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Abstract—New adaptive filters for color image processing are (z,7) of the image. In our analysis, it is assumed that the
introduced and analyzed in this paper. The proposed adaptive color image vectors are unknown and that the noise vectors

methodology constitutes a unifying and powerful framework for — 5.0 ncorrelated and signal independent at all image locations
multichannel signal processing. Using the proposed methodol-

ogy, color image filtering problems are treated from a global (31, [4]. ) ]
viewpoint that readily yields and unifies previous, seemingly ~ The type and degree of noise corruption depends on many

unrelated, results. The new filters utilize Bayesian techniques factors, such as the measurement apparatus, the signal levels,
and nonparametric methodologies to adapt to local data in the and the experimental procedure under consideration. The ap-
color image. The principles behind the new filters are explained oy rance of the noise and its effect on the image is related
in detail. Simulation studies indicate that the new filters are . . S
computationally attractive and have excellent performance. to its frequency characteristics, which is commonly assumed
to be Gaussian. However, the noise encountered in image
processing applications cannot always be described in terms
of the Gaussian model, rather, it can be characterized in terms
ULTICHANNEL signal processing has been the subjedf “impulsive” sequences, which occur in the form of short-
of extensive research during the last ten years, primartyiration, high-energy spikes attaining large amplitudes with
due to its importance to color image processing. The amountgbbability higher than that predicted by a Gaussian density
research published to date indicates a great interest in the aigagle| [5].
of color image filtering and analysis. It is widely accepted that Numerous filtering techniques have been proposed to date
color conveys information about the ObjeCtS in a scene and tw color image processing_ Speciﬁca”y, nonlinear filters ap-
this information can be used to further refine the performangﬁed to color images have been designed to preserve edges
of an imaging system. Color images are studied in this papgid details, and remove impulsive and Gaussian noise. It has
using a vector approach. The value at each image pixelggen recognized by many researchers that vector processing of
represented by a three-channel vector, transforming the calgior images is probably a more effective way (as compared
image to a vector field in which each vector's direction ang scalar) to filter out noise and to enhance color images. A
length is related to the pixel's chromatic properties [1]. Beingumber of different vector processing filters based on order
a two-dimensional (2-D), three-channel signal, a color imaggyistics (OS) have been introduced recently for color image
requires ingreased co_mputation qnd storage, as compared H?d%essing [5]-[13]. By implementing a temporal window
grey-scale image during processing. which moves across the image, the filtered estintaiat each

_In particular, the most common processing tasks are nojgeation index! is typically obtained by processing the noisy
filtering and enhancement, since these are essential functiggge vectors

of any image processing system, regardless of whether the pro-
cessed image is utilized for visual interpretation or automatic Y= (y(l—N)’y(l—N—l)’ o ’y(l+N))
analysis [2]. =Y Y2 Yn) )
Consider the following commonly used model for a colofhat are present in a windoW of sizen = 2N + 1 centered
image corrupted by additive noise [3]: around the image locatioh The best known filter from this
y=x+n (1) class is the vector median filter (VMF) developed as a direct
extension of the corresponding single-channel median filter

channel uncorrupted image vector located at positian) [5]. It is well known that th_e VMF d|scard§ impulses and_
of the 2-D color imagey is the corresponding noisy vectorPTEServes edge§. I—!ov.veve.r, its performance n the suppression
to be filtered, anch is an additive noise vector at positionf Gaussian noise is inferior to that of the arithmetic (linear)
mean filter (AMF). If an image is corrupted by additive
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impulsive noise, while the linear (mean) operation causes tteeadaptively update the filter parameters in a data-dependent
filter to also perform well in the presence of Gaussian noiseay. For the image degradation model described in (1), the
Depending on the situation at hand, a different percentageatfjective of the adaptive filter is to perform as well as
the inputs can be trimmed out, resulting in an adaptive, datae optimum estimator, which has been constructed with the
dependent filter. Recently, a new family of color image filterknowledge of the actual noise density functigtw). Since,
called vector directional filters (VDF) has been introducedh the case of color image processing some impastiptiori

The new filters use the angle between the image vectorskaswledge regarding the noise characteristics is available, we
an ordering criterion [7], [8]. The basic vector directionahim to derive adaptive filters that are efficient over a certain
filter (BVDF) minimizes the sum of angles with all the othefamily of probability densities. This family consists of the
vectors within the processing window. The BVDF output caGaussian density, the double exponential density, and all the
be obtained using the maximum likelihood (ML) principledensities “in between” that naturally arise in image processing
and it is, in essence, the spherical median of the populatiapplications [14].

[9]. This family also includes the distance directional filter The proposed adaptive filter employs a number of differ-
(DDF) [8], which utilizes a hybrid structure to combine theent multichannel filters operating in parallel, and Bayesian
VMF and the VDF. Finally, another member of the familyadaptive procedures are utilized to provide the overall fil-
the generalized vector directional filter (GVDF), combinetered output. The Bayesian approach to the development of
the directional processing of the BVDF with an adaptiveultichannel filters for color image processing is discussed
magnitude processing module [9], and thus can be consideiedSection I, along with motivation, design characteristics,
as a modified chromaticity trimmed filter, analogous to ¢he and implementation details. In Section Ill, a different adaptive
trimmedmean filter. The GVDF selects a subset of the inpdiiter is introduced where nonparametric techniques are utilized
vectors and then processes them with the optimal magnitudeorder to derive an efficient, data-adaptive nonlinear filter.
processing module, depending on the noise characteristicsAtgeneralized multiple filter structure, which can be used to
generate the filter output. Similar to the VMF and BVDFadaptively combine different filters operating in parallel, is
which were derived using the ML principle, a number of filterglso studied in this section. The behavior of the new filters for
have been derived using the maximanposterioriapproach color image filtering is the subject of Section IV. Extended
and the Gibbs random field model [10], [11]. These filtersimulation results are included in order to demonstrate the
can be viewed as weighted median filters [10]. In such effectiveness of the proposed adaptive methodologies. Com-
filter, the weights are based on the “clique energies” observedrisons, in terms of performance with other commonly used
within the neighbor structure. Such designs requirpriori ~filters, are also provided. Finally, conclusions are drawn in
decisions regarding the form of the “clique” function, whictSection V.

best matches the data. Although good results can be obtained,

there is no methodology available for the on-line (adaptive) Il. THE BAYESIAN PARAMETRIC APPROACH

modification of the assumed clique function. _In all the adaptive schemes defined in this paper, a “loss

Othgr weighted mean filters with adaptively determ'r"sﬂlmction," which depends on the noiseless color vector and
coefficients 'havg recently been propoged fpr robust mullis gereq estimate, is used to penalize errors during the
channel estimation. In [12], an adaptive filter, known tering procedure. It is natural to assume that if one penalizes

tth‘ adaptive ngarest neighbor' filter (ANNF) utllizes neareslgimation errors through a loss function, then the optimum
neighbor techniques to adaptively calculate data dependgpl, s that function of the measurements that minimizes

weights. Similarly, a heuristically derived multichannel filterthe expected or average loss. If (1) represents the noise

the distance dependent multichannel filter (DDMF), has beﬁﬂgradation model, the optimal estimator that minimizes the

proposed in [13]. This adaptive filter uses the inverse of tlﬁ‘?/erage or expected quadratic loss is defined as [15]
Euclideandistance to weight the vectors in the final output. -

