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Optimal Seismic Deconvolution:
Distributed Algorithms
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Abstract—Deconvolution is one of the most important aspects
of seismic signal processing. The objective of the deconvolution
procedure is to remove the obscuring effect of the wavelet’s
replica making up the seismic trace and therefore obtain an esti-
mate of the reflection coefficient sequence. This paper introduces
a new deconvolution algorithm. Optimal distributed estimators
and smoothers are utilized in the proposed solution. The new
distributed methodology, perfectly suitable for a multisensor
environment, such as the seismic signal processing, is compared to
the centralized approach, with respect to computational complex-
ity and architectural efficiency. It is shown that the distributed
approach greatly outperforms the currently used centralized
methodology offering flexibility in the design of the data fusion
network.

Index Terms—Data fusion, deconvolution, distributed filters,
filtering, parallel algorithms, smoothing.

I. INTRODUCTION

DECONVOLUTION is a fundamental aspect of seismic
signal processing. The objective of the deconvolution

procedure is to remove the obscuring effect of the wavelet’s
replica making up the seismic trace and consequently obtain an
estimate of the reflection coefficient sequence. Thus, through
the determination of the coefficient sequence, important con-
clusions concerning subsurface geometry and lithography can
be derived.

The most commonly used model is the convolution summa-
tion introduced by Robinson [1]

(1)

where is the received seismic trace, is the noise-
free seismic trace resulting from a superposition of wavelet
replica reflected from the interfaces of earth’s subsurface
layers, is the measurement noise, is a sequence
associated with the basic seismic wavelet, and is the
earth’s reflectivity function.
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Many procedures exist for the solution of the seismic
deconvolution problem. The state-space approach [2]–[10]
alleviated disadvantages associated with previously popular
methods, whose applicability depends heavily on underlying
assumptions, which unfortunately are not usually valid [10].
Following the work in [2], [8], we assume that the starting
point for the deconvolution process is a state-space equivalent
description of (1) given by

(2)

(3)

where and are vectors, is the state
transition matrix, is the output matrix, is
the -dimensional measurement vector ,
and and are uncorrelated, zero-mean sequences.
The plant and measurement noise covariances areand ,
respectively. The initial value of the state vector at
time is modeled as Gaussian random variable with
mean and variance , and it is assumed
independent of both and .

Usually, the measurement dimensionality is higher than the
state dimensionality, since in case of , the measurements
provide only partial information about the system state. In
geophysical applications, the number of sensors (geophones)
used to capture the seismic reflection varies from a few
hundred to several thousand. To reduce uncertainty and to
obtain complete knowledge of the state of nature, the sensors
are usually allocated in different local subsystems (geophone
clusters). Notice that the measurement vector is assumed
to be of dimension in contrast to (1). If we wish
to process all geophone measurements simultaneously,
represents the total number of geophones used to capture
the seismic trace [10]. Since, however, geophones in practice
are used in clusters, a distributed algorithm that allows local
measurements to be processed near the sensing devices is
preferable. Under such a distributed scenario, the observation
vector is partitioned into subvectors, each of them
corresponding to a local sensor system (geophone cluster),
with local dimensionality [16], [17]

(4)

(5)

(6)
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Consequently, the local measurement equation, based on
the state vector is given by

(7)

where is the -dimensional measurement vector at
the local processor system is the ( local output
matrix, and is the local measurement noise vector.
In this analysis, it is assumed that

(8)

The model described by (2) and (3) or by (2) and (7) is
linear and time invariant. However, the authors would like
to emphasize the point that the results obtained herein are
immediately applicable to linear time varying, linear time
invariant, and periodic models, as well as to nonlinear models.

