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Abstract—Deconvolution is one of the most important aspects Many procedures exist for the solution of the seismic
of seismic signal processing. The objective of the deconvolutl9n deconvolution problem. The state-space approach [2]-[10]
procedure is to remove the obscuring effect of the wavelet's gayiated disadvantages associated with previously popular

replica making up the seismic trace and therefore obtain an esti- thod h licability d ds h i derlvi
mate of the reflection coefficient sequence. This paper introduces MEMN0AS, WNOSE applicabiiity depends heavily on underlying

a new deconvolution algorithm. Optimal distributed estimators assumptions, which unfortunately are not usually valid [10].
and smoothers are utilized in the proposed solution. The new Following the work in [2], [8], we assume that the starting
distributed methcr:dolo%y, perfectly sulltable for a ,mumsensoé point for the deconvolution process is a state-space equivalent
environment, such as the seismic signal processing, is compared to rintion of (1) given

the centralized approach, with respect to computational complex- description of (1) given by
ity and architectural efficiency. It is shown that the distributed

approach greatly outperforms the currently used centralized _
methodology offering flexibility in the design of the data fusion ok +1) = G (k) + (k) (2)
network. 2(k+ 1) =Hz(k+1)+v(k+1) (3)

Index Terms—Data fusion, deconvolution, distributed filters,

filtering, parallel algorithms, smoothing. wherez and v are (n x 1) vectors,® is the (n x n) state

transition matrix,H is the (m x n) output matrix, z(k) is
|. INTRODUCTION the m-dimensional measurement vectéfxz(k) = Vg(k),

and p(k) and v(k) are uncorrelated, zero-mean sequences.

ECONVOLUTION is a fundamental aspect of SEISMIG e plant and measurement noise covariancesgard R,

S|gnal_ processing. The ObJeCt.'VG of the OIeCOnVOIuno%spectlvely. The initial value(0) of the state vector(k) at
procedure is to remove the obscuring effect of the wavelet's . . : .

; ; o .“time ¢, = 0 is modeled as Gaussian random variable with
replica making up the seismic trace and consequently obtain an

estimate of the reflection coefficient sequence. Thus, througgsggégeLtogf %g?m\zz;'?ncff((g) | 0), and it is assumed

the determination of the coefficient sequence, important Con'UsuaIIy, the measurement dimensionality is higher than the

Egjs&(;rrl:/ggncernmg subsurface geometry and lithography e dimensionality, since in caserof> m, the measurements

The most commonly used model is the convolution summg[OVide only partial information about the system state. In
tion introduced by Robinson [1] geophysical applications, the number of sensors (geophones)
y used to capture the seismic reflection varies from a few

k hundred to several thousand. To reduce uncertainty and to
2(k) = Va(k) +n(k) = > p()VFT (k= j)+n(k) (1) obtain complete knowledge of the state of nature, the sensors
j=1 are usually allocated in different local subsystems (geophone

wherez(k) is the received seismic tracex(k) is the noise- clusters). Notice that the measurement veetés) is assumed

free seismic trace resulting from a superposition of wavel be of dimension(m x 1) in contrast to (1). If we wish

replica reflected from the interfaces of earth’'s subsurfa&% procetss tﬁ" gt;r-_\toi)honebmea?uremehnts smultzntteously,t
layers,n(k) is the measurement nois€;r (k—j) is a sequence represents ne fotal humber of geophones used fo capture

associated with the basic seismic wavelet, aifd) is the the sels;nl_c tr;';lcet [10]. Sdl'n(t:els htov(;/evler, _%?Opi}? rles”m pl'iliCtlcle
earth’s reflectivity function. are used in clusters, a distributed algorithm that allows loca

measurements to be processed near the sensing devices is
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Consequently, the local measurement equation, based stete-space model described in (2)—(3), the complexity is of
the state vector is given by order O(max(n?,m?)) [7]. In addition, the large number of
2k +1) = Hiw(k +1) + vi(k + 1) @) sensors.(ge.ophones) requirgd in seismic decpnvplution for oll
. . . exploration introduces considerable communication overhead,
wherez;(k + 1) is them;-dimensional measurement vector ahanqyidth waste, and time delays, since all measurements
the local processor system H; is the (n; x n) local output haye to be transferred from the (possibly) remote-sensing
matrix, andv; (k+1) is them; local measurement noise vectoroations to the central facility for processing. Centralized im-
In this analysis, it is assumed that plementation means that the entire processing system depends
" on the single computing facility. Since the availability of the
m= 2 . (8) processor is critical to the operation, backup systems are often

. used in practice, resulting in increased cost and computing
. The modgl de;cnbgd by (2) and (3) or by (2) and (7). Sower waste. Finally, the centralized approach is inflexible to
linear and time invariant. However, the authors would lik

e expansion or to the modification of the existing sensor

to emphasize the point that the results obtained herein "f‘é%hnology since utilization of additional sensors or reconfig-

!mmgd|ately appl_lcable to linear time varymg,_lmear tiMe,ration of the existing geophones array, something common in
invariant, and periodic models, as well as to nonlinear mode

ctice, requires the modification of the processing algorithm.
For the state-space model described in (1)-(3), Katsikas;, a P ga9

has developed Mini Vari D lutioformul 0 overcome these problems and to achieve robustness
as develope INimum variance Deconvolutiolormuia, = 5,4 redundancy, a new distributed approach is necessary.