The;e a_ldaptwe d(_95|gns deliver good result_s in a variety of E(zly) = #(y)me :/ zf(zly) dz 3)
application scenarios, and they are much simpler and more —oo
computationally efficient than the weighted medians of [1Q];
and [11]. However, it is not clear, as yet, how to select their o0
distance-based weights in an optimal way. oo / zf(y, x) dx
The plethora of filters available poses some application  #(y),,, = / dez it (4)
difficulties. Since most of them are designed to perform — [ [ ()
well in a specific application, their performance deterioratggith
rapidly under different operation scenarios. Thus, a nonlinear o0
adaptive filter, which performs equally well in a wide variety fy = / fy,z) dz. (5)
of applications, is of great importance. Our goal is to devise -
computationally efficient and reliable filter structures, which As in the case of OS filters, we assume a sliding window
will deliver acceptable results without requiring specific of sizen is available. Through this, a set of noisy multivariate
priori information about the signal or the noise characteristicgectorsY’, as described in (2), become available. By assuming
This paper introduces such filters using both an adaptitleat the actual image vectors remain constant within the filter
Bayesian inference procedure and nonparametric techniguésdow, determination of theg,,, at the window center
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corresponds to the problem of estimating the constant sigpabcess and that the noise density function belongs to the

from n noisy observations present in the filter window generalized family of (7). Assuming that the shape parameter
00 ~ and the location and scale parameters of this function are
EY )mo = E(2]Y) = / zf(z|Y)dz. (6) independentf(z,0,v) x f(x,0)f(v), the adaptively filtered

result for a “quadratic loss function” is given as
Central to the solution discussed above is the determina-

tion of the probability density function of the image vectors ///:cf Yl|z,0,7)f(x,0)f(v) dz do dy
conditioned on the available noisy image data. If tlis E(z]Y) = (8)
posterioridensity function is known, then the optimal estimate, // (Y2, 0,79)f(®,0)f(7) dz do dv

for the performance criterion selected, can be determined.

Unfortunately, in a realistic application scenario, sagpriori

knowledge about the process is usually not available. In //xf Yiz,0,7)](z,0) dz do

our adaptive formulation, the requested probability density

function is assumed to be of a known functional form but / f¥|z,0,7)f(=,0) dw do

with a set of unknown parameters. This “parent” distribution FFY )

provides a partial description, where the full knowledge of <W) d )

the underlying phenomenon is achieved through the specific
values of the parameters. Given the form of (1) and theE(z]Y) = /(E(:c|Y, Nf(AY)) dy (10)
assumptions about the noise, knowledge of the actual noise
distribution is sufficient for the parametric description of theyith
image vectors conditioned on the observations.

In image processing, a certain family of noise models are E(z|Y,y) = /:cf(:c|Y, v) de. (11)
often encountered. Thus, we can introduce a symmetric parent
distribution, which includes the most commonly encountered The computational complexity of the adaptive filter depends
noise distributions as special cases [16]. This distributigsh the information available about the shape parametén
function can be characterized byazation parameter, acale applications such as image processing, wheris naturally
parameter, and a third parametethat measures the degreefiscrete, the exact realization of the adaptive estimator can

of nonnormality of the distribution. be obtain in a computationally efficient way. If the number
The multivariate “generalized Gaussian” function, whiclf shape values is finite,---,vs, then it is possible to

can be viewed as an extension of the scalar distributightain the overall adaptive filtered output by combining the

introduced in [17], is defined as conditional filtering results with the Bayesian learning of the

o) 2/14~ unknown shape parameters. The form of the adaptive filter
) ) (7) therefore becomes that of a weighted sum

f(m|,0,v) = k™ exp <—0.5/3<|m

g
whereM is the dimension ef the measurement sp_azqethe E(z|Y) = Z @Y, v6) f (1Y) (12)
variance, is anM x M matrix, which can be considered as —
diagonal with elements. with ¢ = 1,2,--., M, while the
rest of the parameters are defined as In cases where a continuous parameter space for the shape
. 11+ parameter is assumed, tleepriori density function can be
8= <M) quantized using the form
L(0.5(1+7)) o
(I(L.5(1 + 7)) -1
£ <<1 + )00 +’7)))°'5>0 2 o)
with o ) )
oo to obtain discrete values. Using the quantized values of the
I(z) = / =lemtdt shape parameter, the approximate adaptive algorithm takes the
0 form of (12).
and z > 0. Assume that for a given image location, a windd®

This is a two-sided symmetric density that offers greabnsisting ofn noisy image vectors is available. Let us further
flexibility. By altering the “shape” parametey different assume that based on the¥e measurements, intermediate
members of the family can be derived. For example, a valueadtimates, conditioned on various are available. For ex-
~ = 0 results in the Gaussian distributionlf= 1, the double ample, conditioned ony = 0, the mean value of th&
exponential is obtained, and as— —1 the distribution tends measurements can be considered as the best estimate of the
to the rectangular. For1 < ~1, intermediate symmetrical location. Alternatively, ify = 1, the median value of th¥
distributions can be obtained [16]. set is essentially accepted as the best estimator. In such a

Based in this generalized “parent” distribution, an adaptivacenario, the main objective of the adaptive procedure is the
estimator can be devised utilizing Bayesian inference teatelculation of the posterior densities that arise for different
nigues. Let us assume that (1) describes the image degradasioape parameters. Assuming a uniform reference prior in the
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range of—1 <~ < 1 for f(v) the conditional densities areof the underlying density, resulting in a robust adaptive

calculated through the following rule:

s Yo ) S (oY
Y F @l Yam) f(ulY nm1)
p=1
with
~ 2/14
- X
FWalve, Yno1) =M exp <—0-5 <y—¢> )
0y
(14)
where
Y= (y17y27 e 7yn—17yn)
Yn—l = (y17y27 e 7yn—1)

estimation procedure.

The adaptive filter described in this section can be viewed
as a linear combination of specified, elemental filtered values.
The weights in the adaptive design are nonlinear functions of
the difference between the measurement vector and the ele-
mental filtered values determined by conditioning on various
~. In this context, the Bayesian adaptive filter can be viewed as
a generalization of radial basis neural networks [18] or fuzzy
basis functions networks [19].

