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Processing multichannel signals using digital signal process-
ing techniques has received increased attention lately due to its
importance in applications such as multimedia technologies and
telecommunications. The objective of this paper is twofold: 1) to
introduce adaptive filtering techniques to the reader who is just
beginning in this area and 2) to provide a review for the reader
who may be well versed in signal processing. The perspective of
the topic offered here is one that comes primarily from work done
in the field of multichannel (color) image processing. Hence, many
of the techniques and works cited here relate to image processing
with the emphasis placed primarily on filtering algorithms based
on fuzzy concepts, multidimensional scaling, and order statistics-
based designs. It should be noted, however, that multichannel
signal processing is a very broad field and thus contains many
other approaches that have been developed from different perspec-
tives, such as transform domain filtering, classical least-square
approaches, neural networks, and stochastic methods, just to name
a few.

In this paper, we present a general formulation based on fuzzy
concepts, which allows the use of adaptive weights in the filter-
ing structure, and we discuss different filter designs. The strong
potential of fuzzy adaptive filters for multichannel signal applica-
tions, such as color image processing, is illustrated with several
examples.

Keywords—Fuzzy systems, image processing, multichannel sig-
nal processing, neural networks.

I. INTRODUCTION

The availability of a wide set of multichannel infor-
mation sources in application areas, such as color image
processing, multispectral remote sensing imagery, biomed-
icine, robotics, and industrial inspection, has stimulated a
renewed interest in developing efficient and cost-effective
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processing techniques for multichannel signals. In recent
years, significant advances have been made in the de-
velopment of multichannel signal processing techniques.
Such techniques are used in a variety of tasks, such as
color image filtering and processing video sequences, en-
hancement of multispectral remote sensing data, seismic
deconvolution for oil exploration, and boundary detection
in vector fields.

The most common signal processing task is noise filter-
ing. Filtering is the process of estimating a signal degraded,
in most cases, by additive random noise. This task is an
essential part of any signal processing system, especially
when the final product is used for human interpretation,
such as visual inspection or for automatic analysis [1],
[2]. Several filtering techniques have been proposed over
the years. Among them are linear processing techniques,
whose mathematical simplicity and the existence of a
unifying theory make their design and implementation
easy [3]. Their simplicity, in addition to their satisfactory
performance in a variety of practical applications, has made
them methods of choice for many years. However, most of
these techniques operate assuming a Gaussian model for the
statistical characteristics of the underlying process, and thus
they try to optimize the parameters of a system suitable for
such a model.

Many signal processing problems cannot be efficiently
solved by using linear techniques. For example, an area
where linear processing techniques fail is in image pro-
cessing, where conventional linear techniques cannot cope
with the nonlinearities of the image formation model and
do not take into account the nonlinear nature of the human
visual system. Image signals are composed of flat regional
parts and abruptly changing areas, such as edges, which
carry important information for visual perception. Filters
having good edge and image detail preservation properties
are highly suitable for image filtering and enhancement.
Unfortunately, most of the linear signal processing tech-
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niques tend to blur edges and to degrade lines, edges, and
other fine image details.

Recently, fuzzy techniques have been investigated to
provide a bridge between linear and nonlinear techniques.
This paper summarizes efforts devoted to the development
of fuzzy systems suitable for filtering multichannel signals.
The approach discussed here is an adaptive one. It integrates
well-known theories in the areas of nonlinear filtering,
multidimensional scaling, robust statistics, and fuzzy sets
so as to form a new composite model. At the heart of
the approach is a filter whose weights (parameters) are
adaptively determined on the basis of local signal context.
The filtering procedure is seen as the estimation of the
prototype for a given set of input signals in a processing
window. Thus, filtering is the process of replacing a noisy
signal by a prototypical value, such that some metric which
is a function of the filter output and its neighbors is
minimized.

The organization of the paper is as follows. In Section II,
we provide an overview of the literature and research in
the area. In Section III, we present the problem under
consideration and introduce the general framework for an
adaptive fuzzy solution. We also discuss properties and
design characteristics of the proposed fuzzy system. In
Section IV, we discuss distance and similarity measures,
which can be used to define dissimilarity or similarity
between multichannel, vector-like signals. In Section V,
we review membership functions based on the distance
and similarity measures surveyed in the paper. Proper-
ties, characteristics, and implementation issues are also
discussed in detail. A number of filtering systems that
are supported by the general framework discussed in this
work are also presented in this section. Section VI deals
with the problem of color image processing, an important
area of multichannel signal processing, where we present
experimental results and comparisons with other standard
methods. Finally, Section VII summarizes the conclusions
and describes future research.

II. L ITERATURE REVIEW

In applications where the noise characteristics are un-
known or vary with time, the use of conventional linear
filters to smooth out the noise does not provide satis-
factory solutions. In such cases adaptive filters become
very important. Most adaptive filters have the structure of
finite impulse response filters with time-varying coefficients
[4]. Due to their flexibility and self-adjusting nature, they
have found uses in many practical applications ranging
from telephone echo canceling to radar signal processing
to biomedical signal enhancement [5].

However, the need to treat increasingly complex non-
linear systems coupled with the availability of increasing
computing power has led to a reevaluation of conventional
filtering methodologies. New algorithms and techniques,
which can take advantage of the increase in computing
power and can handle more realistic assumptions, are
needed. To this end, nonlinear signal processing techniques

are introduced. Nonlinear techniques, theoretically, are able
to suppress non-Gaussian and signal-dependent noise, to
preserve important signal elements, such as edges and fine
details, and eliminate degradations occurring during sig-
nal formation or transmission through nonlinear channels.
Despite impressive growth in the past two decades, new
theoretical results, new tools, and emerging applications,
nonlinear filtering techniques still lack a unifying theory
that encompasses existing nonlinear processing techniques.
Instead, each class of nonlinear operators possesses its own
mathematical tools which can provide a reasonably good
analysis of its performance. Consequently, a multitude of
nonlinear signal processing techniques have appeared in the
literature.

At present the following classes of nonlinear processing
techniques can be identified:

1) polynomial-based techniques [6], [7];
2) homomorphic techniques [1], [8];
3) order statistic-based techniques [1], [9], [10];
4) techniques based on mathematical morphology

[11]–[14];
5) neural network-based techniques [15]–[18].

Polynomial filters, especially second-order Volterra filters
(quadratic filters), represent the most natural extension of
linear filters. Volterra filters can be seen as linear filters with
higher order polynomial extensions. They have been used
for nonlinear channel modeling in telecommunications as
well as in multichannel geophysical signal processing and
color image processing.

Homomorphic filters and their extensions represent one
of the first classes of nonlinear filters and have been used
extensively in digital signal and image processing. This
filter class has found various practical applications, such
as multiplicative and signal-dependent noise removal, mul-
tichannel satellite image processing, and identification of
fingerprints. Homomorphic filters use nonlinearities (mainly
the logarithm) to transform nonlinearly related signals into
additive signals and then process them using linear filters.
The output of the linear filter is then transformed by the
inverse nonlinearity.

One of the most popular families of nonlinear filters for
noise removal are order-statistics filters. The theoretical
basis of these filters is that of robust statistics [1]. These
filters utilize algebraic ordering of a windowed set to
compute the output signal. There exist several filters which
are members of this class, such as the vector median filter
(VMF) [9]. Order-statistics multichannel filters have found
extensive applications in multichannel signal processing
and color image filtering.

Morphological filters utilize geometric, rather than an-
alytical, features of signals. These filters have found ap-
plications in image processing and analysis. Specifically,
areas of application include biomedical signal processing,
nonlinear filtering, edge detection, and image enhancement.