For the state-space model described in (1)–(3), Katsikas
has developed aMinimum Variance Deconvolutionformula,
which utilizes a centralized filtering/smoothing scheme to
obtain optimal estimates of the reflection coefficient sequence
[7]–[10]. Assuming that denote the minimum variance
estimator of the state , given all available measurements,
the following recursive deconvolution formula for a general
time-varying linear state-space model holds [8]:

(9)

where . The
above formula has been used to obtain fixed point and fixed lag
estimates of the sequence by fixing and , respectively.
It can also be used to obtain fixed interval estimates of

by letting , where is the last available
data point. Katsikas used a centralized linear estimator, the
(centralized) linear Lainiotis filter [7], [8] in conjunction with
the (centralized) Lainiotis smoother [11], [12] to obtain the
estimates in (9). Taking advantage of the particular structure
of the centralized smoother, Katsikas implemented the filter
and the smoother in parallel, combining their estimates at the
end of the processing cycle through (9) to obtain the requested
estimate .

Due to space limitation, we will not repeat here the approach
discussed in [8]. Refer to [7] and [8] for the centralized
approach to seismic deconvolution and to the tutorial paper
[13] or the monograph [15] for a detailed presentation of the
partitioning approach.

If the approach discussed in [8] has to be utilized to provide
the requested in a multisensor environment,
such the one described in (4)–(8), the central processing
facility has to handle all measurements and interim results
and has to interpret the results. However, the implementation
of such an approach is often problematic in practice. Indeed,
the centralized algorithm of [8] imposes severe computational
burden on the computing facility. Depending on the complex-
ity of the model used and the number of sensors utilized
to capture the seismic trace, the number of computations
required is rather extensive. For the time-invariant, linear

state-space model described in (2)–(3), the complexity is of
order [7]. In addition, the large number of
sensors (geophones) required in seismic deconvolution for oil
exploration introduces considerable communication overhead,
bandwidth waste, and time delays, since all measurements
have to be transferred from the (possibly) remote-sensing
locations to the central facility for processing. Centralized im-
plementation means that the entire processing system depends
on the single computing facility. Since the availability of the
processor is critical to the operation, backup systems are often
used in practice, resulting in increased cost and computing
power waste. Finally, the centralized approach is inflexible to
the expansion or to the modification of the existing sensor
technology since utilization of additional sensors or reconfig-
uration of the existing geophones array, something common in
practice, requires the modification of the processing algorithm.

To overcome these problems and to achieve robustness
and redundancy, a new distributed approach is necessary.
The main objective is the development of a data processing
system, which provides redundancy and scalability, increases
robustness, and achieves improved performance in terms of
computational speed. A distributed minimum variance de-
convolution algorithm that can achieve all of the above is
presented in this paper. Section II introduces the new dis-
tributed formulation of the optimal minimum variance de-
convolution algorithm. Motivation, design characteristics, and
implementation issues are discussed in detail. In Section III,
the computational complexity of the new algorithm is dis-
cussed. A comparative computational analysis, with respect to
computer requirements, is made between the new distributed
algorithm and the classical approach discussed in [7] and
[8]. The practical usefulness of the distributed algorithm is
investigated by applying the comparative analysis to specific
examples of multisensor deconvolution. Finally, Section IV
summarizes our conclusions.

II. DISTRIBUTED SEISMIC DECONVOLUTION

We start the derivation of our distributed deconvolution
algorithm by assuming a hierarchical data fusion network,
in which a central processing facility is connected through
communication links to a number of local nodes (see Fig. 1)

In such a processing architecture, each local sensor or group
of sensors (geophone cluster) collects data and generates its
own local estimates, which are then communicated to the
central facility for further processing. The following points
should be noted regarding this formulation.

1) Since the number of measurements far exceeds the
dimensionality of the state used to describe the seismic
signal, considerable savings in terms of communication
bandwidth can be achieved. The local estimates can be
transmitted in the central facility at a fraction of the time
required to transfer the raw data. Given that the flow
of information is only from the local subgroups to the
central facility, the system is robust to communication
bottlenecks.

2) Since part of the data processing takes place at the
different local sensor locations, the computing power
required in the central cite to complete the processing
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Fig. 1. The distributed approach to state estimation.

task is considerably smaller than that required by the
centralized methodology. Thus, a less powerful proces-
sor can generate the same results, resulting in a more
efficient utilization of computing power.

3) Sensor failures in the local subsystems, commonly en-
countered in practice, since geophone arrays are often
deployed in remote locations or underwater, will not re-
sult in a complete failure of the whole processing system.
Only a gradual deterioration of the performance should
be expected. Replacement of the faulty component and
integration of a new one can be done while the data
processing system is on-line.

