
Real-Time Imaging 9 (2003) 261–276

ARTICLE IN PRESS
*Correspond

E-mail addr
1Supported b
2Supported b

1077-2014/$ - se

doi:10.1016/j.rt
Fast adaptive similarity based impulsive noise reduction filter

B. Smolkaa,*,1, R. Lukacb,2, A. Chydzinskia, K.N. Plataniotisb, W. Wojciechowskic

aDepartment of Automatic Control, Electronics and Computer Science, Silesian University of Technology, Akademicka 16 Str, 44-101, Gliwice, Poland
bThe Edward S. Rogers Sr. Department of Electrical and Computer Engineering, University of Toronto,

10 King’s College Road, Toronto, Ont., Canada M5S 3G4
cThe Institute of Theoretical and Applied Informatics of the Polish Academy of Sciences, Baltycka Str. 5, 44-100, Gliwice, Poland
Abstract

In this paper, we address the problem of impulsive noise reduction in multichannel images. A new class of filters for noise

attenuation is introduced and its relationship with commonly used filtering techniques is investigated. The computational

complexity of the new filter is lower than that of the vector median filter (VMF). Extensive simulation experiments indicate that the

new filter outperforms the VMF, as well as other techniques currently used to eliminate impulsive noise in color images.

r 2003 Elsevier Ltd. All rights reserved.
1. Introduction

The reduction of noise in multichannel images has
been the subject of extensive research during the last
years, primarily due to its importance to color image
processing.
It is widely accepted, that color conveys very

important information about the scene objects and this
information can be used to further refine the perfor-
mance of an imaging system. The most common image
processing tasks are noise filtering and image enhance-
ment. These tasks are an essential part of any image
processing system, whether the final image is utilized for
visual interpretation or for automatic analysis [1–3].
It has been recognized that the processing of color

image data as vector fields is desirable due to the
correlation that exists between the image channels, and
that the nonlinear vector processing of color images is
the most effective way to filter out noise. For these
reasons, the new filtering technique presented in this
paper is also nonlinear and utilizes the correlation
among the image channels.
This paper is organized as follows. In Section 2, an

overview of the standard noise reduction operations for
multichannel images based on the reduced ordering of
vectors is given and in Section 3 the noise models used
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for the evaluation of the new filter performance are
presented. Section 4 introduces a basic, non-adaptive
version of the new algorithm for image enhancement. In
Section 5, the construction of a new adaptive filter is
presented. Experimental analysis and comparisons, in
terms of quality performance and computational com-
plexity are provided in Section 6. Finally, Section 7
summarizes this paper.
2. Standard noise reduction filters

A number of nonlinear, multichannel filters, which
utilize correlation among multivariate vectors, using
various distance measures have been proposed in the
literature [1,4–8]. The most popular nonlinear, multi-
channel filters are based on the ordering of vectors in a
predefined moving window. The output of these filters is
defined as the lowest ranked vector according to a
specific ordering technique.
Let us assume that FðxÞ represents a multichannel

image and W is a window of finite size n þ 1 (filter
length). The noisy image vectors inside the window W

will be denoted as Fj ; j ¼ 0; 1;y; n: If the distance
between two vectors Fi;Fj is denoted as rðFi;FjÞ; then
the scalar quantity

Ri ¼
Xn

j¼0

rðFi;FjÞ; ð1Þ
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is the aggregated distance associated with the noisy
vector Fi inside the processing window W : In the ranked
order processing of multichannel signals, it is assumed
that the reduced ordering of the Ri’s

Rð0ÞpRð1Þp?pRðnÞ; ð2Þ

implies the same ordering to the corresponding vectors
Fi:

Fð0Þ;Fð1Þ;y;FðnÞ: ð3Þ

Nonlinear ranked type multichannel estimators define
the vector Fð0Þ as the filter output. This selection is due to
the fact that vectors that diverge greatly from the data
population usually appear in higher indexed locations in
the ordered sequence. However, the concept of input
ordering, initially applied to scalar quantities is not easily
extended to multichannel data, since there is no universal
way to define ordering in vector spaces. To overcome
this problem, different distance functions are often
utilized to order vectors according to (2) and (3) [9,6].
For example, the vector median filter (VMF) utilizes

the Euclidean distance (L2 norm) or the city-block
distance (L1 norm) in (1) to order vectors according to
their aggregated distances. The output of the VMF is the
vector FVMFAW for which the following condition is
satisfied [10,11]:Xn

j¼0

rðFVMF ;FjÞp
Xn

j¼0

rðFi;FjÞ; i ¼ 0;y; n: ð4Þ

In other words, the original value of the pixel F0 in
the filter window W is being replaced by Fk� such that
k� ¼ arg mink Rk; where