Neural network-based techniques have been extensively
used over the past ten years for multichannel signal pro-
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cessing. They have been successfully applied in image
processing and analysis, brain research, signal classifica-
tion, speech recognition, and of course noise reduction.
Their attractive generalization properties, their ability to
perform complex mappings from a set of noise signals
to the noise-free signal, and their parallel implementation
make them the method of choice in many digital signal
processing applications.

Adaptive nonlinear schemes have been considered as
successful alternatives to adaptive linear techniques, es-
pecially in the case of nonstationary signals corrupted by
non-Gaussian noise [2], [19], [20]. Adaptive versions of
order-statistics filters, Volterra filters, and neural network
structures have been used in a variety of signal processing
applications ranging from image restoration to biomedical
signal enhancement. As for linear adaptive filters, their per-
formance is based on the reliable estimation of signal and
noise characteristics. Local statistics estimation is employed
by decision-directed nonlinear filters, a class of adaptive
filters, which has been extensively used in image processing
applications [21].

Recently, a number of adaptive techniques based on fuzzy
logic principles have also been proposed. Such techniques
have been used mainly for high-level analysis of signals
and images, computer vision applications, systems control,
pattern recognition, and decision modeling. Different ap-
proaches ranging from fuzzy clustering to fuzzy entropy and
decision making under fuzzy constraints have been used for
scene detection, object recognition, and decision-directed
image analysis. More recently, fuzzy techniques have been
used for low-level signal and image processing tasks, such
as non-Gaussian noise elimination, nonlinear/non-Gaussian
stochastic estimation, image enhancement, video coding,
signal sharpening, and edge detection [22]–[37].

A number of fuzzy techniques adopt a window-based,
rule-driven approach leading to data-dependent fuzzy fil-
ters, which are constructed by fuzzy rules in order to
remove additive noise while preserving important signal
characteristics, such as edges. Using a bank of IF-THEN-
ELSE fuzzy rules, the fuzzy filter directly yields the fil-
tered output taking into account selected patterns in the
neighborhood of the element to be processed. Since the
antecedents of fuzzy rules can be composed of several local
characteristics, it is possible for the fuzzy filter to adapt
to local data. Local correlation in the data is utilized by
applying the fuzzy rules directly on the signal elements
which lie within the operational window. Thus the output
of the fuzzy filter depends on the fuzzy rule and the
defuzzification process, which combines the effects of the
different rules into an output value.

Through the utilization of linguistic terms, a fuzzy rule-
based approach to signal processing allows for the incor-
poration of human knowledge and intuition into the design,
which cannot be achieved via traditional mathematical
modeling techniques. However, there is no optimal way to
determine the number and type of fuzzy rules required for
the fuzzy image operation. Usually, a large number of rules
are necessary and the designer has to compromise between

quality and number of rules, since even for a moderate
processing window a large number of rules are required
[24], [25], [28].

Data-dependent filters adopting fuzzy reasoning have
been proposed to overcome these difficulties. These designs
combine fuzzy concepts, such as membership functions,
fuzzy rules, and fuzzy aggregators with nonlinear filters,
such as the -trimmed mean filter and the weighted average
mean filter, in order to remove Gaussian and non-Gaussian
noise while preserving useful signal characteristics, such as
edges in image signals.

Some methods utilize fuzzy rule-based systems to extend
the classical structure of a weighted linear filter. The fuzzy
weights are evaluated by fuzzy rules whose inputs are local
features that extract information from the vicinity of the
signal value to be processed. Hybrid fuzzy operators that
combine nonlinear filters devoted to the suppression of
impulsive spikes with linear filters have also been proposed
[37]. Other approaches utilize fuzzy rules to combine the
outputs of different filters. For example, in [27] the fuzzy
system combines the outputs of five classical nonlinear
filters depending on values of local features. A similar
approach is also discussed in [38]. In addition, based on the
adoption of a fuzzy positive Boolean function, a new class
of operators named fuzzy stack filters have been proposed
[39]. These operators extend the smoothing capabilities
of the classical stack filters and can provide efficient and
cost-effective solutions provided that an adequate set of
training signals is available. Recently, neurofuzzy filters and
evolutionary optimization techniques have been combined
in the hopes of deriving a nonlinear filter which can cancel
noise and preserve signal details at the same time [29].

As is the case of nonlinear techniques in general, the
fuzzy signal processing techniques available today lack
a unifying theory. Cross fertilization among the different
fuzzy techniques, as well as with other nonlinear tech-
niques, has appeared promising. For example, mathematical
morphology and fuzzy concepts have been blended together
in the case of fuzzy stack operators. Also, fuzzy designs and
order-statistic filters have been efficiently integrated into
one class even though they come from completely different
origins [34], [35].

The plethora of available fuzzy techniques poses some
application difficulties. Since most of them are designed to
perform well in a specific application, their performance de-
teriorates rapidly under different operation scenarios. Thus,
an adaptive fuzzy system, which performs equally well in
a wide variety of applications, is of great importance.

III. T HE GENERAL FRAMEWORK

A. The Problem Under Consideration

Consider the following commonly used model for a
multichannel signal corrupted by additive noise:

(1)
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where denotes the channel uncorrupted signal vector,
is the corresponding noisy vector to be filtered, and

an additive noise vector.
The signal processing literature has been dominated by

the assumption of the Gaussian model for the statistical
characteristics of the noise. Optimal filtering solutions for
the problem at hand can be devised based on this assump-
tion. However, the type and degree of noise corruption
depends on many factors, such as the measurement appara-
tus, the signal levels, and the experimental procedure under
consideration. The appearance of the noise and its effect
on the signal are related to its frequency characteristics.
In many cases, the noise characteristics vary within the
same application. Such cases include channel noise in
image transmission as well as atmospheric noise corrupting
multichannel satellite images.

Although the Gaussian model is often justified in practice
by the central limit theorem, we often encounter noise
processes that exhibit impulsive behavior and are more
accurately modeled by heavy-tailed, non-Gaussian distribu-
tions [40]–[42]. Impulsive behavior can be characterized in
terms of short duration, high-energy spikes attaining large
amplitudes with probability higher than that predicted by
a Gaussian density model [43]. Even if the level of non-
Gaussian noise contamination is small, the performance of a
filtering system optimized under the Gaussian assumption
can suffer from drastic degradation. In such a case, the
performance of classical adaptive filtering schemes, such as
recursive least squares (RLS) or simple weighted average
filters, is seriously degraded [44]. Thus, there is a need
for a flexible and efficient filter class for non-Gaussian
environments that can appear in practice [45].

B. The Adaptive Fuzzy System

Let us define as the multichannel sample to be
processed at time index and let be a set of

neighboring samples which belong to the window
centered on

(2)

Since the most commonly used method to decrease the
level of random noise present in the signal is smoothing, an
averaging operation is required in order to replace the noisy
vector at the window center with a suitable representative
vector (prototypical value). The general form of the system
presented here is given as a fuzzy weighted average of the
input vectors inside the window Thus, the uncorrupted
multichannel signal is estimated by determining the centroid
as follows [34], [46]–[50]:

(3)

where is a function adaptively determined on
the basis of local context with the membership function
of input and a parameter such that

In this adaptive design the weights provide the degree
to which an input vector contributes to the output of the
filter. The relationship between the signal at the window
center (vector under consideration) and each signal within
the window should be reflected in the decision for the
weights of the filter. Through the normalization procedure,
two constraints necessary to ensure that the output is an
unbiased estimator are satisfied, namely:

1) each weight is a positive number, ;
2) the summation of all the weights is equal to unity

The weights of the filter are determined adaptively us-
ing functions of a distance criterion between the input
vectors. These weighting coefficients are based on the
distance between the center of the window (the vector
under consideration) and all other vector samples inside
the filter window. The weights can be considered to be a
membership function with respect to the specific window
component. The adaptive algorithm evaluates a membership
function based on a given vector signal and then uses the
membership values to calculate the final filtered output.