In the new formulation, the state-space equivalent model
used is given by (1) and (7). The distributed form of the de-
convolution algorithm combines a distributed filter introduced
in [19] and a new distributed smoother to provide the optimal
estimate of the sequence . The equations of the algorithm
are summarized in the following theorem.

Theorem II.1) Distributed Deconvolution Algo-
rithm: Consider the system (1), (7). For this linear,
time-invariant, discrete-time system, the optimal
deconvolution algorithm is given by

(10)

where . The
equation delivers the fixed-point smoothed estimate of ,
utilizing distributed filtering/smoothing schemes.

A distributed linear filter [19] is used to provide the initial
estimate required by the above deconvolution formula. The
filter equations (for the general time varying, linear state space
model) are the following.

Distributed Lainiotis Filter (DLF); Central Processor
Calculations

(11)

(12)

(13)

(14)

(15)

(16)

where

(17)

with initial condition

(18)

(19)

(20)
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with

DLF; Local Processor Calculations (for theth local
subsystem)

(21)

(22)

The distributed smoother also operates in both the local
subsystems and in the central processor. For a fixed initial
smoothing point , the equations of the distributed fixed point
smoother (for a general time varying, linear system) are as
follows.

Distributed Lainiotis Smoother (DLS); Central Processor
Calculations

(23)

(24)

(25)

(26)

(27)

(28)

(29)

(30)

(31)

(32)

with and initial condition
.

DLS; Local Processor Calculations (for theth local
subsystem)

(33)

(34)

with and arbitrary nominal initial
conditions and , which can be selected

independent from the actual filtered and .
The proof is given in the Appendix.

The distributed filter and smoother presented above cor-
respond to the general time-varying, linear-dynamic, discrete-
time, state-space model. However, since the seismic wavelet is
time invariant, the algorithm simplifies further by substituting
the time-varying matrices and

with the time-invariant matrices and . In
this way, the vast majority of the calculations required at the
central processor and the different local processors, such as
those of (13)–(17), (18), (21), (24)–(26), (28), (30)–(31), and
(33), become nonrecursive, and therefore, it is sufficient to be
performed only once.

To fully appreciate how interesting the above point is, it
must be noticed that formulations based on the Kalman (or
information Kalman) filter and the Meditch smoother, such as
those presented in [6] and [9] are time varying, even for time-
invariant wavelet models. However, the distributed algorithm
presented here as well as its centralized counterpart of [7]
and [8] have reduced computational requirements not only for
time-invariant models, but for the following models as well.

1) Periodic models: In this time-varying case, the matrices
and , although

time-varying, are periodic in nature. Thus, calculations
involving these quantities can be performed for a data
subinterval equal to the model period and stored for
subsequent use in the remaining part of the total data
interval.

2) Slowly time-varying models: In this case, the total data
interval can be partitioned into subintervals, of which the
wavelet model is approximately time invariant, although
different in each subinterval. Once again, calculations,
such as those of (13)–(17), (18), (21), (24)–(26), (28),
(30)–(31), and (33), need only be computed once for
each subinterval and stored for use throughout the subin-
terval to which they pertain.

It must be noted that the central processor does not require
the optimal local estimates at each local subsystems. If,
however, the optimal local estimates are requested, they can be
computed by each local processor, in parallel with the calcu-
lations in the central agent, without additional computational
delays. One of the characteristics of the proposed solution
is that the distributed algorithm uses the same equations for
filtering and smoothing. More than that, since only nominal
smoothing quantities are calculated at the local systems, the
smoothing part can start with arbitrary initial conditions run-
ning in this way, independent of the filtering operation at
the local level. The algorithm will compensate correcting, at
the central processor, the suboptimal initial smoothing values
at the end of the data interval. As for the optimal filtered
estimates, if the optimal smoothed estimates are required
at the local level, these can be obtained from each local
processor independently, without delaying the calculations in
the main processor. The nominal calculations required by
the algorithm at the different local subsystems (geophone
clusters) are only nonrecursive simple multiplications. These
memoryless operations can be implemented by using a very
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simple processor or even an optical device. Thus, using the
proposed distributed scheme, there is no need to install ex-
pensive computing facilities on remote-sensing locations or in
hazardous environments. Due to the structure of the proposed
algorithm, there is no two-way communication between the
local processors and the central computing facility. Because
bidirectional communication between slower local stations
and the central agent is not desirable in a highly parallel
processing environment, both the distributed estimator and the
smoother have been designed to require the lowest possible
interprocessor communication.

