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Abstract

In this paper a novel method of noise reduction in color images is presented. The class of !lters introduced here utilizes
fuzzy membership functions de!ned over vectorial inputs connected via digital geodesic paths. The e6ciency of the new
!lters is compared under a variety of performance criteria with the commonly used !lters, such as the vector median and the
generalized vector directional !lter. It is shown that, compared to existing techniques, the !lters introduced here are better
able to suppress impulsive, Gaussian as well as mixed-type noise. Furthermore, the computational analysis included in this
work shows that some members of the new !lter family are computationally less demanding than the vector median !lter.
? 2003 Elsevier Science B.V. All rights reserved.
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1. Introduction

Image noise reduction without structure degrada-
tion is perhaps the most important low-level image
processing task [15,21]. Several techniques have been
proposed over the years. Among them are linear pro-
cessing methods, whose mathematical simplicity and
the existence of unifying theory make their design and
implementation easy and attractive. However, not all
!ltering problems can be e6ciently solved by using
linear techniques. For example, conventional linear
techniques cannot cope with nonlinearities of the
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image formation model and fail to preserve edges and
image details.
To this end, nonlinear image processing techniques

are introduced. Nonlinear techniques are able to sup-
press non-Gaussian noise and preserve important
image elements, such as edges and details, and
eliminate degradations occurring during image for-
mation or transmission through nonlinear channels.
One of the most popular families of nonlinear

!lters for noise removal is the order-statistics !lters
family [7,11,14,15,21,30]. Their theoretical frame-
work is based on the robust statistics as these !lters
utilize algebraic ordering of a windowed set to com-
pute the output signal.
Let F(x) be a multichannel image and let W be a

window of !nite size k (!lter length). The noisy image
vectors inside the !ltering window W are denoted as
Fj; j = 0; 1; : : : ; k − 1. If the distance between two
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Nomenclature

R real numbers set
� geodesic path
� point on the polygonal line
� dissimilarity measure along a digital path
	 similarity function
 normalized similarity function
! number of geodesic paths connecting two

distinct points
� number of all geodesic paths included in

the window W which start from the win-
dow’s center pixel


 distance function


S geodesic distance de!ned over the path in
set S

H digital image lattice
N neighborhood relation between lattice

points
� cooling parameter in iterative !ltering pro-

cedure
� new !lter design parameter
� regularization parameter for adaptive !lter

design
� standard deviation

vectors Fi ;Fj is denoted as 
(Fi ;Fj) then the scalar
quantity

Ri =
k−1∑
j=0


(Fi ;Fj) (1)

is the aggregated distance associated with the noisy
vector Fi inside the processing window. Assuming,
that a reduced ordering of the Ri’s

R(0)6R(1)6 · · ·6R(�)6 · · ·6R(k−1) (2)

implies the same ordering of the corresponding
vectors Fi

F(0)6F(1)6 · · ·6F(�)6 · · ·6F(k−1): (3)

Nonlinear ranked-type multichannel !lters de!ne the
vector F(0) as the result of the !ltering operation.
The best known member of the family is the

so-called vector median 6lter (VMF). The de!nition
of the multichannel median is a direct extension of
the ordinary scalar median de!nition with the L1 or
L2 norm utilized to order vectors according to their
relative magnitude diJerences [1].
Within the framework of ranked-type nonlinear !l-

ters, the orientation diJerence between color vectors
can also be used to remove vectors with atypical di-
rections. The basic vector directional 6lter (BVDF)
is a ranked order !lter, similar to the VMF, which
uses the angle between two color vectors as the dis-
tance criterion. This criterion is de!ned as the scalar

measure

a(Fi ;Fj) = cos−1

(
Fi · FT

j

|Fi‖Fj|

)
with

Ai =
k−1∑
j=0

a(Fi ;Fj); (4)

which assigns the corresponding aggregated distance
to the noisy vector Fi inside the processing window
W . As in the case of vector median !lter, an ordering
of the Ai’s