To explain the concepts behind the filter only the defini-
tion of the fuzzy set is required. Other definitions, such as
fuzzy rule bases and fuzzy control, are not essential to this
work and thus are omitted. Assume thatis a universe of
discourse with elements Then, a fuzzy set in is a set
of ordered pairs where is
the membership function or grade of membership ofin
which maps into a membership space The range of
the membership function is a subset of the nonnegative real
numbers whose supremum is finite. In practical applications

is normalized to the interval [0, 1].
The design summarized here qualifies as an adaptive

fuzzy system since it utilizes sample input data and infer-
ence procedures (here in the form of transformed distance
metrics) to define a fuzzy system at each time instant.
Through the adaptation mechanism utilized, the system
structure changes over time, resulting in a time-varying
mapping between input values and filtered output. This
temporal mapping defines an adaptive fuzzy system. As
was argued in [51], adaptation, or learning, is essentially
parameter changing. Thus, by changing the weights in (3),
we have developed an adaptive fuzzy system capable of
learning new associations between input patterns and new
functional dependencies. In the framework described here,
this can be accomplished without the use of linguistic
fuzzy rules or local statistics estimation. Features extracted
from local data, such as distances among neighboring input
vectors, are used to define the fuzzy weights.

The noise smoothing problem is seen as a problem
of prototype estimation given a set of signal inputs. In
this sense, filtering is the process of replacing the noise-
corrupted multichannel signal at the window center by a
prototype signal, such that the differences between this
prototype and all its neighbors inside the window are
minimized in some sense. This operation is, essentially,
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a defuzzification procedure. It determines the most ap-
propriate signal value (a vector signal in the case of
multichannel inputs), to represent a collection of elements
whose membership functions have been constructed over a
universe of discourse.

Although a number of different defuzzification strategies
exist, the centroid defuzzification approach, known as the
center of gravity (CoG), is often utilized in practice. The
CoG method generates a defuzzified value which is at the
center of the values of a fuzzy set. Its defuzzified output
actually corresponds to the membership-graded weighted
mean of the square (Euclidean) distance.

To clarify this, let us consider a fuzzy set that is
defuzzified as:

(4)

where is the membership function associated with the
input value If a quadratic cost function is considered

(5)

the CoG defuzzified value is obtained when is
minimized by differentiation

(6)

Simple inspection of the CoG defuzzified value obtained
reveals the similarity with the adaptive filtered output of (3).
We can therefore claim that the output of our adaptive filter
can be considered as the output of the CoG defuzzification
strategy with the noisy multichannel signals as members of
a fuzzy set and the membership functions
defined over them.

In such a design, the overall performance of the process-
ing system is determined by the defuzzification procedure
selected. The quadratic cost function discussed above can
be generalized to include any arbitrary function ofUnder
such a scenario, we assume that the cost function associated
with the selection of the defuzzified value to represent the
fuzzy set is

(7)

where is a function of the associated membership
function. By minimizing the above quadratic form, a de-
fuzzified (crisp) value can be obtained as

(8)

which is identical to the form used to generate the filtered
output in the adaptive design of (3).

If the power function with is
used, the defuzzified value can be obtained through the
following equation:

(9)

It can easily be seen that, in the generalized defuzzifi-
cation rule of (9), if the widely used CoG strategy
can be obtained.

The defuzzified vector-valued signal obtained through
the CoG strategy is a vector-valued signal, which was not
part of the original set of input vectors. However, there
are signal processing applications, such as image filtering,
where it is desirable for the filter output to be one of the
samples in the input window. As an example, the VMF [9]
is always constrained, by definition, to be one of the input
samples. Thus, if the output of the adaptive fuzzy system is
required to be a member of the original input set, a different
defuzzification strategy should be used. By defining
to be the largest membership value, the adaptive weights in
(3) can be rewritten as follows [90]–[92]:

(10)

Given that as then

if
if (11)

Equation (11) represents the maximum defuzzifier strat-
egy. If the maximum value occurs at a single point only,
the maximum defuzzifier strategy coincides with the mean
of maxima (MOM) defuzzification process. Through the
maximum defuzzifier, the output of an adaptive fuzzy
system is defined as

(12)

In this case, the fuzzy adaptive filter behaves as a
mode-like selection filter [45], since by construction its
output is always one of the samples inside the processing
window. This selection property is shared by well-known
nonlinear filters, such as the VMF and the myriad filter
[40]. However, unlike these filters, which are optimized for
specific noise models (the Laplacian and Cauchy model,
respectively), the fuzzy filter can be optimized for any noise
model by tuning its membership function. Thus existing
selection filters can be generalized.
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C. Determining the Parameters

The most crucial step in the design of the adaptive
fuzzy system lies in determining the membership function
to be used in the construction of its weights. The diffi-
culties associated with the meaning and measurement of
the membership function hinder the applicability of fuzzy
techniques to many practical applications. It is important
to clarify where the membership function arises, how is
it used and measured, and how it can be manipulated
in order to provide meaningful results. Since there are
different interpretations of fuzziness, the meaning of the
membership function changes depending on the application
or methodology adopted. In general, apart from the formal
definition, a membership function can be seen as a “graded
membership” in a set. Depending on the interpretation of
fuzziness, various solutions to the problem of membership
definition and graded membership can be obtained. Our
analysis considers the membership function as a function of
similarity. Viewing membership values as similarity indica-
tors is often used in prototype theory where membership is
a notion of being similar to a representative of a category
[52]. Thus a membership function value can be used to
quantify the degree of similarity of an element to the set in
question. The assumption behind this approach is that there
exists a perfect (ideal) example of the set which belongs
to the set to the full degree. The valuation of membership
for the rest of the elements in the set can be regarded as
the comparison of a given input with the ideal input
which results in a distance

If we wish to adopt a view of similarity, we must scale
the membership function accordingly. If the input under
consideration has all the features of the ideal prototype
then the distance should be zero, and this object should
belong to the set to the full degree. On the other hand,
if no similarity between the ideal prototype and the input
exists, the distance should be infinite and this notion should
be reflected in the membership value.

Assuming that a certain degree of membership is assigned
to each element in the set, this membership function can be
defined as

(13)

Based on the definition above, as
and when Equation (13) is only a
transformation rule from one numerical representation into
another. To complete the process, the exact form of the
distance function has to be specified. Depending on the
specific distance measure that is applied to the input data,
a different fuzzy membership function can be devised.

However, the definition of a distance (or similarity)
measure requires an appropriate metric space on which
the different distance (similarity) measures will be defined
and evaluated. Although the notion of distance is very
natural in the case of scalar signals [one-dimensional (1-
D) signals], it cannot be extended in a straightforward way
for the case of vector signals. In a vector space, different
measures can be used to quantify similarity or dissimilarity

among multichannel inputs. Therefore, before we discuss
the exact form of the membership function and how it will
be integrated in our adaptive framework, we need to define
and quantify distance, or similarity, among multichannel
signals.