The distributed approach to seismic deconvolution presented
in the above theorem utilizes distributed filters and distributed
smoothers to obtain the quantities required in (10). There are
two ways in which we can achieve parallelism by using the
proposed deconvolution algorithm:

• parallelism in the system’s level;
• parallelism in the algorithmic computations.

Parallelism in the system’s level is based on the fact that any
local agent (processor) can execute the calculations required
by the central agent in parallel with the other local processors.
In this way, in one step of the algorithm,r-operationsare ex-
ecuted in parallel at the different local processors. Parallelism
in the algorithmic computations is based on the fact that the
filtering equations can be implemented independently of the
smoother calculations. The only coupling between filtering and
smoothing is present in (23) and (24), which are used only once
at the end of the smoothing session. Using (23) and (24) with
the structure of (10), we are able to implement the algorithm
in a totally parallel/distributed fashion. It must be noted that
the implementation of the filter in parallel with the smoother
is also a characteristic of the centralized approach presented
in [7] and [8]. However, the distributed formulation of the
algorithm provides tremendous parallel processing capabilities.
For each one of the local systems (geophones clusters),
the nominal quantities required from the filtering portion are
calculated in parallel with the nominal quantities required
from the smoothing portion at the same local system. At the
same time, all of the nominal calculations can be executed in
parallel at the local processing systems. In addition, at the
central processor, the algorithm allows the parallel calculation
of the filtering and smoothing part for all the sampling periods
under consideration. To the best of the authors’ knowledge, the
solution given in this work is the only algorithm capable of
providing this form of parallel processing capability.

In this paper, only the distributed/hierarchical form of the
algorithm is considered. The distributed scheme described in
Fig. 1 requires the existence of a central processing facility
(central node) and of several peripheral computing devices
installed at the local sensor clusters. We adopted this data
fusion network configuration since it is the most appropriate
for the seismic deconvolution problem. In practice, when
geophysical signal processing is requested, a central process-
ing facility is always available and less powerful computing
facilities are usually deployed in the field sites. In addition, the
hierarchical distributed configuration is the most commonly
used configuration for multisensor data fusion [16], [17],

[20]. However, our distributed formulation is immediately
applicable to any type of distributed or decentralized data
fusion network. Specifically, in case no central agent is present,
each local processor can be considered to be a central node.
If the optimal overall estimate of the system state is required
at a particular location, this node can act as central node and
generate the overall estimate, considering all other nodes as
local sensing groups, with exactly the same equations.

It must emphasized that the distributed deconvolution al-
gorithm developed here is mathematically equivalent to the
optimal solution derived in [7]. The distributed filter and
smoother that are developed are different realizations of the
optimal solutions and exact mathematical equivalents to the
optimal centralized approaches. The distributed deconvolution
algorithm introduced in this work has identical performance
with the deconvolution algorithm studied in [7] and [8], since
both algorithms involve the same system matrices. However,
the solutions have different computational requirements, es-
pecially when they are applied to the multisensor seismic
deconvolution problem [7], [17], [18].

III. COMPUTATIONAL REQUIREMENTS OF THESOLUTIONS

Apart from the numerical behavior of any proposed al-
gorithm, its computational complexity is a realistic measure
of its practicality and usefulness, since it determines the
required computing power and processing (execution) time. A
general framework to evaluate the computational requirements
of recursive algorithms is given in [7] and [18]. The framework
of that analysis is used here to evaluate the computational
requirements of the algorithms.