If it is desired, the minimum mean square error (MMSE) of
the unknown scalar shape parameter can be determined as

Y) =Y yf(slY)
=1

E(’Y|Y) = ’?mmse(

are the observations obtained from the window &pds the ith the error in the shape parameter estimation calculated
conditional filtered result for the image vector at the windoyhrough

center using a specific value of the shape parametery,.
The above result was obtained using Baye's rule

_ f(’ng,Y) _ f(,yt#vynvyn—l)
JOM) =50y = T iV
— q)f(7¢7yn|Yn—l) ) (15)
Zf(’yuayn|yn—l)
p=1

Further application of Baye’s rule results with

fv6: Y |Y n—1)
— f(yn,’YqS,Yn—l) — f
f(Yn—l)

(ynh/tﬁ?Y —l)f(,ytﬁvYn—l)
f(Yn—l)

(16)

or

TVe,¥nlY 1) = fF@, 76, Y e

()

=Wl Y1) f(96|Y n1). (A7)

To complete the adaptive determination of thegoosteriori
densityf(-v4|Y") in (13) the predictive density(y,,| s, Y n—1)
must be computed. From (1)

f'n,|:c(yn — Z|7g)

(18)

f(ynh/tévyn—l) :f(yn|r7¢7'1") =
= fn(yn — xl7s)

where fp(-) denotes the conditional probability density

function (pdf) ofn givenz and fpz(-) = fa(-) whenn and
z are independent. Thus, the densftyy,, |v4,Y »—1) can be

considered to be generalized Gaussian with shape parameter

~4 and location estimate the conditional filter output.

The Bayesian inference procedure described above allows
for the selection of the appropriate density from the family
of densities considered. If the densities corresponding to the

[l
E((’V - ’Aymmse |Y = Z v %nmse ) f(’Y¢|Y)
¢=1

(19)

In a similar manner, the maximura posteriori likelihood
estimate of the shape paramefgy,,(Y) = 4.(Y) can be
obtained through the adaptive filter.

The following comments can be made regarding the adap-
tive filter.

1) The adaptive filter of (12) is optimum in the Bayes sense
every time it is used inside the window and its optimality
is independent of the convergence. The weights that
regulate the contribution of the elemental filters are not
derived heuristically. Rather, the weights are determined
through Bayes theorem using the assumptions on the
noise density functions. The adaptive filter weights are
dependent on the local image information and thus, as
the filter window moves from one pixel to the next, a
different adaptive filter output is obtained.

2) Through the adaptive design, the problem of determining
the appropriate distribution for the noise is transformed
into the problem of combining a collection of admissible
distributions. This constitutes a problem of considerably
reduced complexity, since specific noise models, such as
additive Gaussian noise, impulsive noise, or a combina-
tion of both are often encountered in image processing
applications.

3) The proposed adaptive design is a scalable one. The

designer controls the complexity of the procedure by

determining the number and form of the individual

filters. Depending on the problem specification and the
computational constraints imposed by the design, an
appropriate number of elemental filters can be selected.

different shape values assumed are representative of the class The filter requires naa priori training signals or test
of densities encountered in image processing applications, then statistics and its parallel structure makes it suitable for
the Bayesian procedure should provide good results regardless real-time image applications.
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The proposed Bayesian adaptive procedure is simple, codiistance between the local observation under consideration and
putationally efficient, easy-to-use, and reasonably robust. dli the other vectors inside th# set, excluding the point at
the proposed approach, the posterior probabilities are maevkich the density is evaluated. The smoothing parameter is
important than the manner in which the designer can obtain ttherefore given by
elemental estimates that are used in the procedure. Different "
me’Fhodologies can be uti!izgd to obtain these estimates. Filters hy =n kM7, = p kM Z |z — 2 (21)
derived using the ML principle, (e.g. VMF, BVDF), robust
estimators, (e.ga-TMF), and estimators based on adaptive

designs, such as the ANNF or the DDMF, can all be used \{v?r)lere Zj # i for Vz;,j = 1,2, ,m,2; — 2| is the
- . absolute distancel; metric) between the two vectors, akd
provide these needed elemental estimates.

.is a parameter to be determined. The resulting variable kernel

From th_e large number of_ﬂlters that can be _desu_gned us'ggltimator exhibits local smoothing that depends both on the
the adaptive procedure, a filter of great practical importance

is the one that combines a VME with an AME. Extensiv?omt at which the density estl_mat_e is taken and information
ocal to each sample observation in tHeset.

experimentation in the past has proven that, in the homo- " . .
. X i . In addition to the smoothing parameter discussed above,
geneous regions of the image, a mean filter is probably the
. . . e form of the kernel selected also affects the result. Usually,
most suitable estimator, whereas in areas where edges or finée

details are present, a median filter is preferable. Through I]%%snwe kernels are selected for the density approximation. The

. A i . most common choices are kernels from symmetric distribution
adaptive design in (12), these two filters can be comblne;H. . ) X
Unctions, such as the Gaussian or the double exponential. For

By using local image information in the current processinl%e simulation studies reported in this paper, the multivariate
window, such an adaptive filter, which we call BFMA, can P baper,

switch between the two elemental filters in a data depend exlpongntlal kerneli((z) = exp ( |f ) and the multivariate
; - aussian kernel{(z) = exp (—0.52" z) were selected [22].
manner, offering enhanced filtering performance. ) : .
As for any estimator, the behavior of the nonparametric

[Il. THE NONPARAMETRIC APPROACH estimator of (20) is determined through the study of its

The adaptive formulation presented in the previous sectigﬁ"t?Stical properties. Certain restrictions S.hOUId apply to the
was based on the assumption that a certain class of densiﬂgglgn _parameters, SI.JCh as thg smoothing fa_ctor, n qrder
can be used to describe the noise corrupting color imag&%.omam an asymptotically ur_1b|a_15ed and cc_>nS|stent_est|ma—
Thus, a Bayesian adaptive procedure has been utilized ' d{-\_ccord{.ng to thehQaJl\?alyss_lntroduced n .[22]’ |f_the
determine on line the unknown parameters that are used’ |t|o?s(1mn_,o;;](\? l (_”)) - Ofo (asymptotic con3|s;j
to describe the noise density function. However, in a moj%ncy)’( m;l;}\joo (”_l (n)) = oo (uni orrrl;_conglstency), an
general formulation, we may also not know the functional forn Moo (7’ (n)) = 0 (asymptotic unbiasedness) are sat-
of the noise density. In such a case, the densities involvisfjed: then f(z) becomes an asymptqtlcall_yk/ljj\?plased and
in the derivation of the optimal estimator of (6) can not bgqnsste:nt estimate of(z). The multiplier » in (21)
determined through a parametric technique, such as the JfEh (0-5> & >0) guarantees the satisfaction of the conditions
described in Section II. Rather, we have to estimate thdfi @ asymptotically unbiased and consistent estimator [22].
from available sample observations using a nonparametfic€ Selection of thei, for the same design parameter does
technique. not affect the asymptotic properties of the estimator in (20).