IV. M EASURING SIMILARITY

Let us assume that two -D signals and are
available. The most commonly used measure to quantify
distance between these two vectors is the generalized
weighted Minkowski metric, which is defined as follows
[53]:

(14)

where is the dimension of the vector and is the
th element of The nonnegative scaling parameteris a

measure of the overall discrimination power. The exponent
defines the nature of the distance metric. The most popular

cases occur when (city-block distance) and when
(Euclidean distance) [54], [55]. The chess-board

distance corresponds to In this case, the distance
between the two -D vectors is considered equal to the
maximum distance among their components. The parameter

measures the proportion of attention allocated to the
dimensional component and thus

Vectors having a range of values greater than a desirable
threshold can be scaled down by the use of the weighting
function

An alternative method of implementation for vector sig-
nals taking nonnegative values, such as color vectors in
the RGB space, is to build the weighting into the distance
measure. Such an example is the Canberra metric [56], [57]

(15)

where is the dimension of the vector and is the
th element of The summand is defined to be zero if

both and are zero.
Of course, there are many other measures by which a

distance function can be constructed. Depending on the
nature of the problem and the constraints imposed by the
design, one method may be more appropriate than the other
[58]. Furthermore, measures other than distance can be used
to measure similarity between vector signals, as the next
section will attest. Any nonparametric function
can be used to compare the two multichannel signals
and This can be done by utilizing a symmetric function
whose value is large when and are similar. An
example of such a function is the normalized inner product
defined as

(16)

which corresponds to the cosine of the angle between the
two vectors and The cosine of the angle (or the mag-
nitude of the angle) discussed here is used to quantify their
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similarity in orientation. Therefore, in applications where
the orientation difference between two vector signals is of
importance, the normalized inner product or equivalently
the angular distance

(17)

can be used instead of the metric functions to quantify
the dissimilarity between the two vectors [59], [60]. As an
example, we consider color images where the color signals
appear as three-dimensional (3-D) vectors in the RGB
color space. It was argued in [59] that similar colors have
almost parallel orientations. On the other hand, significantly
different colors point in different overall directions in the 3-
D color space. Thus the angular distance which quantifies
the orientation difference between two color signals is a
meaningful measure of their similarity.

It is obvious that a generalized similarity measure model
which can effectively quantify differences among multi-
channel signals should take into consideration both the
magnitude and the orientation of each vector signal. The
distance or similarity measures discussed thus far utilize
only part of the information carried by the vector signal.
It is anticipated that a generalized measure based on both
the magnitude and the orientation of the vectors will
provide a robust solution to the problem of similarity
between two vectors. To this end, a new similarity measure
was introduced [46]. The proposed measure defines the
similarity between two vectors and as follows:

(18)

As can be seen, this similarity measure takes into con-
sideration both the direction and the magnitude of the
vector inputs. The first part of the measure is equivalent
to the angular distance defined previously and the second
part is related to the normalized difference in magnitude.
Thus if the two vectors under consideration have the same
length, the second part of (18) becomes unity and only the
directional information is used. On the other hand, if the
vectors under consideration have the same direction in the
vector space (collinear vectors) the first part (orientation)
is unity and the similarity measure of (18) is based only on
the magnitude difference. In addition, the weightsand

can be adjusted to stress either component more or less,
depending on the design constraints.

This measure can be considered as a member of the
generalized “content model” family of measures, which can
be used to define the similarity between multidimensional
signals.

The main idea behind the content model family is that
similarity between two vectors is regarded as the degree of
common content in relation to the total content of the two
vectors [61]–[65]. Therefore, given the common quantity,
commonality and the total quantity, totality the

similarity between and is defined as

(19)

Based on the general framework of (19), different sim-
ilarity measures can be obtained by utilizing different
commonality and totality concepts.

Assume that given the two input signals and the
angle between them is and their magnitudes are and

respectively. As before, the magnitudes of the vectors
represent the intensity and the angle between the vectors
quantifies the orientation difference between them.

Based on these elements, commonality can be defined
as the sum of the projections of one vector over the other
(e.g., ) and totality as the sum of their
magnitudes [61]. Therefore, their similarity model can be
written as

(20)

Although the content model in [61] is equivalent to the
normalized inner product (cosine of the angle) similarity
model of (16), different similarity measures can be de-
vised if we define commonality and/or totality between the
two vectors differently. Experimental studies have revealed
that there is a systematic deviation between empirically
measured similarity values and those obtained through the
utilization of the model in [61], especially in applications
where the magnitudes of the vectors are of importance.
To compensate for the discrepancy, the totality was
redefined as the vector sum of the two vectors under
consideration. In such a case, similarity was defined as

(21)

In the special case of vectors with equal magnitudes,
the similarity measure is solely based on the orientation
differences between the two vectors, and it can be written
as

These are not the only similarity measures which can be
devised based on the content-model approach. For example,
it is also possible to define commonality between two
vectors as a vector algebraic sum of their projections,
instead of a simple sum. That gives a mathematically lower
value of commonality than the one used in the models
reported earlier. Using the two totality measures we can
comprise two new similarity measures as

(22)

or

(23)
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If only the orientation similarity between the two vectors is
of interest, assuming that the above similarity
measure can be rewritten as

If, on the other hand, we define the totality as the al-
gebraic sum of the original vectors and define commonality

as the algebraic sum of the corresponding projections,
the resulting similarity measure can be expressed as

(24)

with which
is the same expression obtained through the utilization of
the inner product in (16).

Other members of the content-based family of similarity
measures can be obtained by modifying either the com-
monality, the totality, or both. Equation (19) can be seen as
a guideline for the construction of specific models where
the common part and the total part are specified. As a
general observation, we can claim that when the totality and
commonality were derived according to the same principle,
e.g., sum of vectors, the cosine of the angle between the
two vectors can be used to quantify similarity. On the
other hand, when commonality and totality were derived
according to different principles, similarity was defined as
a function of both the angle between the vectors and their
corresponding magnitudes.

Content-based measures can also be used to define dis-
similarity among vector signals. This is the approach taken
in [65], where the emphasis is on what is uncommon to the
two vectors instead of on what is common. The difference
between the two vectors divided by the total part was
assumed to be the measure of their dissimilarity. It was
suggested in [65] that the part not in common is specified
as the distance between the two vector termini with the
totality defined as the vector sum of the two vectors under
consideration. Furthermore, assuming that similarity and
distance are complimentary, [65] proposed the following
similarity measure:

(25)
where the numerator of the ratio represents the distance
between the two vector termini, e.g., vector difference,
and the denominator is an indication of the totality. The
different nonmetric similarity measures described here, or
similarity measures such as those discussed in [66] can be
used instead of the Minkowski-type distance measures to
quantify distance among a vector under consideration and
the ideal prototype in our membership function mechanism,
as discussed earlier.

V. THE MEMBERSHIP FUNCTION

Having discussed the different measures to quantify dis-
tance (or similarity) between two vector inputs, we turn
attention to the problem of membership function specifica-
tion. The generic form of our function was given in [67]

as

(26)

where is a function of the distance between the
vector signal and the ideal prototype Membership
functions are either monotonically increasing functions
from zero to one, monotonically decreasing from one to
zero, or can be divided into monotonically increasing or
decreasing parts. Each increasing or decreasing part is
specified by a crossover or dispersion point. The particular
function used in (26) will determine the actual shape
of the membership function [67]–[71]. The approach of
[67] suggests that since the relationship between distances
measured in physical units and perception is generally
exponential, an exponential type of function should be used
in the generic membership function [67]. The resulting type
of a sigmoidal function deduced from this proposition can
be defined as

(27)

with and for a monotoni-
cally increasing function, where is any similarity
function defined in (18)–(25) and

(28)

with and for a monotoni-
cally decreasing function, where is any member
of the generalized Minkowski family of metrics.