Because the algorithms provide the solution in a recursive
manner, the algorithms’ total execution time is equal to
the product of their per step calculation multiplied by the
number of recursions required to obtain a solution. Since in
the distributed formulation the calculations at the local level
are done in parallel, the overall computational requirements
for a distributed algorithm, per recursion, are computed as
the sum of the per recursion calculation requirements in the
central processor and the calculations required at one local
processor. Two more assumptions are introduced to have
a meaningful comparison among the different algorithms.
First, the overall computational requirements for a distributed
algorithm, per recursion, are computed as the sum of the
per recursion calculation requirements in one of the local
processors plus the computational requirements in the central
processor, since the calculations in all local processors are
performed in parallel. Secondly, the fundamental operations
involved in the algorithms are matrix and vector operations.
A detailed analysis of the computations involved in such
operations is provided in [8] and [19] (refer to them for more
information on the subject). In this context, the total time
required to complete an operation (or a sequence of operations)
is proportional to the normalized total number of equivalent
scalar operations defined as

Time MULTS ADDS DIVS

SQRTS
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whereMULTSis the number of scalar multiplications required,
ADDS is the number of scalar additions required,DIVS is the
number of scalar divisions required, andSQRTSis the number
of the scalar square roots. The weights used in the above
formula do not pertain to any particular machine. Rather, they
can be considered mean values of those coefficients commonly
encountered. All qualitative results presented in the sequence
hold, even if the weighting coefficients in the above formula
are different for a specific computing platform [8], [19].

In the seismic deconvolution problem, the algorithms (cen-
tralized and distributed) require a filtering operation on the
data up to point (for the evaluation of ) and then a
smoothing operation on the whole data interval. Moreover, fil-
tering and smoothing calculations can be executed in parallel,
and a number of operations are executed only at the end of the
period under consideration. Hence, our comparisons will be on
a per interval basis and not per recursion to accommodate the
smoothing process.

Next, we will compare the centralized and the distributed
approach under two different parallelism scenarios. First, in a
scenario called sequential/distributed, it is assumed that only
one central processor and local processors are available
(where is the number of local systems). Under this scenario,
each processor calculates the filtering/smoothing operations
sequentially in time. The only parallel processing operation
is the execution of the distributed algorithm calculations in
the different local processors in parallel. On the contrary, in
a second scenario, parallel processing machines are assumed
available. It is assumed that a central parallel processor and

local parallel machines are available. Under this scenario,
the machines can implement the filter in parallel with the
smoother. The availability of the parallel machines allows for
the full utilization of the proposed distributed approach to the
optimal seismic deconvolution.

The term “normalized operations” is used in both the
sequential and parallel versions of the algorithms. In the
parallel implementation, the number of operations remains
the same as in the sequential version of the algorithm, but
the algorithm is executed faster because a portion of the
required operations is implemented concurrently with some
other portion. Many factors affect the parallel algorithms’
performance. Such factors include the structure of the algo-
rithm implemented on the parallel machine, the programming
system, the actual platform, and the run time [21]. The parallel
implementations need, in general, less operation time than the
sequential ones. However, the memory requirements or the
run time of the parallel algorithm can be more than that of
the sequential one. The reason is that the run time includes
operations, such as memory access delays, operating system
functions, etc., which are performed internally in the parallel
machine and have nothing to do with the actual computations
[8]. This situation is of course outside the scope of the present
paper, since it heavily depends on the specific configuration of
the computing platform. It is assumed here that, in all parallel
machines used, the operating system provides the same CPU
time to all processes running in parallel [21].

In order to establish the algorithms requirements in a
multiprocessor parallel machine, two additional assumptions

TABLE I
NOTATION

are introduced. Namely, we assume that a) two processes
running in parallel cannot access the same memory location at
the same time and b) the number of available processors, per
parallel machine, is large enough so that no process that can
be activated is delayed due to the lack of processors. Thus, any
process can be activated as soon as its inputs are available. In
other words at least two processors, per parallel machine, are
assumed available to implement the filtering part in parallel
with the smoother.