Rk ¼
Xn

j¼0

rðFk;FjÞ; k ¼ 0; 1;y; n: ð5Þ

The output of the VMF filter clearly depends on the
applied vector norm. In this paper, we make use of the
Minkowski Lp norm, with Q being the number of image
channels

rðFi;FjÞ ¼
XQ

k¼1

ðF k
i � F k

j Þ
p

( )1=p

ð6Þ

and apply the norms L1;L2 and Lmax (p ¼ 1; p ¼ 2 and
p ¼ N; respectively).
Another type of filters represents the basic vector

directional filter (BVDF). BVDF is a ranked-order,
nonlinear filter which parallelizes the VMF operation
[12]. However, a distance criterion, different from the
L1;L2 norms used in VMF is utilized to rank the input
vectors. The angular distance criterion used in BVDF is
defined as a scalar measure

Ai ¼
Xn

j¼0

aðFi;FjÞ; with aðFi;FjÞ ¼ cos�1
Fi � Fj

jFi jjFj j

� �
:

ð7Þ
An ordering of the Ai’s implies the same ordering to the
corresponding vectors Fi as in (3). The BVDF outputs
the vector Fð0Þ that minimizes the sum of angles with all
the other vectors within the processing window. In other
words, the BVDF chooses the vector most centrally
located without considering the magnitudes of the input
vectors.
To improve the efficiency of the directional filters,

another method called directional-distance filter (DDF)
was proposed in [13]. DDF constitutes a combination of
VMF and VDF and is derived by attempting to
minimize a combined distance measure. If aðFi;FjÞ
denotes the angle between Fi and Fj and rðFi;FjÞ
denotes the distance between them, then

Oi ¼
Xn

j¼0

aðFi;FjÞ

" #1�k

�
Xn

j¼0

rðFi;FjÞ

" #k

; ð8Þ

is assigned to the vector Fi: If we arrange the values in
ascending order Oð0ÞpOð1Þp?pOðtÞ?pOðnÞ; then the
output of DDF is F0; which corresponds to Oð0Þ: For
k ¼ 0; we obtain the BVDF and for k ¼ 1 the VMF.
The DDF is defined for k ¼ 0:5 and its usefulness stems
from the fact that it combines both the criteria used in
BVDF and VMF [5,10,11,14].
3. Noise models

For the evaluation of the new class of noise
suppression algorithms, six types of impulsive noise
were used to simulate different types of distortions
which may corrupt color images.
(I) Impulsive noise:
(a) Let F ¼ fFR;FG ;FBg denote the original pixel and

let F0 denote the pixel corrupted by the noise process.
Then the image pixels are distorted according to the
following scheme:

F0 ¼

fd1;FG;FBg with probability p;

fFR; d2;FBg with probability p;

fFR;FG; d3g with probability p:

8><
>: ð9Þ

where d1; d2; d3 are independent and equal to 0 or 255
with equal probability.
(b) In this noise model, the RGB channels are

corrupted with impulsive noise (0 or 255) with
probability p like in (a), but the contamination process
is correlated at level r; which means that if one of the
image channels has been corrupted, then the probability
that an additional channel will be corrupted is equal to r:
(II) Uniform noise: F0 ¼ fd1; d2; d3g with probability p;

where d1; d2; d3A½0; 255� are uniformly distributed in-
dependent integer values.
(III) Impulsive noise in HSV color space: The third

noise model is signal dependent and operates in the
HSV color space. The noisy image pixel is generated
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Fig. 1. Illustration of the construction of the new filtering technique.

First the cumulative similarity value M0 between the central pixel F0

and its neighbors is calculated (a), then pixel F0 is rejected from the

filter window and the cumulative similarity values Mk ; k ¼ 1;y; n of

the pixels F1;y;Fn are determined (b).

B. Smolka et al. / Real-Time Imaging 9 (2003) 261–276 263
according to the following rule:

F0 ¼

fH;S;Vg with probability ð1� pÞ;

fd;S;Vg with probability p1p;

fH; d;Vg with probability p2p;

fH;S; dg with probability p3p;

fd; d; dg with probability p4p;

8>>>>>><
>>>>>>:

ð10Þ

where p denotes the degree of impulsive noise distortion,P
i pi ¼ 1; i ¼ 1;y; 4; and d is a positive or negative

impulse. In this noise model, d is a random variable in a
small range very close to the upper or lower bound of a
HSV component, according to the original value of this
component [15].
The root mean squared error (RMSE), peak signal to

noise ratio (PSNR), normalized mean square error

(NMSE) [3] were used for the analysis of the efficiency
of the proposed filter class.
The objective quality measures are defined by the

following formulas:

RMSE

¼

ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
1

NMQ

XN

i¼1

XM

j¼1

XQ

q¼1
ðFqði; jÞ � #F qði; jÞÞ2

s
;

PSNR ¼ 20 log
255

RMSE

� �
; ð11Þ

NMSE ¼

PN
i¼1

PM
j¼1

PQ
q¼1ðF

qði; jÞ � #Fqði; jÞÞ2PN
i¼1

PM
j¼1

PQ
q¼1 F qði; jÞ2

; ð12Þ

where M;N are the image dimensions, and Fqði; jÞ and
#Fqði; jÞ denote the qth component of the original image
vector and its estimation at pixel position ði; jÞ;
respectively.
4. Proposed algorithm

4.1. Gray-scale images

Let us assume a filtering window W containing n þ 1
image pixels fF0;y;Fng; where n is the number of
neighbors of the central pixel F0 (see Fig. 1a) and let us
define the similarity function m : ½0;NÞ-R which is
non-ascending and convex in ½0;NÞ and satisfies mð0Þ ¼
1;mðNÞ ¼ 0: The similarity between two pixels of the
same intensity should be 1, and the similarity between
pixels with minimal and maximal gray-scale values
should be very close to 0. The function mðFi;FjÞ defined
as mðFi;FjÞ ¼ mðjFi � Fj jÞ can easily satisfy the required
conditions.
Let us additionally define the cumulated sum M of

similarities between a given pixel and all other pixels
belonging to window W : For the central pixel,
we introduce M0 and for the neighbors of F0 we define
Mk as

M0 ¼
Xn

j¼1

mðF0;FjÞ; Mk ¼
Xn

j¼1
jak

mðFK ;FjÞ; ð13Þ

which means that for Fk which are neighbors of F0 we
do not take into account the similarity between Fk and
F0; which is the main idea behind the new algorithm.
The omission of the similarity mðFk;F0Þ when calculating
Mk; privileges the central pixel, as in the calculation of
M0 we have n similarities mðF0;FkÞ; k ¼ 1; 2;y; n and
for Mk; k > 0 we have only n � 1 similarity values, as the
central pixel F0 is excluded from the calculation of the
sum Mk (Fig. 1b).
In the construction of the new filter, the reference

pixel F0 in the window W is replaced by one of its
neighbors if M0oMk; k ¼ 1;y; n: If this is the case,
then F0 is replaced by that Fk� for which k� ¼
arg max Mk; k ¼ 1;y; n:
In other words, F0 is detected as being corrupted if

M0oMk; k ¼ 1;y; n and is replaced by its neighbors Fk

which maximizes the sum of similarities M between all
the pixels of W excluding the central pixel.
The basic assumption is that a new pixel must be

taken from the window W (introducing pixels which do
not occur in the image is prohibited like in the VMF).
For this purpose m must be convex, which means that in
order to find a maximum of the sum of similarity
functions M it is sufficient to calculate the values of M

only in points F0;F1;y;Fn [16,17].

4.2. Multichannel images

The presented approach can be applied in a straight-
forward way to multichannel images. We use the
similarity function defined by mfFi;Fjg ¼ mðjjFi � FjÞjjÞ;
where jj � jj denotes the specific vector norm. Now in
exactly the same way we can maximize the total
similarity function M for the vector case.
We have checked several convex functions in order to

compare our approach with the standard filters used in
color image processing presented in Table 1 and we have
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obtained good results (Table 2), when applying the
following similarity functions, which can be treated as
kernels of non-parametric density estimation [22,23]:

m0ðxÞ ¼ exp �
x

h

� �2� �
; m1ðxÞ ¼ exp �

x

h

n o
;

m2ðxÞ ¼
1

1þ x=h
; hAð0;NÞ;
Table 1

Filters taken for comparison with the proposed adaptive filter

Notation Filter

AMF Arithmetic mean [3]

VMF Vector median [18]

BVDF Basic vector directional [12]

GVDF Generalized vector directional [13]

DDF Directional-distance [4]

HDF Hybrid directional [19]

AHDF Adapt. hybrid directional [19]

FVDF Fuzzy vector directional [20]

ANNF Adapt. nearest neighbor [21]

Table 2

Comparison of the new algorithm based on different kernel functions

with the standard techniques, using the LENA color image con-

taminated by 5% of impulsive noise (model II).