The resulting membership function has the shape
(sigmoidal) required by Zadeh’s design [72]. Due to the
lack of break points, sigmoidal functions are best suited
to represent natural, continuous behavior. The crossover
point (the point assigned a membership value of 0.5),
is also the inflection point between the convex and the
concave part in the sigmoidal function defined in (27)–(28).
By construction, the function never reaches absolute truth
(or falsehood) values due to the asymptotic behavior to
both values. If this constitutes a problem for a particular
application domain it can be resolved by introducing the
appropriate break points at and

In addition, the membership function needs a parameter
which controls its dispersion characteristics. Dispersion

is defined as the range between the crossover points and
the nearest entry which receives the maximum value of
one. The dispersion value regulates the fuzzification process
and is a design parameter which can be tuned to modify
the fuzziness of the membership function. The parame-
ters for crossover points and dispersion are the minimum
requirements for determining a fuzzy membership function.

In cases where a distance measure is used to quantify
dissimilarity between the vector under consideration and
the ideal prototype, the decreasing form of the function is
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utilized. If a similarity measure is used instead, we consider
the monotonically increasing version of the membership
function.

Although not supported by the general form of the mem-
bership function introduced in [67], the exponential (Gauss-
ian) kernel was used by the authors as an approximation
to the membership function, especially when Minkowski
metrics are used to quantify distance between
multichannel signals (color vectors in particular).

In this case the proposed membership function can be
defined as

(29)

where is a positive constant andis a distance threshold.
The membership model proposed, although defined empir-
ically, complies with certain psychometrical experiments
[73]. According to [73], quantification of similarity of an
unknown stimulus to a known prototype can be expressed
as a simple exponential decay or Gaussian function of
a normalized distance in a psychological space. The two
parameters are design parameters. That is, their actual
values vary with the application. The above parameters
correspond to the denominational and exponential fuzzy
generators controlling the amount of fuzziness. A gradient
method can be applied to optimize the parameters of the
membership function. However, since the training signal
should be expressed as a nonlinear form of the parameters
to be controlled, the convergence speed can be very slow
or a local minimum may exist in some cases. In addi-
tion, the training signal should be selected to match the
characteristics of the input signal to be processed by the
fuzzy adaptive system. Alternative methodologies to adjust
the parameters of the membership function include neural
network techniques and evolutionary computation, to name
a few [23].

A. The Generalized Membership Function

The model of (27)–(28) satisfies the requirement im-
posed by the adaptive fuzzy framework. However, the
membership function in its present form is computationally
expensive since it involves the evaluation of the exponential
function, and more importantly its parameters cannot be
evaluated easily in practical applications. Therefore, other
functions which can retain the same characteristics and are
easier to implement are needed. Such a membership form
was proposed in [74]. This function is continuously increas-
ing (decreasing), satisfies the same boundaries conditions,
complies with the generic membership form of (13), and
retains the properties of the-shaped membership function.
However, unlike the function in (27)–(28), it can be written
as a rational function of two polynomials.

In the new formulation, for any input value the
membership function, by construction, can be completely
characterized by only four parameters: 1) and 2) the interval

of the input parameter ; 3) the sharpness of the
membership function; and 4) the inflection pointof the -
shaped function. Based on these parameters a membership

function can be defined as

(30)

for a monotonically increasing function, and

(31)

for a monotonically decreasing function, with the inflection
point defined via and or

for the case of monotonically increasing
or decreasing functions, respectively.

The sharpness of the function (an indicator of increas-
ing/decreasing membership) can be defined respectively
as

(32)

This membership function, which is universally applica-
ble, can be utilized by considering the distance or similarity
value as the input to the membership function. Assume
that and are appropriate
distance or similarity measures between the vector under
consideration and the ideal prototype, similar to those
discussed in the previous section, we may rewrite the
membership function needed in the fuzzy system of (3)
as follows:

(33)

with
Alternatively, a monotonically increasing function can be

defined based on a similarity measure as
follows:

(34)

with
For the case of the linear form of the membership

function is obtained

(35)

for a monotonically increasing function, and

(36)

for a monotonically decreasing function, which corresponds
to the nearest-neighbor rule used in [46], [49], and [50] to
define membership functions.

The membership function is critically dependent on the
similarity measure and the reference point selected. The
ideal reference signal is the actual value of the multidimen-
sional signal in the specific location under consideration.
This signal, however, is not available. In addition, the
noisy vector at the same location is not the appropriate
choice since any input vector inside the window can be
an outlier. Therefore, to make the procedure more robust
and to ensure that the fuzzy system will provide accurate
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results, we eliminate the need for a reference point by
evaluating the membership function used to weight each
input vector in (3) on the aggregate distance between
the vector under consideration and all the other vectors
inside the processing window. Thus, the vector with the
smallest overall distance (or maximum similarity) is now
assigned the maximum membership value. Needless to say
the membership function selected is now evaluated on the
aggregated distances and not on the distance between the
vector and the ideal prototype.

It is obvious that such a design does not depend on
a reference point and thus is more robust to occasional
outliers. However, the computational complexity of the
algorithm increases as a result of the need to evaluate a
number of distances (similarities) in the processing window.
Any distance metric or similarity function discussed in the
previous section can be used in the formulation of the
aggregate distance. For example, assume that the noisy
vector inside the processing window is considered.
Its aggregated distance from all other vectors inside the
window is given as

(37)

(38)

if the Euclidean metric has been selected to measure
dissimilarity between two vector signals. This aggregate
distance value is used as an input to the membership
functions of (29) or (33) that will be used to determine
the fuzzy weights in the multichannel filter.

Similarly, the vector angle criterion defines the scalar
measure

(39)

as the distance associated with the noisy vectorinside
the processing window of length when the angle between
two vectors

(40)

is used to measure dissimilarity. The approach suggested
here eliminates the need for a reference point and gener-
alizes the concept of membership function as a similarity
indicator. In the suggested formulation, the valuation of
membership is regarded not as a comparison with an ideal
point but as a comparison to the rest of the elements to be
included in the fuzzy set.

An alternative, although suboptimal, procedure has been
proposed by the authors. In this approach, a robust estimate
of the location, usually evaluated in a smaller subset of the
input vector set, is utilized as the reference vector. The
selection of this robust reference vector depends on the
signal characteristics. Usually the median is the preferable
choice since it smooths out impulsive noise and preserve

edges and details. Moreover, unlike scalars, the centermost
vector in a set of vectors can be defined in more than
one way. Thus, the VMF, the basic vector directional filter
(BVDF), or the marginal median filter (MAMF) operating
in a processing window centered around the current vector
input can be used to provide the requested reliable reference
point [47].

The proposed adaptive fuzzy filter can be viewed as
a double-window two-stage estimator in which we can
distinguish between two operations. First, the original signal
is filtered by a multichannel median filter in a small
processing window in order to reject possible outliers, then
an adaptive fuzzy filter with data dependent weights is
applied to provide the final estimates. Thus, the overall filter
can be viewed as a combined multichannel operator which
incorporates simple nonlinear statistical estimators such as
the VMF into adaptive designs based on fuzzy membership
functions.

To summarize, we have outlined a possible interpretation
of the membership function and discussed how membership
functions can be built based on similarity concepts. A
generalized model for building membership functions was
utilized here. The different similarity or distance mea-
sures discussed here can be used as input values to this
membership function model. The possibility of tuning the
design parameters, namely distance (similarity) metrics and
membership functions provides the adaptive fuzzy system
of (3) with a rich variety of modes of operation that range
from simple selection type filters, such as the VMF to
hybrid filters, such as the-trimmed filter.

Now that we have completed the presentation of the
fuzzy, adaptive framework we can proceed with the pre-
sentation of the different multichannel filters which can be
devised within this framework.