In the computational analysis presented here, only fixed
point smoothers are considered (see Table I for the notation
used in our analysis). In the case of the sequential/distributed
scenario, the algorithms’ operations are executed sequentially
for each step in the interval. At the end, the computational
requirements for the implementation of (10) and (23) and (24)
must be added. When a parallel/distributed scenario is selected,
the filter and smoother equations are implemented in parallel
and (10) is used to combine the results. The total number of
operations is therefore calculated according to the following
formula:

where is the operation time to execute the filtering part
over the interval and is the operation time to exe-
cute (in a per step basis) the nominal smoothing calculations
over the interval and the calculations at (23) and (24).
Finally, is the time needed for the implementation of the
deconvolution formula of (10).

To determine the algorithms’ complexity both in sequential
and parallel mode, we have to first consider the computational
requirements of the different components of the algorithm,
namely, the filter, the associated smoother, and finally, the
deconvolution formula. Furthermore, since the model for the
optimal seismic deconvolution is assumed time invariant [8],
[10], the computational requirements for the recursive imple-
mentation of the algorithms’ can be divided into two parts.
A preliminary part, which contains both the operations that
are executed only once in the beginning of the process (or
off-line) since their computation does not require the actual
measurements or recursively evaluated quantities and those
that are calculated at the end of the smoothing operation. The
per step part includes the calculations that have to be executed
at each step of the recursive algorithm.

As far as centralized implementations are concerned, several
computational analyses of the filtering and the smoothing
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TABLE II
CENTRALIZED APPROACH: COMPUTATIONAL REQUIREMENTS

TABLE III
DISTRIBUTED APPROACHES

LOCAL PROCESSORS:COMPUTATIONAL REQUIREMENTS

TABLE IV
DISTRIBUTED APPROACHES

CENTRAL PROCESSOR:COMPUTATIONAL REQUIREMENTS

algorithms employed by the deconvolution formula of (9)
have appeared in the literature, including [10]. The nor-
malized operations needed for the implementation of the
centralized deconvolution approach of [8] are summarized
in Table II. Tables III and IV summarize the number of
normalized operations needed for the implementation of the
proposed distributed implementation.

To compare the algorithms’ computational efficiency, the
total normalized operations required by centralized and dis-
tributed algorithms were plotted against the estimation point
as well as against the state and measurement dimensionality.
In this analysis, the parameters are the number of chan-
nels/sensors , the order of the basic seismic wavelet, the
running estimation point , and the local systems (geophone
clusters) . The values used in these studies are or

and or , respectively. The total number
of data points (time instants when measurements were taken)
was assumed to be . The number of local systems,
when it is not a parameter, is assumed to be . Moreover,
for the parallel version of the algorithm, it is assumed that at
least two processors, per parallel machine, are available for the
parallel implementation of the smoothing and filtering part.

It was mentioned above that the parallel version of the
algorithm is always more efficient regarding the operations
involved than the sequential version. On the other hand, the
storage requirements are larger and of course the realization

TABLE V
SEISMIC WAVELET ESTIMATION PROBLEM

is more complex. Since today’s technology has minimized
memory cost and sizes, what actually interests us is the
realization complexity. The question arises then, whether it is
worth implementing the deconvolution algorithm in parallel,
in view of its reduced operations, while at the same time the
realization complexity increases. To answer this question, the
para-efficiencyratios

paref
Processing Time (parallel)

Processing Time (sequential)
(35)

will be plotted for both the centralized and the distributed
versions of the solution. The plots are made against(the
estimation point) for the fixed point smoother. The above
mentioned ratio can serve as a measure of the parallelism
efficiency. It is defined as the ratio of the execution time
of the parallel implementation (proportional to the number of
normalized operations) to the execution time of the sequential
implementation. By its definition, the para-efficiency ratio is
less than unity, and as it tends to zero parallelism efficiency
improves. In case only two processors per parallel machine
are assumed available, the lower limit of the ratio is set to
0.5 [10], [18].

Experimentation via simulation analysis of the system that
represents the particular design problem can help us to assess
further the effectiveness of the distributed realization of the
deconvolution algorithm. Using the complexity determination
techniques introduced in this paper, the designer will be able to
determine the most suitable solution for the problem on hand.
To illustrate the discussion, a typical seismic deconvolution
scenario is utilized. In this typical seismic deconvolution
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TABLE VI
STORAGE REQUIREMENTS

Fig. 2. Distributed versus centralized seismic deconvolution. Total operations(n = 4).

example, a time-invariant wavelet is utilized to describe the
signal received by the seismic sensors [7]. A convolution
summation of order describes the seismic wavelet.
For this time-invariant seismic wavelet of order ,
assuming sensors divided in local
subsystems (geophones clusters), the normalized operations
(computational requirements) for the deconvolution formula
of (9) or (10), which are required in the source estimation
process are summarized in Table V.