Method NMSE ð10�4Þ RMSE PSNR (dB)

AMF 82.863 12.903 25.917

VMF 23.304 6.842 31.427

BVDF 29.074 7.643 30.466

DDF 24.003 6.944 31.288

HDF 22.845 6.775 31.513

AHDF 22.603 6.739 31.559

FVDF 26.755 7.331 30.827

ANNF 31.271 7.926 30.149

Filtering kernels

m0ðxÞ 5.056 3.163 38.137

m1ðxÞ 4.959 3.157 38.145

m2ðxÞ 5.398 3.294 37.776

m3ðxÞ 9.574 4.387 35.288

m4ðxÞ 5.064 3.190 38.054

m5ðxÞ 4.777 3.099 38.307

m6ðxÞ 11.024 4.707 34.675

m7ðxÞ 4.693 3.072 38.384

(a) (b)

Fig. 2. Cumulative similarity values dependence on the pixel gray-scale valu

45, 55, 72, 90, 95 using the m0 function (a) and m7 function (b).
m3ðxÞ ¼
1

ð1þ xÞh
; m4ðxÞ ¼ 1�

2

p
arctan

x

h

� �
;

m5ðxÞ ¼
2

1þ expfx=hg
; hAð0;NÞ;

m6ðxÞ ¼
1

1þ xh
; m7ðxÞ ¼

1� x=h if xph;

0 if x > h;

(

hAð0;NÞ:

It is interesting to note, that very good results were
achieved for the simplest similarity function m7ðxÞ; (see
Fig. 2, Table 2), which allows to construct a fast noise
reduction algorithm. In the multichannel case, we have

M0 ¼
Xn

j¼1

mðF0;FjÞ; Mk ¼
Xn

j¼1
jak

mðFk;FjÞ; ð14Þ

where rfFi;Fkg ¼ jjFk � Fl jj and jj � jj is the L2 vector
norm, as it yields the best results (Tables 3 and 4).
Applying the linear similarity function m7 we obtain

mðFi;FkÞ ¼
1�

rðFi;FkÞ
h

for rðFi;FkÞoh;

0 otherwise:

8<
: ð15Þ
e for a window containing a set of pixels with intensities 15, 24, 33, 41,

Table 3

Results of the new adaptive algorithm for the LENA image (noise

model I(b)) with p ¼ 0:04). The vector median with L2 norm gave

PSNR ¼ 32:4

Norm NMSE RMSE PSNR h

L1 5.042 3.183 38.074 6.580

L2 4.659 3.060 38.417 6.358

LN 5.304 3.265 37.854 6.505

Table 4

Adaptive algorithm results for the image PEPPERS (noise model I(b)

with p ¼ 0:04). The VMF with L2 norm gave PSNR ¼ 31:6

Norm NMSE RMSE PSNR h

L1 9.236 3.888 36.337 10.137

L2 8.426 3.713 36.736 9.366

LN 9.960 4.038 36.008 9.236
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Then we have from (14)

M0 ¼ n �
1

h

Xn

j¼1

rðF0;FjÞ and

Mk ¼
Xn

j¼1;
jak

1�
rðFk;FjÞ

h

� �

¼ n � 1�
1

h

Xn

j¼1

rðFk;FjÞ: ð16Þ

In this way, the difference between M0 and Mk is

M0 � Mk ¼ n �
1

h

Xn

j¼1

rðF0;FjÞ

� n � 1�
1

h

Xn

j¼1

rðFk;FjÞ

" #

¼ 1�
1

h

Xn

j¼1

½rðF0;FjÞ � rðFk;FjÞ�; ð17Þ

M0 � Mk > 0 if h >
Xn

j¼1

½rðF0;FjÞ � rðFk;FjÞ�;

k ¼ 1;y; n: ð18Þ
(a)

(g) (h)

(b)

(d) (e)

Fig. 3. Illustration of the new filter construction using the Gaussian kernel

pixels of intensities 15, 24, 33, 41, 45, 55, 72, 90, 95. Each of the graphs from

denotes the cumulative similarity value with rejected central pixels F0 on the

plot (b) for F0 ¼ 24 and so on till plot (i) which shows the graphs of M0 and M

F0 is not relevant. The central pixel will be replaced in cases: (a), (b), (f)–(i)
If this condition is satisfied, then the central pixel is
considered as not disturbed by the noise process,
otherwise the pixel Fk for which the cumulative
similarity value achieves maximum, replaces the central
noisy pixel. In this way, the filter changes the central
pixel only when it is really noisy and preserves the
original undistorted image structures.
The construction of the new filter is presented in