which util?zes a pentralized filtering{smoothing scheme ®he main objective is the development of a data processing
obtain optimal estimates of the reflection coefficient SeqUeNgeiom, which provides redundancy and scalability, increases

[7]_.[10]' As;sur:nlng thalZ(k |_j) den”ote tr_llekr)rlunlmum varance 5, stness, and achieves improved performance in terms of
estimator of the state(k), given all available measurememst:omputational speed. A distributed minimum variance de-

the foIIovymg recursive deconvolution formula for a gener‘aéonvolution algorithm that can achieve all of the above is
time-varying linear state-space model holds [8]: presented in this paper. Section Il introduces the new dis-
pk+11k+10) tributed formulation of the optimal minimum variance de-
=By ()@ + 1, )P+ 1| k+1)0"(k+1,k) f:onvolution glgo_rithm. Motivqtion, design char_acteristics_, and
Jr,Y(k)q(k),yr(k)]_l |mplementat|qn issues are @scussed in detail. Ip Segtloq I,
the computational complexity of the new algorithm is dis-
X [#(k+1[k+1)—2(k+1,k)ak | F)] (9)  cussed. A comparative computational analysis, with respect to
whereP(k | k) = E[(z(k)—2(k | k))(z(k)—2(k | k))7]. The computer requirements, is made between the new distributed
above formula has been used to obtain fixed point and fixed llgorithm and the classical approach discussed in [7] and
estimates of the sequengék) by fixing k& and!, respectively. [8]. The practical usefulness of the distributed algorithm is
It can also be used to obtain fixed interval estimates @fvestigated by applying the comparative analysis to specific
n(k) by letting k + 1 = N, where N is the last available examples of multisensor deconvolution. Finally, Section IV
data point. Katsikas used a centralized linear estimator, thigmmarizes our conclusions.
(centralized) linear Lainiotis filter [7], [8] in conjunction with
the (centralized) Lainiotis smoother [11], [12] to obtain the
estimates in (9). Taking advantage of the particular structureWe start the derivation of our distributed deconvolution
of the centralized smoother, Katsikas implemented the filtalgorithm by assuming a hierarchical data fusion network,
and the smoother in parallel, combining their estimates at tie which a central processing facility is connected through
end of the processing cycle through (9) to obtain the requesg&@mmunication links to a number of local nodes (see Fig. 1)
estimateji(k 4+ 1 | k +1). In such a processing architecture, each local sensor or group
Due to space limitation, we will not repeat here the approaét sensors (geophone cluster) collects data and generates its
discussed in [8]. Refer to [7] and [8] for the centralize®wn local estimates, which are then communicated to the
approach to seismic deconvolution and to the tutorial papegntral facility for further processing. The following points
[13] or the monograph [15] for a detailed presentation of tHghould be noted regarding this formulation.

Il. DISTRIBUTED SEISMIC DECONVOLUTION

partitioning approach. 1) Since the number of measurements far exceeds the
If the approach discussed in [8] has to be utilized to provide  dimensionality of the state used to describe the seismic
the requestedi(k + 1 | k£ + {) in a multisensor environment, signal, considerable savings in terms of communication

such the one described in (4)—(8), the central processing bandwidth can be achieved. The local estimates can be
facility has to handle all measurements and interim results transmitted in the central facility at a fraction of the time
and has to interpret the results. However, the implementation required to transfer the raw data. Given that the flow
of such an approach is often problematic in practice. Indeed, of information is only from the local subgroups to the
the centralized algorithm of [8] imposes severe computational  central facility, the system is robust to communication
burden on the computing facility. Depending on the complex-  bottlenecks.

ity of the model used and the number of sensors utilized2) Since part of the data processing takes place at the
to capture the seismic trace, the number of computations different local sensor locations, the computing power
required is rather extensive. For the time-invariant, linear  required in the central cite to complete the processing
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Fig. 1. The distributed approach to state estimation.

task is considerably smaller than that required by the e Distributed Lainiotis Filter (DLF); Central Processor
centralized methodology. Thus, a less powerful proce€alculations
sor can generate the same results, resulting in a more
efficient utilization of computing power. Fhk+1]k+1)=2,(k+1|k+1)+D(k+1,F)

3) Sensor failures in the local subsystems, commonly en- X Pk | k+ D (k| k+1) (11)
countered_ in practice, since geophone arrays are often Boll | k4 1) = [M(k + 1)+ P72k | K)a(k | k)]
deployed in remote locations or underwater, will not re-

sult in a complete failure of the whole processing system. (12)
Only a gradual deterioration of the performance should P(k+1|k+1)=PFP,(k+1|k+1)+ (b +1,k)
be expected. Replacement of the faulty component and X Pk |k +1)®7(k+1,k) (13)
integration of a new one can be done while the data Pk | k+1) = [On(k+1) + P~ (k | k)] (14)
processing system is on-line. ! " \
In the new formulation, the state-space equivalent modelpn—l(k +1|k+1)= Q—l(k) + ZBi(l{; +1) (15)
used is given by (1) and (7). The distributed form of the de- i=1
convolution algorithm combines a distributed filter introduced Ek+1)=Q Y (k)®(k+1,k) (16)
in [19] and a new distributed smoother to provide the optimal
estimate of the sequeng#£k). The equations of the algorithm
are summarized in the following theorem. where
Theorem I1.1) Distributed Deconvolution  Algo-
rithm: Consider the system (1), (7). For this linear, Q(k) = v(k)q(k)v™ (k)
time-invariant,  discrete-time  system, the  optimal Bk +1,k) = Po(k+ 1| k+ 1) Fa(k + 1) 17)