It is obvious that, in this case, the preferable realization
of the deconvolution formula, from a computational point of
view, is the distributed one that can achieve the same levels
of performance, while being at the same time extremely cost
attractive (five orders of less expensive magnitude).

Storage requirements per iteration had been used in [7]
and [18] to determine the computational characteristics of
the algorithm. The storage requirements are divided into two
types. Namely, permanent storage, which refers to the amount
of computer memory that must be permanently assigned to
the algorithm and auxiliary storage, which corresponds to the
extra computer memory that is used for temporary storage of
auxiliary variables needed per iteration to ‘run’ the algorithm.
This analysis involves several complexities, such as those
associated with computer word lenth, software used, etc.
A complete treatment of these questions is beyond the scope
of this paper. In addition, recent advances in technology
and the availability of cheap inexpensive memory devices
allows users to cope with the amount of storage required

in most demanding applications. However, for comparison
purposes, Table VI summarizes storage requirements for the
centralized and distributed version of the minimum variance
deconvolution formula.

Significant findings and corresponding remarks are herein
organized in a series of comments, which are supported by
the appropriate figures.

1) In a multisensor scenario, such as the seismic decon-
volution for oil exploration, the distributed algorithm
is more efficient, from a computational point of view,
than the centralized approach utilized in [7]–[10]. De-
pending on the order of the seismic wavelet and the
total number of geophones used to capture the seismic
trace, the difference in computing power required to
deliver the same estimation performance can be up to
four orders of magnitude. For fixed wavelet order and
a given number of local processing cites, the efficiency
of the distributed approachvis a visthe centralized one
increases exponentially as the total number of geophones
increases (Figs. 2 and 3).

2) For a given wavelet order and fixed number of mea-
surement channels (geophones), the efficiency of the
distributed approach increases as the number of local
processors increases. Increasing the local processing
cites by an order of magnitude results in orders of
magnitude difference in the computing power required
to implement the estimation procedure (Figs. 4 and 5).
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Fig. 3. Distributed versus centralized seismic deconvolution. Total operations(n = 9).

Fig. 4. Total operations versus the number of local processors(n = 4; m = 500).

3) For given wavelet order and plotted against the initial
smoothing point , the distributed algorithm is more
computationally attractive from its centralized coun-
terpart. Depending on the number of sensors utilized,
there is orders of magnitude difference in computing
power between the distributed and centralized approach
(Figs. 6 and 7).

4) In order to evaluate the parallelism efficiency of the
algorithms for both the distributed and sequential for-
mulation, we plot the para-efficiency ratio against the

initial smoothing point . From the results we conclude
the following.

a) The choice between parallel or sequential imple-
mentation depends on both the wavelet order
and the number of sensors .

b) As expected, both the distributed and the centralized
algorithm obtain their maximum parallelism effi-
ciency when the initial smoothing point is placed
around the middle of the observation record. The
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Fig. 5. Total operations versus the number of local processors(n = 9; m = 500).

Fig. 6. Sequential implementation: distributed versus centralized solution(n = 4).

para-efficiency ratio for different initial selections
can be seen in Figs. 8 and 9.

In summary, results indicate that the distributed/parallel
formulation of the proposed algorithmic solution is most
attractive from a computational standpoint. The use of a
distributed approach in the multisensor/multichannel decon-
volution problem is always preferable.

IV. CONCLUSION

In this paper, a state-space deconvolution formula suitable
for use in a multisensor/multichannel environment was devel-
oped and investigated. A new efficient and computationally

attractive algorithm was obtained by employing new dis-
tributed filters and smoothers. The new algorithm implements
in a distributed, parallel fashion the optimal minimum variance
deconvolution formula. We have studied in detail the compu-
tational requirements of various options of the new algorithm,
with respect to operation counts and parallelism efficiency.