B. Adaptive Fuzzy Filters

The filter structure reviewed in this paper can support
different filter families often used in multichannel signal
processing. To illustrate the point we will discuss next the
derivation of commonly used filters through the adaptive
fuzzy structure.

In particular, we shall start with mode-like filters such
as the VMF, which is the most widely used windowed
nonlinear, multichannel filter. The vector median of the
input set is defined as the minimal vector according to the
aggregate, reduced ordering technique (R-ordering) of [35],
[48], [59], and [75]–[77].

Let us assume that given a set of noisy input signals
inside a processing window the scalar

quantity is the aggregated distance
associated with the noisy color vector, where
is the city-block metric.

Assume further that an ordering of the’s
implies the same ordering to the corresponding

’s where refers to the th
ordered sample. The VMF defines the vector as the
filter output. This selection arises because vectors which
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diverge greatly from the data population usually appear in
higher indexed locations in the ordered sequence [9].

VMF is a selection filter in which the output is always
constrained by definition to one of the samples inside the
processing window. It can easily be seen that the VMF can
be derived as a special case of the fuzzy adaptive system of
(3). Indeed, by adopting the maximum defuzzifier of (12) in
conjunction with aggregated city-block metrics to drive the
membership function of (36) the same filtered output can
be obtained. Simple inspection of (36) reveals that since

by construction, the membership function for
the corresponding input is

and thus is selected through (12) as the
filtered output.

The VMF is not the only multichannel filter which can
be used for processing vector signals. A new type of vector
processing filter, the vector directional filter (VDF) was
proposed recently for multichannel, color signals [78]. The
VDF operates on the direction of the color image signals,
aiming at eliminating vectors with atypical directions in the
vector space. To achieve its objective, the VDF utilizes the
angular distance of (39) to order the input vectors inside
a processing window. As a result, a set of input vectors
with approximately the same direction in the vector space
is produced as the output set. Since the vectors in this set are
approximately collinear, a magnitude processing operation
can be applied in a second step to produce the requested
filtered output.

The BVDF is a selection, nonlinear filter which paral-
lelizes the VMF operation. However, it employs the angle
between the two color vectors as the distance criterion.
The output of the BDVF is the vector from the input set
which minimizes the sum of the angles with the other
vectors. In other words, the BVDF chooses the vector most
centrally located without considering the magnitudes of
the input vectors. It may perform well when the vector
magnitudes are of no importance and the direction of the
vectors is the dominant factor. However, this is usually
not the case. In signal processing applications, including
color image processing, the magnitudes of the vectors
should also be considered. To improve the performance
of the BVDF, a generalized filter structure was proposed
[59]–[78]. The new filter, appropriately called the gen-
eralized vector directional filter (GVDF), generalizes the
BVDF in the sense that its output is a superset of the single
BVDF output. Instead of a single output, the GVDF outputs
the set of vectors whose angle from all other vectors is
small as opposed to the BVDF, which outputs the vector
whose angle from all the other vectors is minimum. Thus,
the GVDF’s produced output initially consists of a set
of input vectors with approximately the
same direction in the color space. Then, in the magnitude
processing module, a final single vector output is produced
by considering only magnitude information. As before, the
BVDF can be derived through the generalized filtering
structure of (3). Simply the vector angle criterion should
be used in conjunction with the maximum defuzzifier and
the membership function of (36).

It is not necessary for the designer to use all the inputs
inside the filtering window to produce the final output in the
fuzzy filter. If necessary, only a part of the input set can be
used. The input vectors can be ordered according to their
respective fuzzy membership strengths. In the sequence,
only a subset of them are used to form the filtered output.
Thus the fuzzy filter can be rewritten as

(41)

where represents theth ordered fuzzy membership
function, and with
being the fuzzy coefficient with the largest membership
strength. The present form of the filter is a special case
of the general filter introduced by (3). The used here
is the ordering of the fuzzy weights. The above form of
the algorithm constitutes a fuzzy generalization of the-
trimmed filters [2]. Through the fuzzy transformation, the
weights to be sorted are scalar values. In this way the non-
linear ordering process does not introduce any significant
computational burden. Depending on the distance criterion
and the associated fuzzy form that the designer chooses,
a number of different -trimmed filters can be obtained.
If the vector angle criterion is selected, the GVDF can be
derived through (41). The question which arises is how to
select the appropriate number of input vectors that will be
included in the final output. There is no standard procedure
to determine the number of inputs that are trimmed and not
included in the averaging process. There are two different
ways to determine the number of vectors that have to be
included in the final set that produces the fuzzy output. The
first option is through the selection of a fixed number of
inputs vectors. The filter designer selects input vectors
that correspond to the fuzzy weights with the largest
values. On the other hand, the number of vectors can be
determined in an adaptive fashion. A simple approach is to
include all the vectors associated with a fuzzy weight larger
than a given threshold. To this end, we select a threshold
value of where are the vectors inside the
operational window.

The last example considered here is another selection
filter known as the directional-distance filter (DDF) which
was proposed in [78]. The DDF retains the structure of
the BVDF but utilizes a new distance criterion to order
the vectors inside the processing window. Based on the
observation that the BVDF and the VMF differ only in the
quantity that is minimized, a new distance criterion was
utilized by the designers of the DDF in the hopes of deriving
a filter which combines the properties of both these filters.
Specifically, in the case of the DDF, the distance inside
is defined as

(42)
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where is the directional (angular) distance defined
in (9) with the second term in (11) to account for the
differences in magnitude in terms of the metric. As
for any other mode-type, multichannel, nonlinear filter, it
is assumed that an ordering of thedistance

implies the same ordering to the corresponding
input vectors ’s: Thus,
the DDF defines the minimum-order vector as its output:

By incorporating the proposed distance
function in the linear membership function of (36), the same
result is returned by the adaptive fuzzy filter as when the
maximum defuzzifier is employed.

Although a number of different adaptive designs were
discussed here, all of them have some common design
characteristics and exhibit similar behavior. We summarize
a number of them in a series of comments.

1) All the adaptive vector processing filters perform
smoothing of all the vectors which are from the
same region as the vector at the window center. It is
reasonable to make their fuzzy weights proportional
to the difference (similarity), in terms of a distance
measure, between a given vector and its neighbors
inside the operational window. At edges, or in areas
with high details, the filter only smooths inputs on
the same side of the edge as the centermost vector,
since vectors with relatively large distance values will
be assigned smaller weights and will contribute less
to the final filter output. Thus through the utilization
of the fuzzy adaptive designs we are able to not
only preserve the signal characteristics but also to re-
duce the computational effort by avoiding prefiltering
operations, such as edge or line detection opera-
tions. The proposed adaptive framework combines
elements from almost all known classes of non-
linear filters. Namely, it combines Minkowski-type
distances (used in order-statistics-based estimators) or
nonmetric content-based similarity measures (used in
ranked-type estimators), averaging outputs (used in
linear filtering), with data-dependent coefficients used
in adaptive designs and membership functions used
in fuzzy systems.

2) In the framework described above, there is no re-
quirement for fuzzy rules or local statistics estimates.
Features extracted from local data, here in the form
of distances or similarities, are used as inputs to the
membership function. The fuzzy filters discussed in
this section do not utilize the distance measures to
order the noisy input signals. Instead, they are used to
provide selected features in a reduced space: features
used as inputs for the adaptive weights.

3) The filtering algorithms differ in their computational
complexity. It should be noted at this point that
the computational complexity of a given filter is a
realistic measure of its practicality and usefulness,
since it determines the required computing power and
the associated processing time required for its im-
plementation. The computational complexity analysis
of the adaptive designs requires knowledge of the

Table 1
Noise Models

membership function used to calculate the adaptive
weights and the exact form of the selected distance
(similarity) measure used. The computationally inten-
sive part of the adaptive scheme rests in calculating
the distance. This part, however, is common to all
vector processing designs. Thus from a practical
standpoint, the remarkably flexible structure of (16)
yields realizations of different filters that can meet a
number of design constraints including hardware and
computational complexity.