deconvolution algorithm is given by
with initial condition ®(0,0) = I,,xn

k41 k+1)
=qb)y (R)[®Gk+1LE)P(k+1|k+1)27(k+1,k) On(k+1) = Fo(k+1)
+y(k)g(k)y (k)] x [Q(k) = Pu(k+ 1] k+1)]
X [2(k+1]k+1) — ®i(k | k)] (10) X Fo(k+1) (18)

My(k+1)=F(k+1)2.(k+1|k+1) (19)
whereP(k | k) = Bl(x(k)=a(k | )(@(k)=(k | k). The G (k41 [k+1)= Pu(k+1 ] k+1)
equation delivers the fixed-point smoothed estimate:(@f),
utilizing distributed filtering/smoothing schemes. X <Pn—1(k + 1| E)an(k+11k)
A distributed linear filter [19] is used to provide the initial
estimate required by the above deconvolution formula. The r
filter equations (for the general time varying, linear state space +Z A;(k+ 1)) (20)
model) are the following. i=1
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with
En(k+1]k) =2k +1,k)E.(k| k).

e DLF; Local Processor Calculations (for th#h local
subsystem)

Bi(k+1) =P (k+1|k+1)-Q (k)

=H](k+ DR (k+1Hi(k+1)  (21)
Ak+1) =Pk + 1 k+ ik +1]k+1)
= H](k+ DR (k+ Dzi(k+1). (22)

The distributed smoother also operates in both the lo
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independent from the actual filtere(x | &) and P(k | k).
The proof is given in the Appendix.

The distributed filter and smoother presented above cor-
respond to the general time-varying, linear-dynamic, discrete-
time, state-space model. However, since the seismic wavelet is
time invariant, the algorithm simplifies further by substituting
the time-varying matrice®(j, j — 1), H(j), R(j), v(k), and
q(k) with the time-invariant matrice®, H, R, v, andgq. In
this way, the vast majority of the calculations required at the
central processor and the different local processors, such as
those of (13)—(17), (18), (21), (24)-(26), (28), (30)—(31), and
(33), become nonrecursive, and therefore, it is sufficient to be

rformed only once.

subsyst.ems gnd in the cer_1tra| processor. For a_fixed iniual—ro fully appreciate how interesting the above point is, it
smoothing point:, the equations of the distributed fixed poinfy, st pe noticed that formulations based on the Kalman (or
smoother (for a general time varying, linear system) are @g,rmation Kalman) filter and the Meditch smoother, such as

follows.

those presented in [6] and [9] are time varying, even for time-

* Distributed Lainiotis Smoother (DLS); Central Processqp, 4 jant wavelet models. However, the distributed algorithm

Calculations

Bk |1, k) = P(k | D[Msn (1, k) + P71k | )2(k | k)]
(23)
Pk 1) = [Oan(l,k) + P~ k| )] (24)
Con(lE) = [PLHIU T = 1)1, 1 - 1)@, (1,1 — 1)](25)

sn

O (LE) = O (I = 1,k) + Can(l = 1, k)7
X [Pon(L| 1= 1) = Pon (1| D]Can(l = 1, k)
(26)
Mo (LE) = My (1= 1,k)+Con(l = 1,K)7
ol k) = Pon(1 | DCon (1 — 1, k) (28)
Zsn(U| 1) = Psp(l 1) <P§nl(l | {= 1Dz [1-1)
=1
PRI = PR 1= D)+ B (30)
=1
Po(l|l-1)=2(1l-1)Pp(l-1]1-1)®7 (1,1 - 1)
+ v (k)q(k)y™ (k) (31)
Ean(l | 1=1) =01 = DEan(l—1|1-1) (32)

with I = k+ 1L E+2,...
(k| k).

e DLS; Local Processor Calculations (for théh local
subsystem)

and initial conditionP(k | k),

Bani =P +1]j+1) = PG+ 117)
=H G+ 1R G+ DHi(j+1) (33)
Asni = PG+ 1] 5+ DG+ 115 +1)
— PG+ 1] 5)&ami(G + 1] 5)
=H G+ DR+ Dz(i+ 1) (34)
with j = k+ 1,k + 2,... and arbitrary nominal initial

presented here as well as its centralized counterpart of [7]
and [8] have reduced computational requirements not only for
time-invariant models, but for the following models as well.

1) Periodic models: In this time-varying case, the matrices
®(j,j — 1), H(G), R(j), ~(k), and g(k), although
time-varying, are periodic in nature. Thus, calculations
involving these quantities can be performed for a data
subinterval equal to the model period and stored for
subsequent use in the remaining part of the total data
interval.

Slowly time-varying models: In this case, the total data
interval can be partitioned into subintervals, of which the
wavelet model is approximately time invariant, although
different in each subinterval. Once again, calculations,
such as those of (13)-(17), (18), (21), (24)-(26), (28),
(30)—(31), and (33), need only be computed once for
each subinterval and stored for use throughout the subin-
terval to which they pertain.