Fig. 3 for the one-dimensional case (gray-scale images).
In the example shown in this figure, the supporting
window W of size 3 3 contains 9 pixels of intensities
15; 24; 33; 41; 45; 55; 72; 90; 95 (their special arrangement
is not relevant). Each of the graphs from (a) to (i) shows
the dependence of M0 and M=0 on the gray-scale value
ðM=0oM0Þ; where M=0 denotes the cumulative similarity
value with rejected central pixel F0 on the gray-scale
value. Graph (a) shows the plot of M0 and M=0 for
F0 ¼ 15; plot (b) for F0 ¼ 24 and so on till plot (i) which
shows the graphs of M0 and M=0 for F0 ¼ 95: The
central pixel will be replaced in cases: (a), (b), (f)–(i), as
in those cases there exists a pixel Fk for which M0oMk

or R0 > Rk: Note, that actually only the values in points
Fk; k ¼ 0;y; n are of importance; however, the contin-
uous plot shows that the extremum of the similarity
function M=0 is always obtained in points Fk; which is an
(c)

(f)

(i)

(gray-scale case). The supporting window W of size 3 3 contains 9

(a) to (i) shows the dependence of M0 and M=0; ðM=0oM0Þ; where M=0

gray-scale value. Graph (a) shows the plot of M0 and M=0 for F0 ¼ 15;

=0 for F0 ¼ 95: The arrangement of pixels surrounding the central pixel
, as in those cases there exists a pixel for which M0oMk or R0 > Rk :
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Fig. 4. Dependence of the efficiency of the proposed algorithm in terms of PSNR for different number of ‘close’ neighbors m and the threshold

distance d: For the evaluation color test image LENA, PEPPERS and GOLDHILL contaminated with impulsive noise of model II were used. As can

be seen good results are obtained for m ¼ 2 and dA½40; 60�:
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important feature of this algorithm. Because the
function M=0 is convex, therefore the maximum can be
found by calculating the similarity values without F0 in n

points only, which makes the algorithm computationally
attractive.
It is easy to observe that the construction of the new

filter is quite similar to the standard VMF. Instead of
the original function Rk in (1), a modified cumulative
distance function R is proposed:

Rk ¼
�h þ

Pn
j¼1 rðFk;FjÞ; for k ¼ 0;Pn

j¼1 rðFk;FjÞ; for k ¼ 1;y; n;

(
ð19Þ
and in the same way as in VMF, the original vector F0 in
the filter window W is being replaced by Fk� such that
k� ¼ arg mink Rk:
It is easy to notice that the above construction is

equivalent to the condition expressed in (18). Now,
instead of maximizing the cumulative similarity Mk; we
minimize the modified cumulative distance Rk: In this
way, the condition for retaining the original image pixel
is: R0oRk; k ¼ 1;y; n; which leads to the condition

�h þ
Xn

j¼1

rðF0;FjÞp
Xn

j¼1

rðFk;FjÞ; k ¼ 1;y; n; ð20Þ
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(e) (f)

(a) (b)

Fig. 5. Dependence of the efficiency of the proposed algorithm interms of PSNR for the number of ‘close’ neighbors m ¼ 2 on the threshold distance

d for color test images LENA, PEPPERS, MONARCH, FRUITS, GOLDHILL, GIRL ((a)–(f)), contaminated with impulsive noise of model II.
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R0pRk if hX
Xn

j¼1

½rðF0;FjÞ � rðFk;FjÞ�;

k ¼ 1;y; n: ð21Þ

The construction of the new filter is similar to that of
VMF; however, the major difference is the omitting of
the central pixel F0; when calculating Rk; k > 0: This
scheme, based on the simple leave-one-out scheme, is
the most important feature of the new algorithm. As
the central pixel is suspected to be noisy, it is not taken
into consideration, when calculating the distances
associated with the neighbors of F0: In this way, the
filter replaces the central pixel only when it is really
noisy, while preserving the original undisturbed image
structures.
As it can be easily seen, the parameter h in (18) and

(19) influences the intensity of the filtration process. In
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other words, the fraction of pixels replaced by the new
filter is a decreasing function of h (see Figs. 7 and 9).
For h ¼ 0 this fraction is close to that one caused by

VMF. For h-N; this fraction is decreasing to zero
(there is no filtering at all).
As widely known, VMF has the disadvantage of

replacing too many uncorrupted image pixels. It is
improved in the new filter design by setting positive h

values, which forces the filter to preserve uncorrupted,
Fig. 6. Dependence of the filtering results on h (LENA image with

11.5% of corrupted pixels and L1 norm, noise model I(b) with

p ¼ 0:04). The VMF output gave PSNR ¼ 32:4:

Fig. 7. Dependence of the fraction of pixels replaced by the filter on

the h value (LENA image with 11.5% of pixels corrupted, noise model

I(b) with p ¼ 0:04 and L1 norm).

