indicate that the adaptive multiple filters
are less sensitive to the window length as compared
to the GVDF or the VMF. The performance of our
adaptive filters decrease less as compared with that of
the nonadaptive filter as window size increases. In ad-

dition, the adaptive filters do not suffer from VMF’s
inefficiency in a nonimpulsive noise scenario and small
filtering window. More than that, the generalized adaptive
framework allows for the utilization of elemental filters
that utilize different window sizes balancing between
the detail preservation property of the small processing
window with the enhanced noise attenuation obtained
through a window of size 5 5 .

• Considering the number of computations required for the
implementation of the adaptive filters, it should be noted
that it is comparable to those of any other multichannel
filter. The adaptation procedure needed to weight the
different elemental filters does not introduce significant
additional computational cost. In addition, the different
elemental filters can be run in parallel reducing the
execution time and making the adaptive filters suitable for
real-time implementation with digital signal processors.
To the best of the authors’ knowledge the adaptation
mechanism introduced in this work is the only one
capable of providing this form of parallel processing
capability.

V. CONCLUSION

This paper has introduced adaptive algorithms for filter-
ing color image data. These filters utilize Bayesian learning
techniques and nonparametric methodologies to adapt to local
image data. The behavior of the adaptive filters is analyzed
and their performance is compared with that of the most
commonly used nonadaptive filters. Simulation results and
subjective evaluation of the filtered images indicate that the
adaptive filters outperform all other filters under consideration.
Moreover, as seen from the attached images, the adaptive
filters preserve the chromaticity component, which is very
important in the visual perception of color images.
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