It must be noted that the central processor does not require
the optimal local estimates at each local subsystems. If,
however, the optimal local estimates are requested, they can be
computed by each local processor, in parallel with the calcu-
lations in the central agent, without additional computational
delays. One of the characteristics of the proposed solution
is that the distributed algorithm uses the same equations for
filtering and smoothing. More than that, since only nominal
smoothing quantities are calculated at the local systems, the
smoothing part can start with arbitrary initial conditions run-
ning in this way, independent of the filtering operation at
the local level. The algorithm will compensate correcting, at
the central processor, the suboptimal initial smoothing values
at the end of the data interval. As for the optimal filtered
estimates, if the optimal smoothed estimates are required
at the local level, these can be obtained from each local
processor independently, without delaying the calculations in
the main processor. The nominal calculations required by
the algorithm at the different local subsystems (geophone
clusters) are only nonrecursive simple multiplications. These

2)

conditionsi,,;(k | k) and P;,;(k | k), which can be selected memoryless operations can be implemented by using a very
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simple processor or even an optical device. Thus, using f#®]. However, our distributed formulation is immediately
proposed distributed scheme, there is no need to install eépplicable to any type of distributed or decentralized data
pensive computing facilities on remote-sensing locations or fasion network. Specifically, in case no central agent is present,
hazardous environments. Due to the structure of the proposedth local processor can be considered to be a central node.
algorithm, there is no two-way communication between tHéthe optimal overall estimate of the system state is required
local processors and the central computing facility. Becaugta particular location, this node can act as central node and
bidirectional communication between slower local statiorgenerate the overall estimate, considering all other nodes as
and the central agent is not desirable in a highly parallgical sensing groups, with exactly the same equations.
processing environment, both the distributed estimator and thdt must emphasized that the distributed deconvolution al-
smoother have been designed to require the lowest possi#®ithm developed here is mathematically equivalent to the
interprocessor communication. optimal solution derived in [7]. The distributed filter and

The distributed approach to seismic deconvolution presen@@oother that are developed are different realizations of the
in the above theorem utilizes distributed filters and distributéPtimal solutions and exact mathematical equivalents to the
smoothers to obtain the quantities required in (10). There #&timal centralized approaches. The distributed deconvolution
two ways in which we can achieve parallelism by using trlgorithm introduced in this work has identical performance
proposed deconvolution algorithm: with the d(_econvqlution algorithm studied in [7] gnd [8], since

« parallelism in the system'’s level; both algquthms mvolye the same syst'em matrlcgs. However,

the solutions have different computational requirements, es-

« parallelism in the algorithmic computations. . X . T
L : . ecially when they are applied to the multisensor seismic
Parallelism in the system’s level is based on the fact that aﬁg

. “déconvolution problem [7], [17], [18].

local agent (processor) can execute the calculations reqwrecf P 7], 1171, 18]

by the central agent in parallel with the other local processors.

In this way, in one step of the algorithmpperationsare ex-  Ill. COMPUTATIONAL REQUIREMENTS OF THESOLUTIONS

ecuted in parallel at the different local processors. Parallelismapart from the numerical behavior of any proposed al-
in the algorithmic computations is based on the fact that t@rithm, its computational complexity is a realistic measure
filtering equations can be implemented independently of teg its practicality and usefulness, since it determines the
smoother calculations. The only coupling between filtering andquired computing power and processing (execution) time. A
smoothing is present in (23) and (24), which are used only ongeneral framework to evaluate the computational requirements
at the end of the smoothing session. Using (23) and (24) wishrecursive algorithms is given in [7] and [18]. The framework
the structure of (10), we are able to implement the algorithof that analysis is used here to evaluate the computational
in a totally parallel/distributed fashion. It must be noted thatquirements of the algorithms.
the implementation of the filter in parallel with the smoother Because the algorithms provide the solution in a recursive
is also a characteristic of the centralized approach presenteanner, the algorithms’ total execution time is equal to
in [7] and [8]. However, the distributed formulation of thethe product of their per step calculation multiplied by the
algorithm provides tremendous parallel processing capabilitiesimber of recursions required to obtain a solution. Since in
For each one of the: local systems (geophones clustersthe distributed formulation the calculations at the local level
the nominal quantities required from the filtering portion arare done in parallel, the overall computational requirements
calculated in parallel with the nominal quantities requiretbr a distributed algorithm, per recursion, are computed as
from the smoothing portion at the same local system. At tiike sum of the per recursion calculation requirements in the
same time, all of the nominal calculations can be executeddantral processor and the calculations required at one local
parallel at ther local processing systems. In addition, at thprocessor. Two more assumptions are introduced to have
central processor, the algorithm allows the parallel calculatién meaningful comparison among the different algorithms.
of the filtering and smoothing part for all the sampling periodsirst, the overall computational requirements for a distributed
under consideration. To the best of the authors’ knowledge, thlgorithm, per recursion, are computed as the sum of the
solution given in this work is the only algorithm capable oper recursion calculation requirements in one of the local
providing this form of parallel processing capability. processors plus the computational requirements in the central
In this paper, only the distributed/hierarchical form of th@rocessor, since the calculations in all local processors are
algorithm is considered. The distributed scheme describedf@rformed in parallel. Secondly, the fundamental operations
Fig. 1 requires the existence of a central processing facilifjvolved in the algorithms are matrix and vector operations.
(central node) and of several peripheral computing devic8sdetailed analysis of the computations involved in such
installed at the local sensor clusters. We adopted this d&Rerations is provided in [8] and [19] (refer to them for more
fusion network configuration since it is the most appropriatBformation on the subject). In this context, the total time
for the seismic deconvolution problem. In practice, whefgduired to complete an operation (or a sequence of operations)
geophysical signal processing is requested, a central procégsproportlongl to the.normallzed total number of equivalent
ing facility is always available and less powerful computin§c@lar operations defined as
fa'\C|I|t|es'are u;ua]ly deployeq in thg f|e'ld sites. In addition, the Time=k x (4 x (MULTS) + (ADDS + 6 x (DIVS)
hierarchical distributed configuration is the most commonly
used configuration for multisensor data fusion [16], [17], +25 x (SQRTS)
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whereMULTSis the number of scalar multiplications required, TABLE |