Table 5

The comparison of real and estimated fractions of the noisy pixels

for d ¼ 50:

Real p Estimated

p (LENA)

Estimated

p (PEPPERS)

0.01 0.0113 0.0122

0.02 0.0206 0.0216

0.05 0.0500 0.0510

0.10 0.0980 0.0986

0.20 0.1942 0.1964

0.40 0.3972 0.3973

0.70 0.7501 0.7504

Fig. 8. Dependence of the results of the filtering on h (PEPPERS

image with 11.5% of pixels corrupted, noise model I(b) with p ¼ 0:04
and L1 norm). The VMF output gave PSNR ¼ 31:6:

Fig. 9. Dependence of the fraction of pixels replaced by the filter on h

(PEPPERS image with 11.5% of pixels, noise model I(b) with p ¼ 0:04
and L1 norm).

Table 6

The comparison of real and estimated fractions of the noisy pixels for

variants B and C of the estimator, LENA image.

Real p Estimated p variant B Estimated p variant C

0.01 0.0099 0.0158

0.02 0.0192 0.0253

0.05 0.0476 0.0547

0.10 0.0933 0.0103

0.20 0.1821 0.2016

0.40 0.3541 0.4301

0.70 0.5981 0.8472
original pixels, but still enables to remove corrupted
ones. Moreover, h can be controlled for the best
effectiveness of the filter depending on image structure
and noise statistics. The subject of setting the value of h

will be addressed in detail in the next section.
It is easy to observe that the presented method is

faster than VMF. It can be shown using a simple matrix
representation (for the sake of simplicity in the four-
neighborhood system case). In order to find Rk� using
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Table 7

Comparison of the efficiency of the new algorithm with the standard

techniques (Table 1) using LENA standard image and different vector

norms (noise model I(b)) with p ¼ 0:04; precisely 11.5% of the pixels

have been corrupted with impulsive noise

Filter NMSE ð10�4Þ RMSE PSNR (dB)

AMF 79.317 12.627 26.105

VMF 18.766 6.142 32.365

BVDF 24.587 7.030 31.192

DDF 18.872 6.159 32.340

HDF 18.610 6.116 32.401

AHDF 18.310 6.067 32.472

FVDF 22.251 6.688 31.625

ANNF 26.800 7.340 30.817

NEW 4.659 3.060 38.417

Table 8

Comparison of the efficiency of the new algorithm with the standard

techniques (Table 1) using PEPPERS standard image and different

vector norms (noise model—I(b)) with p ¼ 0:04; precisely 11.5% of the

pixels have been corrupted with impulsive noise

Filter NMSE ð10�4Þ RMSE PSNR (dB)

AMF 108.650 13.338 25.629

VMF 27.570 6.719 31.585

BVDF 47.944 8.860 29.182

DDF 28.179 6.793 31.490

HDF 26.819 6.627 31.705

AHDF 26.430 6.579 31.768

FVDF 33.337 7.388 30.760

ANNF 45.115 8.595 29.446

NEW 8.426 3.713 36.736

Fig. 10. The efficiency of the new adaptive algorithm in terms of

PSNR value in comparison with standard noise reduction filters. The

test color image LENA has been contaminated by noise process I(a)

with p from 1% to 10%.
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the VMF method we have to add the elements in rows or
columns of the following symmetric matrix:

TVMF ¼

0 r01 r02 r03 r04
r10 0 r12 r13 r14
r20 r21 0 r23 r24
r30 r31 r32 0 r34
r40 r41 r42 r43 0

2
6666664

3
7777775
;

where rij ¼ rji ¼ rðFi;FjÞ: ð22Þ

Obviously, the symmetry of the matrix TVMF causes
that effectively we have to compute 10 distances. (36
in the eight-neighborhood case) and then to make
15 additions (63 in the eight-neighborhood case).
The appropriate matrix for the new filter has the
Fig. 11. The efficiency of the new adaptive algorithm in terms of

PSNR value in comparison with the standard noise reduction filters.

The test color image LENA has been contaminated by noise process II

with p from 1% to 20%.