VI. COLOR IMAGE PROCESSING

The adaptive fuzzy filters discussed here can be used to
process multichannel signals in a variety of practical appli-
cations, such as color image processing, medical imaging,
remote sensing applications, geophysical signal processing,
and military communications. Due to numerous practical
applications, color images comprise an important class of
multichannel signals, and thus they can serve as an excellent
illustrative application.

The international standardCIE 1931defines color curves
based on tristimulus values of human capabilities and
conditions of view [79]–[82]. The basis of the trichromatic
theory of color vision is that it is possible to match an
arbitrary color by superimposing appropriate amounts of
three primary colors. Thus, in the different color spaces,
each pixel of an image is represented by three values which
can be considered as a vector, transforming the color image
to a vector field in which each vector’s direction and length
is related to the pixel’s chromatic properties. Being a two-
dimensional, three-channel signal, a color image requires
increased computation and storage during processing, as
compared to a greyscale image.

We have conducted a set of experiments in order to
evaluate the fuzzy adaptive designs and compare their
performance against the performance of other filters, such
as the arithmetic mean filter (AMF), a simple weighted
average filter, the VMF, the DDF, and the hybrid filters of
[83].

The noise attenuation properties of the different filters
are examined by utilizing the color images “Lenna” and
“Peppers.” The test images have been contaminated us-
ing various noise source models in order to assess the
performance of the filters under different scenarios (see
Table 1). Image transmission noise exists in many practical
applications. There are various sources that can generate
this type of noise including many man made phenomena,
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Table 2
Filters Compared

such as car ignition systems, industrial machines in the
vicinity of the receiver, switching transients in power
lines, and various unprotected switches. In addition, natural
causes, such as lightning in the atmosphere and ice cracking
in the Antarctic region, can also affect the transmission
process. This transmission noise, also known as salt-and-
pepper noise in greyscale imaging, is modeled after an
impulsive distribution. However, a problem in the study
of the effect of the noise in the image processing process is
the lack of a multivariate impulsive noise model. A number
of simplified models have been introduced recently to assist
in the performance evaluation of the different color image
filters.

The impulsive noise model considered here is as follows:

with probability
with probability
with probability
with probability
with probability

(43)

where is the noisy signal, is the
noise free color vector, is the impulse value, and

(44)

with the degree of impulsive noise contamina-
tion. Impulse can have either positive or negative values.
We further assume that and that the
delta functions are situated at (255, 255). Thus, when
an impulse is added or subtracted, forcing the pixel value
outside the [0, 255] range, clipping is applied to force the

corrupted noise value into the integer range specified by
the 8-bit arithmetic.

In many practical situations an image is often corrupted
by both additive Gaussian noise due to faulty sensors and
transmission noise introduced by environmental interfer-
ence or faulty communication. An image can therefore be
thought of as being corrupted by mixed noise according to
the following model:

with probability
otherwise

(45)

where is the noise free three-variate color signal
with the additive noise modeled as zero mean white
Gaussian noise and transmission noise modeled
as multivariate impulsive noise with the degree of
impulsive noise contamination [84], [85].

The original images as well as their noisy versions are
represented in the RGB color space. This color coordinate
system is considered to be objective since it is based on the
physical measurements of the color attributes. The filters
operate on the images in the RGB color space.

Since it is impossible to discuss all the fuzzy adaptive
filters resulting from the theory introduced here, we instead
construct five different filters based on our designs. These
filters are compared in terms of performance with other
widely used multichannel filters (see Table 2). In particular,
we introduce a simple rank-order filter based on the distance
measure of [50] [hereafter referred to as content-based rank
filter (CBRF)], which can be seen as an adaptive fuzzy
system with the defuzzification rule of (12). We also include
the fuzzy vector directional filter (FVDF) which is based on
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Fig. 1. “Peppers” corrupted by 4% impulsive noise.

Fig. 2. VMF of Fig. 1 using 3� 3 window.

the defuzzification strategy of (6), the membership formula
of (29), and the aggregated distance of (39) evaluated over
the filtering window The adaptive nearest-neighbor filter
(ANNF) based on the defuzzification strategy of (6), the
membership function formula of (36), and the distance
measure of (38) are also included in the set. Further, we
utilized the same defuzzification formula and the same
membership function, along with the aggregated distance
of (38) to derive the double window nearest neighbor filter
ANNMF. By using the Canberra distance and the distance
measure of (25) instead of the angular distance, four new
filters have been devised, namely the CANNF, CANNMF,
CBANNF, and the CBANNMF (see Table 2).

A number of different objective measures can be utilized
to assess the performance of the different filters. All of
them provide some measure of closeness between two

Fig. 3. BVDF of Fig. 1 using 3� 3 window.

Fig. 4. HF of Fig. 1 using 3� 3 window.

digital images by exploiting the differences in the statistical
distributions of the pixel values [48]. The most widely
used measure is the normalized mean square error (NMSE)
defined as

NMSE (46)

where and are the image dimensions, and
and denote the original image vector and the esti-
mation at pixel respectively.

In many application areas, such as multimedia, telecom-
munications [e.g., high-definiton television (HDTV)],
production of motion pictures, the printing industry, and
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Fig. 5. AHF of Fig. 1 using 3� 3 window.

Fig. 6. FVDF of Fig. 1 using 3� 3 window.

graphic arts, greater emphasis is given to perceptual
image quality. Consequently, the perceptual closeness
(alternatively perceptual difference or error) of the filtered
image to the uncorrupted original image is ultimately the
best measure of the efficiency of any color image filtering
method. There are basically two major approaches used for
assessing the perceptual error between two color images.
In order to make a complete and thorough assessment of
the performance of the various filters, both approaches are
used in this paper.

The first approach is to make an objective measure
of the perceptual error between two color images. This
leads us to the question of how to estimate the perceptual
error between two color vectors. Precise quantification of
the perceptual error between two color vectors is one of
the most important and open research problems. RGB

Fig. 7. ANNMF of Fig. 1 using 3� 3 window.

Fig. 8. CANNMF of Fig. 1 using 3� 3 window.

is the most popular color space used conventionally to
store, process, display, and analyze color images. However,
the human perception of color cannot be described using
the RGB model. Therefore, measures such as the NMSE
defined in the RGB color space are not appropriate to
quantify the perceptual error between images. Thus it is
important to use color spaces which are closely related
to the human perceptual characteristics and suitable for
defining appropriate measures of perceptual error between
color vectors. A number of such color spaces are used lately
in areas such as computer graphics, motion pictures, graphic
arts, and the printing industry. Among these, perceptually
uniform color spaces are the most appropriate to define
simple yet precise measures of perceptual error. The Com-
mission Internationale de l’Eclairage (CIE) standardized
two color spaces, and , as perceptually
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Fig. 9. “Lenna” corrupted by Gaussian noise� = 15 mixed with
2% impulsive noise.

Fig. 10. VMF of Fig. 9 using 3� 3 window.

uniform. The color space is chosen for our analysis
because it is simpler in computation than the color
space, without sacrificing perceptual uniformity.

The conversion from nonlinear RGB color space (the
nonlinear RGB values are the ones stored in the computer
and applied to the CRT of the monitor to generate the
image) to the color space is explained in detail
in [80]. Nonlinear RGB values of both the uncorrupted
original image and the filtered image are converted to
corresponding values for each of the filtering
methods under consideration. In the space, the

component defines the lightness and the and
components together define the chromaticity. In a uniform
color space, such as the perceptual color error
between two color vectors is defined as the Euclidean

Fig. 11. BVDF of Fig. 9 using 3� 3 window.