ADDSis the number of scalar additions requir@lySis the NOTATION

number of scalar divisions required, a&-\)RTSS the number CEDEP Centralized Deconvolution solution, Parallel mode

of the scalar square roots. The weights used in the above — : : :

formula do not pertain to any particular machine. Rather, thﬂ%}EDES Distributed Deconvolution solution, Sequential mode

can be considered mean values of those coefficients commoRRPEP | Distributed Deconvolution solution, Parallel mode

encountered. All qualitative results presented in the sequencar Centralized Lainiotis Filter

hold, even if the weighting coefficients in the above formulac; g

are different for a specific computing platform [8], [19].
In the seismic deconvolution problem, the algorithms (cen

tralized and distributed) require a filtering operation on the’“S Distributed Lainiotis Smoother

data up to point (for the evaluation ofi(% | k£)) and then a

smoothing operation on the whole data interval. Moreover, fil-

tering and smoothing calculations can be executed in paral%rl,e !ntr(_)duced. Namely, we assume that a) two processes
gning in parallel cannot access the same memory location at

and a number of operations are executed only at the end Ofl{ﬂ? X db) th ber of iiabl
period under consideration. Hence, our comparisons will be §If Same time and b) the number of available processors, per
allel machine, is large enough so that no process that can

a per interval basis and not per recursion to accommodate g‘?é . )
smoothing process. e activated is delayed due to the lack of processors. Thus, any

Next, we will compare the centralized and the distributedfocess can be activated as soon as its inputs are available. In
approach under two different parallelism scenarios. First, inoéher W(()jrds a_tl IE?St tW_O plrocessorﬁ, Fﬁr p_arallel m_achlne,”alre
scenario called sequential/distributed, it is assumed that o umed available to implement the filtering part in paralle

one central processor and local processors are available tlh tt;]e smoother.. | vsi dh v fixed
(wherer is the number of local systems). Under this scenario, n the computationa analysis presented here, only IXe
nt smoothers are considered (see Table | for the notation

each processor calculates the filtering/smoothing operati(ﬁ%d. vsis). In th  th tial/distributed
sequentially in time. The only parallel processing operati ed in our analysis). In the case of the sequential/distribute

is the execution of the distributed algorithm calculations Tcenario, the a_lgorithr_ns’ operations are executed seque_ntially
the different local processors in parallel. On the contrary, R each step in the interval. At the end, the computational

a second scenario, parallel processing machines are assulfigy'rements for the |mplementat!on_of (10) and (23). and (24)
available. It is assumed that a central parallel processor st be added. When a parallel/distributed scenario is selected,

r local parallel machines are available. Under this scenarf ’e filter gnd smoother equations are implemented in parallel
the machines can implement the filter in parallel with th%nd (10) is used to combine the resuits. The total number of

smoother. The availability of the parallel machines allows fc*qperatio.ns is therefore calculated according to the following
the full utilization of the proposed distributed approach to the rmula:
optimal seismic decqnvquUon. _ _ . max[OT ;, (0, k); OTs, (k, N)| + (N — k + 1) x OTy

The term “normalized operations” is used in both the
sequential and parallel versions of the algorithms. In thehere OT; is the operation time to execute the filtering part
parallel implementation, the number of operations remainser the interval0, k) and OT; is the operation time to exe-
the same as in the sequential version of the algorithm, laiite (in a per step basis) the nominal smoothing calculations
the algorithm is executed faster because a portion of tbeer the intervalk, N) and the calculations at (23) and (24).
required operations is implemented concurrently with sonknally, O7 4 is the time needed for the implementation of the
other portion. Many factors affect the parallel algorithmsieconvolution formula of (10).
performance. Such factors include the structure of the algo-To determine the algorithms’ complexity both in sequential
rithm implemented on the parallel machine, the programmiragnd parallel mode, we have to first consider the computational
system, the actual platform, and the run time [21]. The parali@quirements of the different components of the algorithm,
implementations need, in general, less operation time than tiemely, the filter, the associated smoother, and finally, the
sequential ones. However, the memory requirements or #econvolution formula. Furthermore, since the model for the
run time of the parallel algorithm can be more than that aiptimal seismic deconvolution is assumed time invariant [8],
the sequential one. The reason is that the run time includ&8], the computational requirements for the recursive imple-
operations, such as memory access delays, operating systeemtation of the algorithms’ can be divided into two parts.
functions, etc., which are performed internally in the parallé preliminary part, which contains both the operations that
machine and have nothing to do with the actual computatioase executed only once in the beginning of the process (or
[8]. This situation is of course outside the scope of the preseasif-line) since their computation does not require the actual
paper, since it heavily depends on the specific configurationraBasurements or recursively evaluated quantities and those
the computing platform. It is assumed here that, in all parallgiat are calculated at the end of the smoothing operation. The
machines used, the operating system provides the same Gfestep part includes the calculations that have to be executed
time to all processes running in parallel [21]. at each step of the recursive algorithm.