Fig. 12. Dependence of the PSNR on the number of filtering iterations

(LENA noise model I(b) with p ¼ 0:04).
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(a) (b)

(c) (d)

(e) (f)

Fig. 13. Comparison of the efficiency of the vector median and the proposed filter: (a) test image, (b) image contaminated by 2% impulse noise I(a),

(c) image filtered using the proposed technique, (d) output of the vector median, (e) and (f) the absolute difference between the original and filtered

image, for both the new method (left) and the vector median (right) (the absolute difference of the gray-scale values were multiplied by factor 5 in

order to better visualize the detail preservation property of the new filter).
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form:

TNEW ¼

�h r01 r02 r03 r04
0 0 r12 r13 r14
0 r21 0 r23 r24
0 r31 r32 0 r34
0 r41 r42 r43 0

2
6666664

3
7777775
: ð23Þ

The number of distances we need is still 10 but there are
only 11 additions (55 in the eight-neighborhood case), so
the new filter is faster than VMF and it also outperforms
VMF in terms of the objective quality measures, as will
be shown in Section 6.
5. Adaptive filter design

To enhance the performance of the proposed filter,
the parameter h can be determined in an adaptive way
depending on the image structure, properties and
intensity of the noise process.
Experiments performed on color images LENA and

PEPPERS indicate that the PSNR reaches its maximum
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(a) (b)

(c) (d)

(e) (f)

Fig. 14. Comparison of the efficiency of the vector median and the proposed filter: (a) test image, (b) image contaminated by 2% impulse noise I(a),

(c) image filtered using the proposed technique, (d) output of the vector median, (e) and (f) the absolute difference between the original and filtered

image, for both the new method (left) and the vector median (right) (the RGB values were multiplied by factor 5 in order to enhance the difference).
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for that value of the parameter h; that leads to a number
of pixel replacements equal to the number of noisy pixels
in the noise-corrupted image. Figs. 6 and 7 and Figs. 8
and 9 which show the performance of the new filter as a
function of h and depict the fraction of pixels replaced as
a function of h; validate this observation. This observa-
tion suggests that superior filtering results can be
obtained by adapting the h value to the image structure
and noise statistics.
In this way, the filtering process proceeds as

follows:

1. Estimation of the fraction of corrupted pixels.
2. Finding optimal value of h:
3. Final filtering using the obtained optimal value of h:

In most applications, the noise intensity is unknown
and we need to find a robust estimator of the fraction of
corrupted pixels. In this paper, the following estimator is
applied:
In the analysis of all the pixels which build an image, a

pixel is considered to be undamaged by the noise
process, if among eight of its neighbors, there exist at
least m pixels which, are ‘close’ to it.
Two pixels are declared to be ‘close’ if the L2 distance

between them, in the RGB color space, is less than a
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(a) (b)

(c) (d)

Fig. 15. Comparison of the efficiency of the vector median and the proposed filter: (a) test image ROSE, (b) image contaminated by 6% impulsive

noise (III, p ¼ 0:06; p1 ¼ p2 ¼ p3 ¼ 0; ps ¼ 1)—[15], (c) image filtered using the proposed adaptive technique, (d) output of the vector median with

L2 norm.
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predefined constant d: As has been experimentally
evaluated, this estimator works correctly, even for
images with completely different structures.
Table 5 shows the result of estimation of p using the

described estimator for two test color images LENA and
PEPPERS and different fractions of the corrupted pixels p:
The value of the critical distance d used in the

construction of the estimator is not critical, values of d

in the range [40,60] give acceptable results. Fig. 4 shows
the dependence of the PSNR for color test LENA and
PEPPERS, contaminated by noise model II on the m

and d parameters. As can be seen, good results are
obtained for m ¼ 2 and dA½40; 60�: This is also
confirmed by Fig. 5, which presents the filtering
efficiency dependence on the threshold d for m ¼ 2:
One can also use such estimators as: a pixel is

considered to be undamaged, if among eight of its
neighbors, there exist at least one ðm ¼ 1Þ which
is ‘close’ to it (variant B), or a pixel is considered to
be undamaged by the noise process, if among eight of its
neighbors, there exist at least three ðm ¼ 3Þ which are
‘close’ to it, (variant C). These variants also produce
acceptable results (see Table 6), but for obvious reasons
variant B has the tendency to underestimate, while
variant C to overestimate the impulsive noise fraction. It
is also easy to observe that the value of m ¼ 2 preserves
lines and corners, and therefore we used this parameter
for the estimation purposes.
As regards point 2, the constant h has to be set for the

value, for which the percentage of pixels changed by the
new filter is equal to the estimated noise fraction p: In
order to design a fast filter implementation, the well-
known method of bisection can be used. This method
allows to find the root of an equation gðxÞ ¼ 0 in ½a; b�
providing that gðxÞ is continuous and gðaÞgðbÞo0: In the
case considered here,

gðhÞ ¼ gðhÞ � p; ð24Þ

where gðhÞ is the fraction of pixels changed by the filter,
depending on h:



ARTICLE IN PRESS

(a) (b)

(c) (d)

(e) (f)