A(0)6A(1)6 · · ·6A(�)6 · · ·6A(k−1) (5)

implies the same ordering of the corresponding vectors
Fi

F(0)6F(1)6 · · ·6F(�)6 · · ·6F(k−1): (6)

The BVDF outputs the vector F(0) that minimizes the
sum of angles with all the other vectors within the
processing window. Since the BVDF uses only infor-
mation about vector directions (chromaticity informa-
tion) it cannot remove achromatic noisy pixels from
the image. To overcome the de!ciencies of the BVDF,
the generalized vector directional 6lter (GVDF) was
introduced [29]. The GVDF generalizes BVDF in the
sense that its output is a superset of the single BVDF
output. The !rst vector in (6) constitutes the output of
the BVDF, whereas the !rst � vectors constitute the
output of the GVDF. In this way

BVDF{F0;F1; : : : ;Fk−1}= F0; (7)



M. Szczepanski et al. / Signal Processing 83 (2003) 1309–1342 1311

GVDF{F0;F1; : : : ;Fk−1}
={F0;F1; : : : ;F�}; 16 �6 k − 1: (8)

The output of GVDF is subsequently passed through
an additional !lter in order to produce a single output
vector. In this step the designer may only consider
the magnitudes of the vectors F0;F1; : : : ;F� since they
have approximately the same direction in the vector
space. As a result, the GVDF separates the processing
of color vectors into directional processing and then
magnitude processing (the vector’s direction signi!es
its chromaticity, while its magnitude is a measure of its
brightness). The resulting cascade of !lters is usually
complex and the implementations may be slow since
they operate in two steps [9,10].
To improve the e6ciency of the directional !lters, a

new method called directional-distance 6lter (DDF)
was proposed [7]. DDF constitutes a combination of
VMF and BVDF and is derived by simultaneous min-
imization of the their de!ning functions. Another e6-
cient rank-ordered operation called hybrid directional
6lter was proposed in [6]. This !lter operates on the
directional and the magnitude of the color vectors in-
dependently and then combines them to produce a !-
nal output. This hybrid !lter, which can be viewed as a
nonlinear combination of the VMF and BVDF !lters,
produces an output according to the following rule:

FHyF =




FVMF if FVMF = FBVDF;( ‖FVMF‖
‖FBVDF‖

)
· FBVDF otherwise;

(9)

where FBVDF is the output of the BVDF !lter, FVMF

is the output of the VMF and ‖ · ‖ denotes the norm
of the vector.
All standard nonlinear !lters, such as those brieLy

described here, are local operators working with a
!xed supporting window W of !nite length k that
has in its center the pixel under consideration. Oper-
ation on the window involves examining the connec-
tions with other pixels. Ranked-type !lters, such as
the VMF calculate the aggregated distances amongst
all elements in the window in order to determine the
!lters’ output. However, such operations, which take
place on a prede!ned supporting element, ignore the
structural properties of the image resulting in over-
smoothing and detail elimination. It is quite common

during the application of such !lters to have pixels
grouped together at the same support window, al-
though they belong to diJerent semantic objects or are
on diJerent sides of edges. This results in blurring or
complete masking of the actual image structures es-
pecially in the case of large window sizes.
In the literature, a number of methods have been

introduced to prevent excessive smoothing. The most
common approach is to restrict the size of the sup-
porting window to (k = 3 × 3) or (k = 5 × 5). In
this way, ranked-type nonlinear !lters can remove ad-
ditive Gaussian or impulsive noise and still preserve,
relatively well, edges and other structural details in
the image [21]. Another less common approach is to
introduce heuristic modi!cations to the basic !lter-
ing structure by considering thresholds or pixel exclu-
sions. Depending on predetermined parameters, a !l-
tering structure is selectively applied to the same !xed
supporting window [3,8,17].
For example, the so called fast modi6ed vector me-