In order to establish the algorithms requirements in a As far as centralized implementations are concerned, several
multiprocessor parallel machine, two additional assumptionemputational analyses of the filtering and the smoothing

Centralized Lainiotis Smoother

LF Distributed Lainiotis Filter
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TABLE 1l
CENTRALIZED APPROACH: COMPUTATIONAL REQUIREMENTS
Part Normalized Operations
CLF (preliminary) 22.5n%m + 17.5m?n + 5m3 + 12m? 4 65m + 5mn 4+ n? + 5n — 12
CLF (per step) 12.5n3 + 23.5n% + 64n + 10nm — 12

CLS (per step) 7.5n% + 7.50% 4 20mn? + 12.5m?n + 18.5mn 4 2.5m3 4 6m? + 32.5m — 6

CLS (final) 51 +22.5n% + 64.5n — 12

TABLE I
DISTRIBUTED APPROACHES
LocAL PROCESSORSCOMPUTATIONAL REQUIREMENTS

Part Normalized Operations

DLF (preliminary) | 2.5m2 + 6m? + 2.5n%m; + 5nm? + 1.5nm; + 32.5m; — 0.5n2 — 0.5n — 6

DLF (per step) Snm; —n

DLS (preliminary) | 2.5mf + 6m? + 2.5n%m; + 5nm? + 1.5nm; + 32.5m; — 0.5n% — 0.5n — 6

DLS (per step) Snm; —n
TABLE IV TABLE V
DISTRIBUTED APPROACHES Seismic WAVELET ESTIMATION PROBLEM

CENTRAL PROCESSORCOMPUTATIONAL REQUIREMENTS

method | normalized operations

Part Normalized Operations
‘ CEDES 7.5¢ + 08
DLF (preliminary) | 20n® + 14.5n2 4+ 65n — 12+ 0.5r(n? +n)
DEDES 3.e +03
DLF (per step) 12.5n% +27n? + 64.5n — 12+ rn
DLS (preliminary) | 17.5n% +42n2 4+ 97.5n — 24 + 0.57(n? + n)
DLS (per step) 15n° + 22.5n% + 2.5n is more complex. Since today’s technology has minimized
DLS (final) 10m3 4 23.502 + 29.5n — 6 memory cost and sizes, what actually interests us is the

realization complexity. The question arises then, whether it is
worth implementing the deconvolution algorithm in parallel,
algorithms employed by the deconvolution formula of (9 view of its reduced operations, while at the same time the
have appeared in the literature, including [10]. The nofealization complexity increases. To answer this question, the
malized operations needed for the implementation of ttara-efficiencyratios

pen;ratl)ilzel? cjlfacbclmvolll?tionda{)\?roach of_[8] tar\]re suanarichad o Processing Time (parallel) 5

in Table Il. Tables Il an summarize the number o paref= - - .

normalized operations needed for the implementation of the Processing Time (sequential)

proposed distributed implementation. will be plotted for both the centralized and the distributed

To compare the algorithms’ computational efficiency, theersions of the solution. The plots are made againgthe
total normalized operations required by centralized and disstimation point) for the fixed point smoother. The above
tributed algorithms were plotted against the estimation pointentioned ratio can serve as a measure of the parallelism
as well as against the state and measurement dimensionaéfficiency. It is defined as the ratio of the execution time
In this analysis, the parameters are the number of chai-the parallel implementation (proportional to the number of
nels/sensorsn, the order of the basic seismic wavelgtthe normalized operations) to the execution time of the sequential
running estimation poink, and the local systems (geophonémplementation. By its definition, the para-efficiency ratio is
clusters)r. The values used in these studies ate= 50 or less than unity, and as it tends to zero parallelism efficiency
m = 500 andn = 4 or n = 9, respectively. The total numberimproves. In case only two processors per parallel machine
of data points (time instants when measurements were takarg assumed available, the lower limit of the ratio is set to
was assumed to b& = 1000. The number of local systems,0.5 [10], [18].
when it is not a parameter, is assumed ta-be 5. Moreover, Experimentation via simulation analysis of the system that
for the parallel version of the algorithm, it is assumed that a¢presents the particular design problem can help us to assess
least two processors, per parallel machine, are available for thether the effectiveness of the distributed realization of the
parallel implementation of the smoothing and filtering part. deconvolution algorithm. Using the complexity determination

It was mentioned above that the parallel version of thtechniques introduced in this paper, the designer will be able to
algorithm is always more efficient regarding the operatiorgetermine the most suitable solution for the problem on hand.
involved than the sequential version. On the other hand, tfie illustrate the discussion, a typical seismic deconvolution
storage requirements are larger and of course the realizatsmenario is utilized. In this typical seismic deconvolution
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TABLE VI
STORAGE REQUIREMENTS

Centralized Deconvolution solution 4n? 4 8n + Tmn + 0.5m? + 2m + 0.5m?