Fig. 16. Comparison of the new filter efficiency with the standard techniques: (a) test microscopic image, (b) image with 10% impulsive noise

corruption (noise model II), (c) image after filtering with the proposed method, (d) VMF output, (e) DDF output, (f) BVDF output.
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Although the algorithm may be of infinite length and
may not converge to the optimal value of h it always
provides a good approximation of h: To initiate the
process, a starting interval ½a; b� and a predefined
number of iterations should be provided by the designer.
For a wide range of the fractions of noisy pixels (from
p ¼ 0:01 to more than 0.5) and majority of standard
color images used for evaluation purposes gð0Þgð4Þo0
holds, so a long enough interval is: a ¼ 0; b ¼ 4; (see
Figs. 7 and 9).
Tables 3 and 4 show the results of the adaptive

technique for three norms and LENA, PEPPERS
images with 11.5% pixels corrupted by ‘salt and
pepper’ noise. It can be observed, that the optimal
values of h are different for a specific image and
vector norm.
In order to avoid the increase of computational

complexity caused by the estimator, the following
solution is recommended. For finding the optimal
value of h using the method of bisection, not the whole
image should be used but only a small part of it. For
example, if an image is composed of 500 500 pixels,
taking randomly placed 25 25 rectangle gives 625
pixels, which is enough for the purpose of estimation
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(b)

(c)

(d)

Fig. 17. Illustration of the efficiency of the new algorithm of impulsive noise reduction in color images: (a) test aerial image, (b) images corrupted

by 5% impulsive noise (model II), (c) new filter output, (d) effect of the median filtering (3 3 mask).
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and finding the h value. On the other hand, it is only
0.25% of the pixels, so due to estimation and finding h

(eight iterations), filtration time is extended only by
about 2%.
6. Results

In order to evaluate the efficiency of the proposed
filter, a number of simulations with different noise
models presented in Section 3 were carried out. We
compared the results obtained with the new filter
with a set of standard noise reduction methods listed
in Table 1.
The root of the mean squared error (RMSE), peak

signal to noise ratio (PSNR) and normalized mean
square error (NMSE) [24,3] were used for the compar-
isons. The simulation results shown in Tables 7 and 8
obtained using the noise model I(b) and II show that the
new filter framework excels significantly over the
standard techniques widely used in many multichannel
image denoising applications.
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As it is difficult to compare the results with all existing
filters, the filtering efficiency can be judged from the
direct comparison of results obtained using the new filter
with the standard VMF, which can be treated as a
reference filter. Through the VMF, the new method can
be easily compared with other existing filtering algo-
rithms, as the VMF is in many publications treated as a
reliable benchmark.
The excellent results presented in Tables 2–4 are also

confirmed in Figs. 10 and 11, where the new filter has
been compared with VMF, BVDF and DDF using noise
models Ia and II and the PSNR as a quality measure.
Another good property of the new adaptive filter is

presented in Fig. 12, which shows that the new filter can
be applied in an iterative way and that after the second
or third iteration no further filtering is performed (the
PSNR is not decreasing, as it is the case for the VMF,
which indicates that the new filter reaches its root very
quickly).
The good performance of the proposed adaptive filter

design is also confirmed by subjective, visual compar-
ison with the VMF presented in Figs. 13–15 using
different noise corruption schemes. It can be easily
observed, that the new filter has a good ability to
distinguish between the corrupted and undisturbed pixel
images, which is especially visible when evaluating the
filters’ estimation errors in Figs. 13 e and f and 14 e and
f. As shown in Fig. 13 the new adaptive filter can be also
successfully applied to gray-scale images.
As can be observed evaluating Figs. 16 and 17

presenting the efficiency of the proposed algorithm
when applied to real life images, the new technique can
be used in different applications, which are based on
multichannel information.
Although the proposed filter has been applied for

color images, its extension to images consisting of many
channels is straightforward and preliminary results
confirm, as expected, the excellent behavior of the
proposed filtering framework.
7. Conclusions

The new algorithm presented in this paper is based on
the concept of similarity between pixels, non-parametric
estimation and the leave-one-out scheme, but can also
be seen as a modification and improvement of the
commonly used vector median filter (VMF). The
computational complexity of the new filter is signifi-
cantly lower than that of the VMF, especially when the
four-neighborhood system is applied. The comparison
shows that the new filter outperforms the VMF, as well
as other standard procedures used in color image
processing in terms of objective and subjective quality
measures.
The algorithm is simple and fast and can be easily
implemented. The proposed robust method of the
estimation of noise intensity enables the tuning of the
filter design parameter h to the image structure and
noise statistics. The new filter can be applied in many
applications, in which fast and reliable removal of
impulses is required with minimal image quality
degradation.
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