Both the centralized and the new distributed algorithm are
different realizations of the optimal minimum variance algo-
rithm. However, their performance in practice is determined
from their computational complexity. The centralized approach
is computationally demanding, especially in a highly inter-
active environment. For such an algorithm to be practical, a
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Fig. 7. Parallel implementation: distributed versus centralized solution(n = 4).

Fig. 8. Parallelism efficiency(n = 4).

reduced number of data points or a smaller array of geophones
should be used at the expense of resolution and accuracy. On
the other hand, the distributed algorithm, with its reduced
complexity, allows for the utilization of additional sensors
and/or extra processing through larger processing windows
or higher sampling rate, and thus, it can generate better
deconvolution results.

APPENDIX

In this appendix, we outline the solution of the distributed
approach to seismic deconvolution. The deconvolution formula
is executed only on the central processor and does not require
direct use of the measurements or any measurement-related

matrix. Thus, the key part of the solution is the derivation of
the distributed estimator and distributed smoother utilized by
the deconvolution formula of (10).

First, we devote our attention in the development of the
distributed filter. Our objective is to eliminate the measurement
equation matrices from the filter’s equations. Thus, we modify
the equations of the centralized Lainiotis filter (CLF) used in
[7]. The most important step is to obtain an expression for the
nominal observability matrix without utilizing any
measurement related matrix.

We start with an interim result, the expression for the filter
transition matrix . The filter transition matrix in
the centralized linear Lainiotis filter, defined as
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Fig. 9. Parallelism efficiency(n = 9).

requires for its realization
the overall output matrix . The equations of the
standard Kalman filter can be used to eliminate this quantity
from the expression for the filter transition matrix [22]. It is
well known that the Kalman filter covariance

is a square matrix for which the
inverse exists. Thus, we can claim that

(36)

Furthermore, in the nominal Kalman filter used in the deriva-
tion of the CLF, it was assumed that ,
since the nominal filter is initialized at each step with zero
nominal initial conditions [13]. Thus, for such a filter, (36)
can be written as .
Utilizing this result, the transition matrix for the distributed
filter can be defined accordingly as

(37)

We apply the same methodology to all quantities involved in
the derivation of the CLF. We can see from [8] that both ob-
servability matrix

and the information quantity
contain

measurement-related quantities. As before, our objective is
to rewrite the above equations without explicit reference to
any measurement-related matrix. It is not hard to see that
in the standard Kalman filter the expressions

and

hold true [16].
Since we initialize our filter at each time instant with zero

nominal conditions, we can claim that the equivalent formulas
are and

, respectively.

Utilizing these results, the observability matrix for the dis-
tributed filter can be written after some simple manipulations
as follows:

(38)

(39)

Moreover, it can be seen that

(40)

Having completed the derivation of the filter equations at the
central processor, we focus our attention to the different local
systems. The distributed estimator requires only calculations
on the nominal part of the local filter. Following the CLF, the
nominal filter at each local processor is initialized using zero
initial conditions. Thus, and for
the cycle starting at the time instant .

From the distributed form of the Kalman filter [16], we
know that

and that

. Taking into consideration
the initial conditions for the nominal filter at theth local
cluster the above equations can be rewritten as

with

.
Similarly, the distributed smoother is derived through al-

gebraic operations from the optimal centralized smoother
discussed in [7]. Once again, the measurement-related matrices
have to be eliminated from the recursive solution. In the
centralized smoother, the nominal transition matrix is
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calculated as [12]

(41)

Using the equation of the covariance update for the standard
Kalman filter, the nominal filter transition matrix can now be
written as

(42)

The nominal partitioning quantity in the centralized
smoother is given as

(43)

Using the equations for the nominal Kalman filter in the
distributed smoother, the following relations hold:

(44)

(45)

Combining the last three equations, the quantity can
be written as follows:

(46)

(47)

(48)

Since from the standard form of the Kalman filter, we
have

[22], and from the centralized
smoother

[7], we can claim that, by
combining the two of them, the following relation holds true:

(49)

(50)
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