Distributed Deconvolution solution | 0.5n(n + 3) + 2r(3.5n2 + 3.5n + 2nm; + m;)
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Fig. 2. Distributed versus centralized seismic deconvolution. Total operations 4).

example, a time-invariant wavelet is utilized to describe tie most demanding applications. However, for comparison
signal received by the seismic sensors [7]. A convolutigourposes, Table VI summarizes storage requirements for the
summation of ordem = 4 describes the seismic waveletcentralized and distributed version of the minimum variance
For this time-invariant seismic wavelet of order = 4, deconvolution formula.

assumingm = 1000 sensors divided inr = 10 local  Significant findings and corresponding remarks are herein

subsystems (geophones clusters), the normalized operatigffanized in a series of comments, which are supported by
(computational requirements) for the deconvolution formulge appropriate figures.

of (9) or (10), which are required in the source estimation
process are summarized in Table V.

It is obvious that, in this case, the preferable realization
of the deconvolution formula, from a computational point of
view, is the distributed one that can achieve the same levels
of performance, while being at the same time extremely cost
attractive (five orders of less expensive magnitude).

Storage requirements per iteration had been used in [7] - T
and [18] to determine the computational characteristics of ~deliver the same estimation performance can be up to
the algorithm. The storage requirements are divided into two ~ T0Ur orders of magnitude. For fixed wavelet order and
types. Namely, permanent storage, which refers to the amount @ 9iven number of local processing cites, the efficiency
of computer memory that must be permanently assigned to _of the distributed approadns a visthe centralized one
the algorithm and auxiliary storage, which corresponds to the increases exponentially as the total number of geophones
extra computer memory that is used for temporary storage of increases (Figs. 2 and 3).
auxiliary variables needed per iteration to ‘run’ the algorithm. 2) For a given wavelet order and fixed number of mea-
This analysis involves several complexities, such as those surement channels (geophones), the efficiency of the
associated with computer word leyth, software used, etc. distributed approach increases as the number of local
A complete treatment of these questions is beyond the scope processors increases. Increasing the local processing
of this paper. In addition, recent advances in technology cites by an order of magnitude results in orders of
and the availability of cheap inexpensive memory devices magnitude difference in the computing power required
allows users to cope with the amount of storage required to implement the estimation procedure (Figs. 4 and 5).

1) In a multisensor scenario, such as the seismic decon-
volution for oil exploration, the distributed algorithm

is more efficient, from a computational point of view,
than the centralized approach utilized in [7]-[10]. De-
pending on the order of the seismic wavelet and the
total number of geophones used to capture the seismic
trace, the difference in computing power required to
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For given wavelet order and plotted against the initial
smoothing pointk, the distributed algorithm is more
computationally attractive from its centralized coun-
terpart. Depending on the number of sensors utilized,
there is orders of magnitude difference in computing
power between the distributed and centralized approach
(Figs. 6 and 7).

In order to evaluate the parallelism efficiency of the
algorithms for both the distributed and sequential for-
mulation, we plot the para-efficiency ratio against the

initial smoothing pointt. From the results we conclude

the following.

a) The choice between parallel or sequential imple-
mentation depends on both the wavelet or@iey
and the number of sensofsz).

b) As expected, both the distributed and the centralized
algorithm obtain their maximum parallelism effi-
ciency when the initial smoothing point is placed
around the middle of the observation record. The
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Fig. 6. Sequential implementation: distributed versus centralized solgtioa= 4).

para-efficiency ratio for different initial selectionsattractive algorithm was obtained by employing new dis-

can be seen in Figs. 8 and 9. tributed filters and smoothers. The new algorithm implements

In summary, results indicate that the distributed/parall@ a distributed, parallel fashion the optimal minimum variance
formulation of the proposed algorithmic solution is mos#econvolution formula. We have studied in detail the compu-

attractive from a computational standpoint. The use of tational requirements of various options of the new algorithm,
distributed approach in the multisensor/multichannel decowith respect to operation counts and parallelism efficiency.

volution problem is always preferable. Both the centralized and the new distributed algorithm are
different realizations of the optimal minimum variance algo-
V. CONCLUSION rithm. However, their performance in practice is determined

In this paper, a state-space deconvolution formula suitatffém their computational complexity. The centralized approach
for use in a multisensor/multichannel environment was devéd$- computationally demanding, especially in a highly inter-
oped and investigated. A new efficient and computationaléctive environment. For such an algorithm to be practical, a
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Fig. 8. Parallelism efficiencyn = 4).

reduced number of data points or a smaller array of geophomeatrix. Thus, the key part of the solution is the derivation of
should be used at the expense of resolution and accuracy.t@a distributed estimator and distributed smoother utilized by

the other hand, the distributed algorithm, with its reducatle deconvolution formula of (10).

complexity, allows for the utilization of additional sensors First, we devote our attention in the development of the
and/or extra processing through larger processing windogstributed filter. Our objective is to eliminate the measurement
or higher sampling rate, and thus, it can generate betigfuation matrices from the filter's equations. Thus, we modify
deconvolution results. the equations of the centralized Lainiotis filter (CLF) used in