Fig. 12. HF of Fig. 9 using 3� 3 window.

distance between them given by

(47)

where is the color error and and
are the difference in the and components,
respectively, between the two color vectors under consider-
ation. Once the for each pixel of the images under
consideration is computed, the normalized color difference
(NCD) is estimated according to the following formula:

NCD (48)
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Fig. 13. AHF of Fig. 9 using 3� 3 window.

Fig. 14. FVDF of Fig. 9 using 3� 3 window.

where is the norm or
magnitude of the uncorrupted original image pixel vector
in the space.

Although quantitative measures such as and NCD
are close approximations to the perceptual error they can-
not exactly characterize the quite complex attributes of
the human perception. Therefore an alternative subjective
approach was used to estimate the perceptual error [86].

The second approach, the easiest and simplest, is the
subjective evaluation of the resulting images when they are
viewed, simultaneously, under identical viewing conditions
by a set of observers. To this end, we compare the perfor-
mance of the different filters in noise attenuation using two
RGB images.

Filtering results for the test image “Peppers” (Fig. 1)
are depicted in Figs. 2–8 while filtering results for the

Fig. 15. ANNMF of Fig. 9 using 3� 3 window.

Fig. 16. CANNMF of Fig. 9 using 3� 3 window.

test image “Lenna” (Fig. 9) are depicted in Figs. 10–16. A
visual comparison of the images clearly favors the adaptive
designs over existing techniques.

Having defined the measures for the assessment of per-
formance by various filters, we proceed to the assessment
itself.

One of the obvious observations from the results in Tables
3–10 is the effect of window size on the performance of
the filter. In the case of rank-type filters, such as the VMF,
the BVDF, the CBVF, the DDF, as well as the hybrid
directional filter (HF) and the adaptive hybrid directional
filter (AHF), the bigger window size (5 5) gives con-
siderably better results for the removal of Gaussian noise
(noise model 1), while decreasing the performance for the
removal of impulsive noise (noise model 2). Although a
similar pattern follows for the adaptive fuzzy filters, the
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Table 3
NMSE(�10�2) for the RGB “Lenna” Image, 3� 3 Window

Table 4
NMSE(�10�2) for the RGB “Lenna” Image, 5� 5 Window

effect of the window size on performance is less dramatic
as compared to the rank-type filters.

Analysis of the results summarized here reveals the effect
that the distance (or similarity) measure can have on the
filter output. Even filters which are based on the same
concept, such as VDF, CVDF, CBVF, ANNF, and CANNF,
have different performance simply because a different dis-

Table 5
NMSE(�10�2) for the RGB “Peppers” Image, 3� 3 Window

Table 6
NMSE(�10�2) for the RGB “Peppers” Image, 5� 5 Window

tance measure is utilized to quantify dissimilarity among
the color vectors. Similarly, double window adaptive filters
have better smoothing abilities, outperforming the other
filters under consideration when a Gaussian noise or mixed
noise model is assumed.

For the case of impulsive noise, the VMF gives the
best performance among the rank-type filters according
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Table 7
NCD for the RGB “Lenna” Image, 3� 3 Window

Table 8
NCD for the RGB “Lenna” Image, 5� 5 Window

to the results, as well as the theory, and it is thus used
as a benchmark to evaluate the fuzzy adaptive designs.
The proposed fuzzy filters perform close to the VMF and
outperform existing adaptive designs, such as the HF or
the AHF with respect to NMSE and NCD, and for both
window sizes.

For the case of pure Gaussian noise, the VMF gave
the worst results. The results summarized in Tables 3–10

Table 9
NCD for the RGB “Peppers” Image, 3� 3 Window

Table 10
NCD for the RGB “Peppers” Image, 5� 5 Window

indicate that the adaptive fuzzy filters perform exceptionally
well in this situation.

For the mixture of Gaussian and impulsive noise (noise
models 3 and 4), the adaptive fuzzy filters consistently
outperform any of the existing listed filters, both rank type
or adaptive with respect to NMSE and NCD.

Herein lies the real advantage of the adaptive fuzzy
designs. In real applications, the noise model is unknowna
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priori . Nevertheless, the most common noise types encoun-
tered in real situations are Gaussian, impulsive, or a mixture
of both. Therefore, the use of the presented fuzzy adaptive
filters suggests near-optimal performance for the removal
of any kind of noise encountered in practical applications.
On the contrary, application of a “noise-mismatched” filter,
such as the VMF for Gaussian noise, can have profound
consequences leading to unacceptable results.

In conclusion, from the results listed in the tables, it can
be easily seen that the adaptive designs provide consistently
good results in all types of noise, outperforming the other
multichannel filters under consideration. The adaptive fuzzy
designs discussed here attenuate both impulsive and Gauss-
ian noise. The versatile design of (3) allows for a number of
different filters which can provide solutions to many types
of different filtering problems. Simple adaptive fuzzy de-
signs, such as the ANNF or the CANNF, can preserve edges
and smooth noise under different scenarios, outperforming
other widely used multichannel filters. If knowledge about
the noise characteristics is available, the designer can
tune the parameters of the adaptive filter to obtain better
results. Finally, considering the number of computations,
the computationally intensive part of the adaptive fuzzy
system is the required distance calculation. However, this
step is common in all multichannel algorithms considered
here. In summary, the design is simple, does not increase
the numerical complexity of the multichannel algorithm,
and delivers excellent results for complicated multichannel
signals, such as real color images.

VII. CONCLUSIONS

The paper presented a multichannel signal processing
methodology based on fuzzy concepts. The framework
combines nonlinear filters, fuzzy membership functions,
and distance (similarity) criteria. Several filters can be
considered special cases of this framework. The behavior of
these adaptive designs was analyzed and their performance
was compared with that of the most commonly used filters
for a problem of great practical importance, namely color
image processing. These filters not only have a rigid theo-
retical foundation but promising performance in a variety of
noise characteristics. Indeed, the simulation results included
and the subjective evaluation of the filtered color images
indicate that the proposed fuzzy adaptive filters compare
favorably with other commonly used techniques.

In conclusion, this paper summarizes the present state
of knowledge on the subject of adaptive fuzzy systems
and their application to the problem of multichannel signal
processing. Particular emphasis was given to the formula-
tion of the problem and the filter design procedure. Other
issues, such as the realization of the different methodologies
presented here, and implementation as well as verification
issues, were not discussed in this paper. To assess fully the
applicability of the presented techniques, further analysis
is required on algorithms and architectures, which may be
used for the realization of the adaptive fuzzy systems. Issues
such as speed, modularity, the effect of finite precision

arithmetic, cost, and software transportability should be
addressed.

Multichannel signal processing is a rich and expanding
field. Numerous new and advanced areas have appeared
which have increased the importance of the tools intro-
duced and analyzed here. Multimedia signal processing
[87], visual data processing and analysis [88], multimodal
signal processing [89], telecommunications, digital audio
restoration, satellite imagery, seismic deconvolution, and
biomedicine are only some of the areas in which the
methodologies proposed here can be applied.

From a long-term research perspective, there is a need
to establish a coherent theoretical foundation for nonlinear
filtering algorithms. New algorithms and methodologies
which may result in even more effective filtering structures
suitable for intelligent processing of multimedia signal
processing demand investigation. The framework presented
here can serve as an initial point for further research
and development in the area and ultimately help in the
development of new results and products in the near future.
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