Among the plethora of the different nonparametric schemddoWever, for a finite number of samples, as in our case, the
we adopt the kernel estimator. The notation of nonparam&nction A; is the dominant parameter that determines the

ric estimation remains relatively unknown, therefore a brieqerforman.ce OT thg nonparametrlc estimator.
overview is included. After this brief introduction let us return to the problem

If the objective is the nonparametric determination of aff nonparametric evaluation of the densities involved in the

unknown multivariate density(z) from a set of independent derivation of the optimal estimator in (6). This time, no
samplesZ = z,, zy, - - - , 2,, drawn from the unknown underly- assumption regarding the functional form of the noise present

ing density, the form of a data-adaptive nonparametric kerriB| the image is made.

estimator is It is only assumgd that pairs of im_age ve(_:torsm,yl),l =
n _ 1,2,---,n are available through a sliding window of length
flz)=(nh) Z(hl)—MK<M> (20) centered around the noisy observatipBased on this sample,
=1 ha the densitiesf(y) and f(y,z) will be approximated using

wherez; € RM, M is the dimensionality of the measuremengaMmple point adaptive nonparametric kernel estimators.
space(M = 3 for color images)K: RM — R' is a function ~ Our first task is to apprommate_the joint densityy, x).
centered at zero that integrates to one s the smoothing AS & nonparametric density approximation we may choose the

i=1

term [20]-[23]. foIIowing:
The form for the data-dependent smoothing parameter is of N e M M
great importance for the nonparametric estimator. To this end, flz.y)=n Z(hll‘) (hay)
a new smoothing factor suitable for multichannel estimation is =1
proposed in this paper. For the sample point defined in (20), -K<<($ ~ ‘”))7 <(y ~ yl)))_ (22)
we define a smoothing factor that is a function of the aggregate hia hay
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Assuming a product kernel estimator [24], the nonparamettig. This estimator is linear with respect to thg and can be

approximation of the joint density(y, z) has as follows: considered therefore as a linear smoother. The basis functions,
. n on the other hand, determined by the kernel functis()
flz,y) :n_lz(hlm)_M(hly)_M and the smoothing parametés-), can be either linear or
=1 nonlinear on the noisy measuremegisit is easy to recognize
-K<($ - xl)>K<(y — y1)> (23) the similari_ty betvv_een the_ Bayesian adaptive parametri.c filter
hiz Ry ’ discussed in Section Il with the Nadaraya—\Watson estimator.
The marginal density(y) in the denominator of (4) can then The Bayesian adgptive filter is also a Iinea_r smoother with
be approximated using the results in (23) as follows: respec_t_to a func_tlon of thgl (the _elementa}l filtered result_s)
" and utilizes nonlinear basis functions, which are determined
/f(% z)dr =n""t Z(hly)—l\fK(M) by the unknown “shapely) parameter from the generalized
=1 ly “parent” distribution assumed.
(=) Although the existence of a consistent estimate in mean
: </(h1x) K(T) diﬂ) square has been proven, there ar@muiori guidelines on the

" selection of design parameters, such as the smoothing vector
—pn1 Z(hzy)_MK<(y — y1)> (24) or the kernel, on the basis of a finite set of d_ata. Smoothing
= hay factors, other than the aggregated distance introduced here,

since/ K(z)dz = 1 assuming that the kernel results from £UCh @s the minimum distance or the maximum distance
real density. between they, and thekth nearest neighbors, constitute valid

The determination of the numerator in (4) is now feasibl§olutions and can be used instead [27]. _
The assumption that The adjustable parameters of the proposed filter are
z,y, K (-) andh(-). The degree of the smoothness is controlled
/Z% 2 K(2)dz =0 by the smoothing factoh(.). It can easily be seen that by
appropriately modifying the smoothing factor we can force the
implies [24] that nonparametric estimator to match a given sample arbitrarily
close. To accomplish this, we modify the kernel by adjusting
/:cK(:c — ) dz == (25) through an exponent the effect of the smoothing parameter
h(-). In this case, the form of the estimator is as follows:

Thus, the numerator of (6) becomes

. w-u) [ ()
[ iayde =S atmy) a0, a6 ) =3 | " (30)
=1 ty =1 Zh—]\lK<y — yl)
Utilizing (22)—(26), the sample point adaptive nonparametric =1 : hi

estimator ofz(y) can be defined as
where the parameterregulates the smoothness of the kernel.

. :cf(:c y) dz Sinc_e the nonparam_etric filter_ is a regression estimator, which
N < zf(xz,y) oo ’ provides a smooth interpolation among the observed vectors
E(Y)np = /_ . f(y) dr = —— (27) inside the processing window, tlreparameter can provide the
- f(z,y)dz required balance between smoothing and detail preservation.
n = Becauser is a one-dimensional (1-D) parameter, it is usually
le <(n_1)hl_MK<w>> not difficult to determine an appropriate value for a practical
. =1 hy application. By increasing the value of thewe can force the
EY)p = y—y (28) nonparametric estimator to approximate arbitrary close any
Z((”_l)hz_MK< . l)) one of the vectors inside the filtering window. To this end, let

us suppose that a nonparametric estimator with given value
r = r* exists, given the available input s&. Then the
) following relation holds:

=1 Zhl_MK<y ;fh) =1 5+ Z :vz <hl—1\lK<y ;T?/z ))
l

=1 ~ =1 3
(29) i(y) = - (31)
R 1 > (e (U)
wherey, € W andw;(y) is a weighting function defined in ) R}

the interval [0, 1].
From (29), it can be seen that the nonparametric estimataiith / = 1,2, ---,n. Assuming thate; # x; for j # . Then
often called the Nadaraya—Watson estimator [25], [26], fer arbitrarye >0 and anyl,j withl=1,2,---,nandj #£1
given as a weighted average of the samples in the windeve can forceK (y — y,;/h;) < ¢ since by properly choosing a
selected. The inputs in the mixture are the noise-free vecteauer* = 1/r, the kemelK (y — y;/h} ) — 0 asr, + 0 if
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order to reject possible outliers, and then the adaptive filter of

NOISETSEI;,EBLT,ONS (33) is utilized to provide the final filtered output. The AMNF2
fiter can be viewed as an extension to the multichannel
Number Noise Model case of the DW filtering structures extensively used for gray-
1 Gaussian (o = 30) scale image processing. As in gray-scale processing, with this

adaptive filter we can distinguish between two operators: i)
the computation of the median in a smaller window, and ii)
Gaussian (¢ =7.5), impulsive (2%) the adaptive averaging in a second processing window.

In the derivation of the data-adaptive nonparametric esti-
mator presented in (29), (32), and (33), a number of design
parameters have been introduced. They are as follows:

¢ the window size, and therefore the number of noisy

y # y,. Thus, we can conclude that there exists some value of Measurement vectors, available for the evaluation of the
r such that the nonparametric regressor approaches arbitrary @Pproximate density;

impulsive (4%)

Gaussian (¢ = 15), impulsive (2%)

g W N

Gaussian (0 =30), impulsive (4%)

close to an existing vector. * the form of the smoothing factoh; where decisions
To obtain the final estimate, we must assume that, in the about the multiplier and the distance measure utilized can
absence of noise, the actual image vectersare available. greatly affect the performance of the density estimator;

As is the case for the adaptive/trainable filters, a training® the type of kernel used in (29); _

record can be obtained in some cases during some calibratiof the vectors used instead of the actual, unavailable color
procedure in a controlled environment. In a real-time image Vectorsz; in the derivation of (29).