[7]. The most important step is to obtain an expression for the

789

APPENDIX nominal observability matrix>,, (k + 1) without utilizing any
In this appendix, we outline the solution of the distributegheasurement related matrix.

approach to seismic deconvolution. The deconvolution formulaWe start with an interim result, the expression for the filter

is executed only on the central processor and does not reqaiessition matrix®,,(k + 1, k). The filter transition matrix in
direct use of the measurements or any measurement-relatezicentralized linear Lainiotis filter, defined&s(k+1,k) =
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[[-K,.(k+1)H(k+1)]®(k+1,k) requires for its realization  Utilizing these results, the observability matrix for the dis-
the overall output matrixd (k + 1). The equations of the tributed filter can be written after some simple manipulations
standard Kalman filter can be used to eliminate this quantig follows:

from the expression for the filter transition matrix [22]. It is

well known that the Kalman filter covariancB(k | k) = Folk+1)=Q Y k)®(k+1,k) (38)
[I- K(k)hl[(k)]P(k | k—1) is a square matrix for whichthe O, (k+ 1) = F,(k+1)"

inverseP~(k | k — 1) exists. Thus, we can claim that % [Q(k) = Pa(k+1 | k+ D]Fa(k+1).

Pk|E)P Yk |k=1)=[-KKk)HK)]. (36) (39)

Furthermore, in the nominal Kalman filter used in the deriv%oreover, it can be seen that

tion of the CLF, it was assumed th&(k | k—1) = Q(k—1),

since the nominal filter is initialized at each step with zero My(k+1) = Fo(k+1)2n(k+1k+1). (40
nominal initial conditions [13]. Thus, for such a filter, (36)

can be written as,(k | k)Q™' (k — 1) = [I — K, (k)H (k)] Having completed the derivation of the filter equations at the
utI|IZIng this res_ult, the tran_smon matrix for the distributed.q 4 processor, we focus our attention to the different local
filter can be defined accordingly as systems. The distributed estimator requires only calculations
O (k+1,k) = Po(k | K)Q (k- 1)k +1,k). (37) On the nominal part of the local filter. Following the CLF, the
nominal filter at each local processor is initialized using zero
We apply the same methodology to all quantities involved initial conditions. Thusz,(k | k) =0 and P,,(k | k) = 0 for
the derivation of the CLF. We can see from [8] that both olihe cycle starting at the time instafit + 1).
servability matrixO,, (k+1) = ®7 (k+1, k)H™ (k+1) P, (k+ From the distributed form of the Kalman filter [16], we
1| k)H(k+1)®(k+1, k) and the information quantity/,, (k+ know that P~ (k +1 | k+1) - PPYk+ 1 | k) =
1) =07 (k+1,k)H™(k+1)P; (k+ 1| k)z(k +1) contain  Hf(k + 1)R;Y(k + 1)Hi(k + 1) and that P71 (k 4+ 1 |
measurement-related quantities. As before, our objectivekist 1)@;(k +1 | k+ 1) =P7Yk+1 | k)ai(k+1 | k)
to rewrite the above equations without explicit reference te H7 (k + 1)R; *(k + 1)z (k 4 1). Taking into consideration
any measurement-related matrix. It is not hard to see thhe initial conditions for the nominal filter at thé&h local
in the standard Kalman filter the expressiad§(k)P; (k| cluster the above equations can be rewrittenPas (k + 1 |
k—1)=P Yk | k=1)Pk | H (KR (K), P~Y (k| k+1)—Q k) = HI (k+ )R (k + 1)H;(k + 1) with
Ey—P Yk | k=1) = H(HR Y E)HK) and P~k | P A(k+1|k+ Dap(k+1|k+1) = HI (k+ DR (k+
BYa(k | k) =P k| k=02 ]| k=1)= H (H)R7Y(k)2(k) 1Dz(k + 1).
hold true [16]. Similarly, the distributed smoother is derived through al-
Since we initialize our filter at each time instant with zergebraic operations from the optimal centralized smoother
nominal conditions, we can claim that the equivalent formulascussed in [7]. Once again, the measurement-related matrices
are P7Y(k | k) — Q7 Y(k — 1) = H™(k)R™Y(k)H(k) and have to be eliminated from the recursive solution. In the
Pk | k)2(k | k) = H (K)R™'(k)2(k), respectively. centralized smoother, the nominal transition matdy is
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calculated as [12]

0,1, k) = [I - K,(DHD]2(,1 - 1)@, (1 —

(4]

1,k). (41)

Using the equation of the covariance update for the standa%J

Kalman filter, the nominal filter transition matrix can now be
(6]
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(7]

El

[10]

[11]

[12]

[13]

[14]

[15]

[16]

[17]

(18]

[19]

[20]

[21]

[22]

combining the two of them, the following relation holds true:

Mo (k) = M (I— 1,k) + (1 — 1,k)®7(1,1 — 1)
x P 1=D[E1| ) - 2(1]1-1)]
Mo(Lk) = Mn(I— 1, k) + [P7H(1 | 1 — 1)@, 1-1)
x &, (1—1,k)]"
x [&( 1) =2 1=1)].

(49)

(50)
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