dian 6lter (FMVMF) introduced in [25,26], excludes
the center pixel from the calculations of the aggre-
gated distances associated with pixels from its neigh-
borhood. This approach yields excellent performance
for images corrupted with impulsive noise but is not
intended to suppress Gaussian noise or mixed-type
noise.
In this paper, we propose a diJerent approach. In-

stead of using a !xed window or selectively apply
the !ltering procedure, we propose to exploit possible
connections between successive image pixels using
the concept of geodesic paths. According to the pro-
posed here methodology, image pixels are grouped to-
gether forming paths that reveal the underlying struc-
tural dynamics of the image. Depending on the design
principles and the computational constraints imposed
on the design, our framework allows for paths to be
considered on the entire image or to be restricted in
a prede!ned search area. In this work, we focus on
the latter case. To facilitate comparison with existing
ranked-type operations and to illustrate the computa-
tional e6ciency of the proposed framework, we allow
the path searching area to match the window W used
by the ranked-type !lters. However, instead of the in-
discriminately use of the window pixels, an approach
advocated by all existing multichannel !lters, the pro-
posed here framework allows for the formation of a
number of geodesic paths which in turn are used to
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determine the weights of a weighted average type of
!ltering operation.
The path displacements evaluated over all possible

geodesic paths, are used to derive fuzzy membership
functions that quantify similarity between vectorial in-
puts. The proposed !ltering structure is then using the
function outputs to appropriately weight input contri-
butions in order to determine the !lter result. The pro-
posed !ltering schemes parallelize the familiar struc-
ture of the adaptive multichannel !lter introduced in
[18] and they can successfully eliminate Gaussian, im-
pulsive as well as mixed-type additive noise. How-
ever, thanks to the introduction of the geodesic paths
in its supporting element, the new !lters not only pre-
serve edges and !ne image details, but even enhance
them, acting as an image sharpening operator.
This paper is organized as follows. In Section 2 the

general concept of the geodesic paths is introduced
and its application to the problem of the noise suppres-
sion is brieLy discussed. In Section 3, the new !ltering
framework is presented. The motivation and design
characteristics are discussed in details there and two
diJerent design approaches are analyzed. The com-
plexity of the proposed !lters and related optimiza-
tion issues are discussed in Section 4, while Section 5
presents simulation results of experiments performed
on arti!cial test images as well as on natural color
images. Comparisons, in terms of image restoration
performance, with commonly used multichannel !l-
ters are reported there. Finally, Section 6 summarizes
this paper.

2. Geodesic paths approach

Let us assume, that R2 is the Euclidean space, S is
a planar subset of R2 (S ⊂ R2) and x; y are points
belonging to set S. A path from x to y is a continuous
mapping � : [a; b] → S, such that �(a) = x and
�(b) = y. The point x is considered as the starting
point while y is the ending point on the path � [4,5].
An increasing polygonal line P on the path � is

any polygonal line such that P = {�(�i)}n
i=0; a =

�0 ¡ · · ·¡�n = b. The length of the polygonal line
P is considered to be the total sum of its constitutive
line segments L(P)=

∑n
i=1 
(�(�i−1); �(�i)), where


(x; y) is the distance between the points x and y,
when a speci!c metric is adopted. A path � from x

to y is called recti!able, if and only if L(P), where P
is an increasing polygonal line, is bounded. Its upper
bound is called the length of the path �.
The geodesic distance 
S(x; y) between points x

and y is the lower bound of the length of all paths
leading from x to y which are totally included in S. If
such paths do not exist, then the value of the geodesic
distance is set to ∞. In general 
S(x; y)¿ 
(x; y).
However, if the set S is convex, meaning that there
are no points on the line between x and y that are not
members of S, the geodesic distance veri!es 
S(x; y)=