processing application, however, that is not always possibRll these elements affect the filtering process, since they deter-
Therefore, alternative suboptimal solutions are introduced. mine the output of the estimator. In an adaptive formulation,

a first approach, each vectags in (29) is replaced with its we can defing as the parameter vector, which is the abstract
noisy measuremeny,. The resulting suboptimal estimator,representation of all elements listed above. It is not necessary
called adaptive multichannel nonparametric filter (hereaftéhat all these elements be treated as parameters in a specific
AMNF), is solely based on the available noisy vectors ardesign. Problem specifications and design objectives can be
the form of the data-adaptive kernel selected for the densitged to determine the elements included in the parameter

approximations. Thus, the AMNF form is as follows: vector 6.
By varying the different parameters on the design of the
N h—MK<y—yz> nonparametric kernel, different resuligg(Y) = m(z) can
N . t hi be obtained. Let us suppose tha{x;),: = 1,2,---, P are
FWAMNE = D Ui | = _ - 32 jifterent nonparametric estimators, all based on the same
=1 —M Y-y . : .
th K<—h ) sample record” = (y,,¥s,---,¥,,) but possibly with differ-
=1 ! ent kernelsK, K»,---, K, and different smoothing factors
A different form of the adaptive nonparametric estimatoki, h2,---,k,. An overall estimator based on these values

can be obtained if a reference vecigr is used instead of the can be obtained as the expected vakig = E(m(x)|y)
actual color vectog; in (29). A robust estimate of the location,calculated over the given nonparametric values determined by
usually evaluated in a smaller subset of the input set, is utiliz#te different techniques.

instead of ther;. Usually the median is the preferable choice, Assuming that the different estimated valugs(x) are
since it smoothes out impulsive noise and preserves edges awdilable and that they are related to the observed sample
details. However, unlike scalars, the most central vector intl'rough the model
set of vectors can be defined in more than one way. Thus, — 1) + & (34)
the VMF or the marginal median filter (MAMF) operating y=mz

in a 3 x 3 window centered around the current pixel cawith ¢ additive corruption noise, we can claim that the
be used to provide the requested reliable reference. In thitnimization of the expected error leads to a solutionafgy,
paper, the VMF evaluated in a8 3 window was selected to as

provide the reference vector. The new adaptive multichannel

r
nonparametric filter, (hereafter AMNF2), has the following Zﬁli(w)fg(y—ﬁli(w))
form: i=1

.'L'np ==

r
IS = Zﬁlz (:c)wnpz (35)
, hl—AfK(%) Slly—r(@)
FwamnE = = | = yl o | @3 =t

=1 ZhI_MK< - z) with
1
=1

The AMNF2 can be viewed as a double-window (DW), r X
two-stage estimator. First, the original image is filtered by a ng(y— ()
multichannel median filter in a small processing window in j=1

fg(y— m;(x))

(36)

Wnpi =
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TABLE I
FiLTERS COMPARED

Notation Filter Reference
AMF Arithmetic (Linear) Mean Filter [21
VMF Vector Median Filter [6]
BVDF Basic Vector Directional Filter [11, (7]
GVDF Generalized Vector Directional Filter (71, [e]

with an «-trimmed magnitude module, (a =1.5)

DDF Directional-Distance Filter [8l
ANNF Adaptive Nearest Neighbor Filter [12]
DDMF Distance Dependent Multichannel Filter [13]
«a -TMF «a-trimmed Mean Filter (a =1.5) (5]
AMNFG Adaptive Non-parametric Filter, eq. 32, M=3, k=0.33, Gaussian kernel

AMNFE Adaptive Non-parametric Filter, eq. 32, M=3, k=0.33, Exponential kermel
AMNFE2 AMNF2 filter with an Exponential kernel, eq. 33, VMF reference point, M=3, k=0.33
AMNFG2 AMNF2 filter with a Gaussian kernel, eq. 33, VMF reference point, M=3, k=0.33

BFMA Bayesian Adaptive Filter (Median & Arithmetic Mean) subfilters

MAMNFEG Multiple Non-parametric Filter, 2 subfilters with Gaussian & Exponential kernels

MAMNFEG Multiple AMNF2 Filters, 2 subfilters with Gaussian & Exponential kernels, eq. 35

MAMNF35 Multiple Non-parametric Filter, 2 subfilters with different window sizes, eq. 35

TABLE 1lI
ExisTING FILTERS: NMSE 10~2 FOR THE LENA IMAGE, 3 X 3

Noise | BVDF GVDF DDF VMF AMF ANNF DDMF «o-TMF
1 2.8962 1.46 1.524 1.60 0.6963 0.851 0.833 1.272
2 0.3848 0.30 0.3255 0.19 0.8186 0.261 0.221 0.186
3 0.463 0.341 0.439 0.295 0.527 0.2532 0.285 0.288
4 1.1354 0.6238  0.6483 0.5404 0.6160 0.3878 0.3927 0.467
5 3.8515 1.982 2.1646  1.6791 1.298 1.086 1.1044 1.39

To calculate the exact value of the multiple nonparametneith the smoothing parameter calculated as
estimator, the functionfe(-) must be evaluated. Since it is

. . . r

generally unknown, we approximate it in a nonparametric kM 4 kM

fashion based on the set of the elemental vatés) avail- h=P A =P Z € =&l | (38)
able. If P elemental estimatesi;(x) are available, with =1

i = 1,2,---, P we introduce the .nom_mal parametéy = where¢; # & for V¢, j = 1,2,---, P, and ¢, — &] is the
y — m;(x). Therefore, our objective is the nonparametrighsqyte distanceL, metric) between the two vectors.
evaluation of the density‘E(-) using the set of the available . (37), we can claim th@fg(g) integrates to one, given
data points=' = £;,&, -+, £p. The approximation task canhe form of the approximation and the fact that the kefiél)
be carried out by using any standard nonparametric approaglyits from a real density. Thus, the set of weights, has
such as the different kernel estimators discussed in (29)—(33)s following properties: i) Each weight is a positive number,
For the simulation studies discussed in the next section, We . > 0, and ii) the summation of all the weights is equal
decided to utilize our sample point adaptive kernel estimatorgfong, S wnp = 1, and can be interpreted as posterior
(20). Thus, the following estimate of the densfy(y —ii(x)) probabilitije_s used to incorporate prior information concerning
is used: local smoothness. Thus, each weight in (35) regulates the
contribution of the associated filter by its posterior component
density.

The following comments can be made regarding the mul-
tiple nonparametric filter.

~ ~

Fely — () = f¢(&) = (P71 Z(hl)—f‘fK(ﬂ)

=1 hl
(37)
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TABLE IV
New FiLTErs; NMSE 10~2 For THE LENA IMAGE, 3 X 3
Noise | BFMA AMNFE AMNFE2 AMNFG AMNFG2 MAMNFEG MAMNFEG2 MAMNF35
1 0.7286 0.87 0.565 0.8417 0.546 0.8534 0.546 0.6196
2 0.3067 0.1836 0.171 0.2006 0.221 0.1915 0.208 0.2821
3 0.229 0.221 0.232 0.206 0.231 0.214 0.232 0.242
4 0.4284 0.3746 0.302 0.3578 0.312 0.3660 0.314 0.3838
5 1.0718 1.0438 0.699 1.007 0.672 1.0234 0.679 0.7152
TABLE V
ExiSTING FILTERS: NMSE 102 FOR THE LENA IMAGE, 5 x 5
Noise | BVDF GVDF DDF VMF AMF ANNF DDMF «o-TMF
1 2.8819 1.08 1.0242 1.17 0.5994 0.626 0.639 0.664
2 0.7318 0.54 0.5126 0.58 0.6656 0.421 0.369 0.312
3 0.685 0.401 0.553 0.503 0.536 0.377 0.332 0.386
4 1.3557 0.459 0.6913 0.5172  0.53702 0.436 0.418 0.409
5 4.1237 1.1044 1.3048  1.0377  0.8896 0.758 0.814 0.826

« The general form of the filter is given as a linear combina-
tion of nonlinear basis functions. The weights in the above
mixture are the elemental filtered values obtained by the
different nonparametric estimators applied to the problem.
The nonlinear basis function is determined by the form of
the approximate density,, and can take many different
forms, such as Gaussian, exponential, or triangular. It is
not hard to see that in the case of a Gaussian kernel the
multiple estimator of (35) can be viewed as a radial basis
function (RBF) neural network.

The adaptive procedure can be used to combine a va-
riety of nonparametric estimators, each one of them
developed for a different value set of the parameter
vector ©. For example, such a structure can be used
to combine elemental nonparametric filters derived for
different window sizesiW. The number of color vector
samples utilized in the development of the nonparametric
estimator depends on the windoW centered around
the pixel under consideration. Usually a squarex 33

or 5 x 5 window is selected. However, such a decision
affects the filter's performance. In smooth areas or when
Gaussian noise is anticipated, a larger window (e.g, 5

5) is preferable. On the other hand, near edges or when
impulsive noise is assumed a smaller window (usually
3 x 3 window) is more appropriate. An adaptive filter
that utilizes elemental filters with different window sizes
(hereafter, MAMNF35), is most probably a better choice
in an unknown or mixed noise environment. Using the
same approach other practical adaptive filters, such as the
MAMNFEG, which utilizes two elemental nonparametric
filters with an exponential and a Gaussian kernel, respec-
tively, can be devised. Due to the specific form of the
kernel, it is anticipated that a nonparametric filter with a

allows for both filters to be utilized simultaneously is of
paramount importance in an unknown noise environment.
Such examples emphasize the versatility of the proposed
adaptive approach, which can provide a wide range of
different practical filters.

Although the filter in (35) has been derived as a gen-
eralization of a nonparametric estimator, it can be used
to combine different heterogeneous estimators applied
to the same task. Specifically, the designer can utilize
a number of different elemental filters, such as order
statistic-based filters, the Bayesian adaptive filter, nearest-
neighbor filters, and nonparametric estimators, and then
combine all the different results using (35) and (36). The
effectiveness of the adaptive scheme is determined by the
validity of the elemental filtered results and the approx-
imation required in (36). However, due to the different
justification of the elemental filters, extensive simulation
results are the only way to examine the performance
of the filter in practical applications. Experimentation
with color images will be used in the next section to
demonstrate the effectiveness of the multiple filter and
to access the improvement in terms of the performance
achieved using a multiple nonparametric filter, vis-a-
vis a simple nonparametric filter. We believe that the
multiple filter can be a powerful design tool since it
allows the combination of filters designed using different
methodologies and different design parameters. This is
of paramount importance in practical applications, since
it allows for the development of efficient adaptive filters
when no indication for the selection of a suitable filtering
approach is available.

IV. APPLICATION TO COLOR IMAGES

Gaussian kernel is probably a better choice for Gaussianin this section the performance of the proposed adaptive
noise smoothing. Similarly, a filter with an exponentiafilters is evaluated in the most important area of multichannel
kernel will provide better filtering results when impulsivegorocessing, namely color image filtering. The noise attenuation
or long-tailed noise is present. An adaptive design thptoperties of the different filters are examined by utilizing the
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TABLE VI

New FiLTERs: NMSE 102 FOR THE LENA IMAGE, 5 X 5

Noise | BFMA AMNFE AMNFE2 AMNFG AMNFG2 MAMNFEG MAMNFEG2 MAMNF35
1 0.5810 0.5908 0.518 0.5807 0.514 0.5866 0.519 0.5725
2 0.3146 0.3096 0.301 0.3110 0.307 0.3106 0.307 0.2744
3 0.231 0.331 0.324 0.321 0.314 0.213 0.316 0.295
4 0.3799 0.3936 0.371 0.3847 0.362 0.3899 0.368 0.3371
5 0.6634 0.635 0.583 0.6258 0.581 0.6306 0.588 0.6452

Fig. 1. The Lena image corrupted with Gaussian neise 30 mixed with

4% impulsive noise.

Fig. 2. GVDF of (1) with a 3x 3 window.

standard deviatiowr. The impulsive noise has been simulated
in two steps. In the first step, each image channel is corrupted
independently using spikes with magnitude 255. The program
assumes that both negative and positive spikes are equally
likely to occur. Data clipping is used to limit the samples’
value in the range [0, 255]. In a second step, a correlation
factorp = 0.5 is used to determine the corruption of the pixel
(¢,7) in channelC if the same pixel is corrupted in any of the
other two channels [7], [9]. The original image, as well as its
noisy versions, are represented in the red—green-blue (RGB)
color space. This color coordinate system is considered to be
objective, since it is based on the physical measurements of
the color attributes. The filters operate on the images in the
RGB color space.

Since it is impossible to discuss all the adaptive filters
resulting from the theory introduced in this paper, we construct
six different filters based on our parametric and nonparametric
designs. These filters are compared, in terms of performance,
with other widely used nonadaptive and adaptive color image
filters (see Table II).

A number of different objective measures can be utilized
to assess the performance of the different filters. All of them
provide some measure of closeness between two digital images
by exploiting the differences in the statistical distributions of
the pixel values [28]. The most widely used measure is the
normalized mean square error (NMSE) defined as

N1 N2
DO (i g) — 9 )12
NMSE = =220 (39)
SN I, DI
i=045=0

where N1, N2 are the image dimensions, ang:, j) and
9(1, ) denote the original image vector and the estimation at
pixel (i, ) respectively. Tables llI-VI summarize the results
obtained for the color test image Lena.

In many application areas, such as multimedia, telecom-
munications (e.g., high-definition television), motion picture
production, the printing industry, and graphic arts, greater
emphasis is given to perceptual image quality. Consequently,
the perceptual closeness (alternatively perceptual difference or
error) of the filtered image to the uncorrupted original image is

color image Lena. The test image has been contaminated usiftgnately the best measure of the efficiency of any color image
various noise source models in order to assess the performdiltering method. There are basically two major approaches
of the filters under different scenarios (see Table 1). Gaussiased for assessing the perceptual error between two color
noise implies corruption by zero mean additive noise witimages. In order to make a complete and thorough assessment
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TABLE VI
ExisTING FILTERS. NCD FOR THE LENA IMAGE, 3 X 3
Noise | BVDF  GVDF DDF VMF AMF ANNF DDMF «a-TMF
1 0.05081  0.046824  0.04996  0.057356  0.033382  0.0373 0.0377 0.0504
2 0.0195  0.017023. 0.017288 0.014703  0.028431  0.0178 0.0184 0.0175
3 0.0272 0.0219 0.0279 0.0215 0.0234 0.0196 0.0223 0.0197
4 0.03215  0.028157 0.029729  0.033228  0.029526 0.0263 0.0273 0.0298
5 0.04979  0.048793  0.053260 0.060989  0.041983  0.0413 0.0411 0.0396
TABLE VIl
NeEw FiLTERS: NCD FoOR THE LENA IMAGE, 3 X 3
Noise | BFMA AMNFE AMNFE2 AMNFG AMNFG2 MAMNFEG MAMNFEG2 MAMNF35
1 0.036005 0.038947 0.0311 0.038169 0.030 0.038735 0.031 0.031552
2 0.02014 0.015047 0.0151 0.01886 0.0169 0.020266 0.016 0.021061
3 0.0179 0.01784 0.01701 0.0174 0.0171 0.0176 0.0173 0.0179
4 0.025051 0.023980 0.0213 0.024321 0.0213 0.024311 0.0215 0.022612
5 0.040409  0.040423 0.0331 0.040058 0.0325 0.040459 0.033 0.032657

perceptual error between images. Thus, it is important to
use color spaces, which are closely related to the human
perceptual characteristics and suitable for defining appropriate
measures of perceptual error between color vectors. A number
of such color spaces are used lately in areas such as com-
puter graphics, motion pictures, graphic arts, and the printing
industry. Among these, perceptually uniform color spaces are
the most appropriate to define simple yet precise measures of
perceptual error. The Commission Internationale de I'Eclairage
(CIE) standardized two color spacdsu*v* and L*a*b*, as
perceptually uniform. Thd.*«*»* color space is chosen for
our analysis because it is simpler in computation théa*t*
color space, without any sacrifice in perceptual uniformity.
The conversion from nonlinear RGB color space (the non-
linear RGB values are the ones stored in the computer and
applied to the CRT of the monitor to generate the image) to
the L*w*v* color space is explained in detail in [30]. Nonlinear
RGB values of both the uncorrupted original image and the
filtered image are converted to corresponditig.*v* values
for each of the filtering method under consideration. In the
Fig. 3. DDMF of (1) with a 3x 3 window. L*y*v* space, theL* component defines the lightness, and
thew* andv* components together define the chromaticity. In
&diniform color space, such ds'w*v*, the perceptual color
error between two color vectors is defined as the Euclidean
jstance between them, given by

of the performance of the various filters, both approaches
used in this paper.

The first approach is to make an objective measure of tH
perceptual error between two color images. This leads us to
the question of how to estimate the perceptual error between
two color vectors. Precise quantification of the perceptual error AEpy, = [(AL*)? + (Au*)? + (Av*)?]Y2 (40)
between two color vectors is one of the most important and
open research problem. RGB is the most popular color space
used conventionally to store, process, display, and analyeghere AEr,., is the color error and\L*, Auv*, and Av* are
color images. However, the human perception of color canrtbe difference in thd.*, v*, andv* components, respectively,
be described using the RGB model [29]. Therefore, measutetween the two color vectors under consideration. Once the
such as the normalized mean square error (NMSE) definAdv;,,,, for each pixel of the images under consideration is
in the RGB color space are not appropriate to quantify tle@mputed, the normalized color difference (NCD) is estimated
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TABLE X
ExisTING FILTERS. NCD FOR THE LENA IMAGE, 5 X 5
Noise | BVDF GVDF DDF VMF AMF ANNF DDMF «-TMF
1 0.04087  0.032077  0.037725  0.043390  0.027598  0.0287 0.030 0.0325
2 0.01895  0.017996¢  0.018716  0.018032  0.027032 0.020 0.0197 0.0197
3 0.0242 0.0188 0.0227 0.0214 0.023 0.021 0.0191 0.0213
4 0.02675  0.023224  0.025749  0.028125  0.025296  0.0225  0.0219 0.0229
5 0.04018  0.033921 0.039696 0.045736  0.033816  0.0314 0.0327 0.0332
TABLE X
New FiLTERS: NCD FoOR THE LENA IMAGE, 5 X 5
Noise | BFMA AMNFE AMNFE2 AMNFG AMNFG2 MAMNFEG MAMNFEG2 MAMNF35
1 0.030970 0.028851 0.0261 0.028721 0.0279 0.02816 0.0277 0.029890
2 0.019244 0.01774 0.0173 0.017919 0.0177 0.017903 0.0179 0.016421
3 0.0198 0.0184 0.0191 0.0186 0.0181 0.0176 0.0184 0.0173
4 0.022851  0.021526 0.0212 0.021669 0.0216 0.021602 0.0215 0.021216
5 0.033989  0.029548 0.0281 0.029476 0.0294 0.029540 0.0294 0.031008

according to the following formula:
N1 N2
> D IIAELL
i=04=0
N1 N2

> D B

1=05=0

NCD = (41)

where
B}y = [(L7)? + (u*)? + (v7)?]/2

is the norm or magnitudeof the uncorrupted original image
pixel vector in theL*«*v* space.

Tables VII-X summarize the results obtained for the test
color image Lena.

Although quantitative measures, such/&ag&’,,,, and NCD,
are close approximations to the perceptual error, they can-
not exactly characterize the complex attributes of human
perception. Therefore, an alternative subjective approach is
commonly used by researchers [31] for estimating the percep- Fig. 4. «-TMF of (1) with a 3 x 3 window.
tual error.

The second evaluation approach is the subjective evaluatiort defects classified as any imperfections such as blocking
of the two images to be compared in which both images are artifacts that were not present in the original (noise-free)
viewed, simultaneously, under identical viewing conditions by ~ image.

a set of observers. A set of color image quality attributes cam this study, the color images under consideration were
be defined for the subjective evaluation [31]. The evaluatiaiewed in parallel, on a Sun SparcStation 5 with a 24-b color
must take into consideration three important factors in regatitbnitor, and the observers were asked to mark scores on a
to color image filtering, namely, noise attenuation, edge presgfinted evaluation sheet following the guidelines summarized
vation, and detail retention. Thus, the overall quality of thia Table XI [32]. To subjectively evaluate the noise-removal
color image is determined from the following attributes:  capabilities of the algorithms, a similar procedure was fol-
« detail preservationwhich corresponds to edge and findowed. Observers were instructed to assign a lower number if

detall preservation; noise was still present in the filtered output (see Table XI).
» sharpnesswhich refers to the distinctness of boundaries The results of the subjective evaluation is summarized in
among colors; Tables Xl and XllI, and is used to complement the results

« color uniformity, which refers to the consistency of theobtained from the objective evaluation using quantitative mea-
color in uniform areas; sures such as NMSE and NCD.
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TABLE XI
SUBJECTIVE IMAGE EVALUATION GUIDELINES
Score Overall Evaluation Noise Removal Evaluation
1 Very Disruptive distortion poor
2 Disruptive distortion fair
3 Destructive but not disruptive distortion good
4 Perceivable but not destructive distortion very good
5 Imperceivable distortion excellent

Fig. 5. AMNFG of (1) with a 3x 3 window.

Fig. 6. MAMNFEG of (1) with a 3x 3 window. Fig. 8. The RGB color image of peppers.

Now, having defined the measures for the assessmentTables IlI-XIIl is the effect of window size on the performance
performance by various filters, we proceed to the assessmehthe filter. In the case of nonadaptive filters, the bigger
itself. One of the obvious observations from the results imindow size (5 5) gives considerably better results for the
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TABLE Xl
SUBJECTIVE EVALUATION

Filter | Figure of Merit

Filter a

[¢]
o

BVDF

[

GVDF
DDF

g W W

VMF
AMF
ANNF
DDMF
«a -TMF
BFMA
AMNFE

AMNFE2

Fig. 9. Peppers image corrupted with Gaussian neise 30 mixed with AMNFG
4% impulsive noise.

AMNFG2
MAMNFEG
MAMNFEG2

[ S & T ¢ 1 T O T * L T N OV R JV R O S L T VN VL R o
(<2 N S S NN - T 22 I U ¥V B I & B G S ¢ B ¢\ I G VI I o
[o2 I BN &2 BN & A N & BN A BN ¢ 2 I R I © - R

SO o ol g o s W W W W w W N A
U o D R W W W W N W

MAMNF35

Fig. 10. BVDF of (9) with a 3x 3 window.

TABLE XIl
FIGURE OF MERIT
a Overall Subjective Evaluation
b Additive Gaussian Noise Fig. 11. GVDF of (9) with a 3x 3 window.
c Impulsive Noise

The AMF is theoretically the best nonadaptive filter for the
removal of pure Gaussian noise (noise model 1). The results
e Mixed (Gaussian/Impulsive) Noise in Tables Ill, V, VII, and IX confirms this. In other words,

the NMSE, NCD, and the subjective measure all indicate best
removal of Gaussian noise (noise model 1), while decreasipgrformance by the AMF. So, the performance of the AMF
the performance for the removal of impulsive noise (noidéter is used as a benchmark to compare the performance of
model 2). Although a similar pattern follows for the adaptivéhe new adaptive filters in the same noise environment. The
filters, the effect of window size on performance is lesesults in Tables IV, VI, VI, and X indicate that the new
dramatic as compared to the nonadaptive filters. adaptive filters perform better or close enough to the AMF

d | Moderate Mixed (Gaussian/Impulsive) Noise
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Fig. 14. BFMA of (9) with a 3x 3 window.

removal of impulsive noise, outperforming other nonadaptive
and adaptive filters. For the case of &% square processing
window our MAMNF35 filter clearly outperforms all other
filters.

For the mixture of Gaussian and impulsive noise (noise
models 3-5), the new adaptive filters consistently outperform
any of the existing listed filters, both adaptive and nonadaptive,
with respect to NMSE, NCD, and subjective measures, for
both window sizes (see Figs. 1-7). This is demonstrated by the
simple fact that, for noise models 3-5 (see Table I), the highest
error among the new adaptive filters is lower than the lowest
error among the existing filters, both adaptive and nonadaptive.
Herein lies the real advantage of the new adaptive filters.
As mentioned before, in real applications, the noise model
is unknowna priori. Nevertheless, the most common noise
types encountered in real situations are Gaussian or impulsive
or a mixture of both. Therefore, the use of these new adaptive
filters guarantees near optimal performance for the removal
of any kind of noise encountered in practical applications. On

Fig. 13. AMNFE2 of (9) with a 3x 3 window. the contrary, application of a “noise-mismatched” nonadap-

tive filter, such as a VMF for Gaussian noise or AMF for

and outperform existing adaptive filters, such as the ANNF anpulsive noise, can have profound consequences leading to
DDMF in NMSE, NCD and in the subjective sense. Clearlynacceptable results.
the new AMNFG2 adaptive filter is the best for Gaussian noiseln a final example, we compare the performance of the
and performs exceptionally well, outperforming the existingifferent filters in noise attenuation using a different color
filters (both adaptive and nonadaptive), with respect to all thri#eage. The test RGB image of peppers (see Fig. 8) is corrupted
error measures and for both window sizes. by a mixture of additive Gaussian noise (standard deviation,

Similarly, in the case of pure impulsive noise (noise model = 30) and 4% impulsive noise (see Fig. 9). All the filters
2), the VMF gives the best performance among nonadapti¢ensidered operate using a square: 3 processing window.
filters according to the results, as well the theory, and is thkdtering results using different estimators are depicted in
used as a benchmark to evaluate the adaptive filters. As for ffigs. 10-14. A comparison of the images clearly favors our
Gaussian noise case, the new adaptive filters perform befi@@ptive designs over existing techniques.
or close enough to the VMF and outperform the existing The following important conclusions can be drawn from the
adaptive filters with respect to all three error measures and fésults listed above, regarding our adaptive designs.
both window sizes. For a & 3 square window the proposed < The proposed adaptive filters attenuate both impulsive and
AMNFE2 adaptive filter emerges as the best contender for the additive Gaussian noise with or without outliers present
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dition, the adaptive filters do not suffer from VMF's
inefficiency in a nonimpulsive noise scenario and small
filtering window. More than that, the generalized adaptive
framework allows for the utilization of elemental filters
that utilize different window sizes balancing between
the detail preservation property of the small processing
window with the enhanced noise attenuation obtained
through a window of size & 5 .

Considering the number of computations required for the
implementation of the adaptive filters, it should be noted
that it is comparable to those of any other multichannel
filter. The adaptation procedure needed to weight the
different elemental filters does not introduce significant
additional computational cost. In addition, the different
elemental filters can be run in parallel reducing the
execution time and making the adaptive filters suitable for
real-time implementation with digital signal processors.
To the best of the authors’ knowledge the adaptation
mechanism introduced in this work is the only one
capable of providing this form of parallel processing
capability.

V. CONCLUSION

This paper has introduced adaptive algorithms for filter-
ing color image data. These filters utilize Bayesian learning
techniques and nonparametric methodologies to adapt to local
image data. The behavior of the adaptive filters is analyzed
and their performance is compared with that of the most
commonly used nonadaptive filters. Simulation results and
subjective evaluation of the filtered images indicate that the
adaptive filters outperform all other filters under consideration.
Moreover, as seen from the attached images, the adaptive
filters preserve the chromaticity component, which is very

(1]

[2]
Fig. 16. MAMNFEG of (8) with a 3x 3 window. [3]

in the test image. It must be noted that if no assumptiof?
about the noise characteristics is made, the new adaptive
filters provide results better than the results obtainegs]
by any other filter under consideration. The proposeﬁel
adaptive filters can effectively remove impulses, smoot
out nominal noise and keep edges and details unchangéd
as can be seen from the results obtained through the
application of the BFMA and MAMNFEG filters on the [g]
noise-free peppers image (see Figs. 15 and 16).

* Results also indicate that the adaptive multiple filtersig]
are less sensitive to the window length as compared
to the GVDF or the VMF. The performance of our
adaptive filters decrease less as compared with that [(1)?]
the nonadaptive filter as window size increases. In ad-

important in the visual perception of color images.
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