(x; y).
The notion of a path can be extended to a lattice,

which is a set of discrete points on the plane, in our
case the spatial locations of the image pixels. Let a
digital lattice H= (F;N) be de!ned by F, which is
the set of all points of the plane (pixels of a color
image) and a neighborhood relation N between the
lattice points [22,23]. In the case of the ranked-type
nonlinear !lters the processing window W forms a
lattice where N is de!ned through the window size.
A digital path P={pi}n

i=0 de!ned on the lattice H
is a sequence of neighboring points (pi−1; pi)∈N.
The length L(P) of the digital path P is simply∑n

i=1 

H(pi−1; pi), where 
H denotes the distance

between two neighboring points of the lattice H.
Constraining the paths to be totally included in a

prede!ned set W ∈F yields the digital geodesic dis-
tance 
W . An 8-neighborhood system is considered in
this work with a topological distance of 1 assigned
between two neighboring points. In this case the set
W is simply the well-known supporting window used
in ranked-type !lters. All paths considered here are
included in the neighborhood W (Fig. 1).
Two pixels which are located at spatial coordinates

(i; j) and (k; l) are called connected (hereafter de-
noted as (i; j) ⇔ (k; l)), if there exists a geodesic path
PW{(i; j); (k; l)} contained in the set W starting from
(i; j) and ending at (k; l).

If two pixels (i0; j0) and (in; jn) are connected by
a geodesic path PW

m {(i0; j0); (i1; j1); : : : ; (in; jn)} of
length n then �W;n

m

�W;n
m {(i0; j0); (in; jn)}

=
n−1∑
k=0

‖F(ik+1; jk+1)− F(ik ; jk)‖; (10)
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Fig. 1. Geodesic paths of !nite length: (a) n= 2, (b) n= 3, connecting two neighboring points within a prede!ned window W when the
8-neighborhood system is applied.

Fig. 2. There are six paths of length 4 connecting point x and y when the 4-neighborhood system is used.

wherem is the path index, is a measure of dissimilarity
between pixels (i0; j0) and (in; jn), along a speci!c
geodesic path PW

m joining (i0; j0) and (in; jn) [5,28]. If
a path joining two distinct points x; y, such that F(x)=
F(y) consists of lattice points of the same channel
values, then �W;n(x; y) = 0 otherwise �W;n(x; y)¿ 0.
In general, two distinct pixel’s locations on the im-

age lattice can be connected by many paths. Moreover
the number of possible geodesic paths of certain length
n connecting two distinct points depends on their loca-
tions, length of the path and the neighborhood system
used (Figs. 1 and 2).

Let us now de!ne a similarity function, analogous
to a membership function used in fuzzy systems,
between two pixels connected through all possible
geodesic digital paths leading from (i; j) to (k; l) as
follows:

	W;n{(i; j); (k; l)}=
!∑

m=1

g(�W;n
m {(i; j); (k; l)}); (11)

where ! is the number of all paths connecting (i; j)
and (k; l); �W;n

m {(i; j); (k; l)} is a dissimilarity value
along a speci!c path m from the set of all ! possible
paths leading from (i; j) to (k; l) and g(·) is a smooth
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function of �W;n
m . By de!nition 	W;n{(i; j); (k; l)} re-

turns a value evaluated over all possible routes linking
the starting point (i; j) to the endpoint (k; l).

The smooth function g : (0;∞] → R should satisfy
the following conditions:

(1) g is a decreasing function in (0;∞],
(2) g is convex in (0;∞],
(3) g(0) = 1,
(4) g(�) → 0, when � → ∞.

Several functions satisfying the above conditions
have been proposed in the literature [13,21,24]

g0(x) = e−�1x2 ; �0 ∈ (0;∞); (12)

g1(x) = e−�1x; �1 ∈ (0;∞); (13)

g2(x) =
1

1 + �2x
; �2 ∈ (0;∞); (14)

g3(x) =
1

(1 + x)�3
; �3 ∈ (0;∞); (15)

g4(x) = 1− 2
$
arctan(�4x); �4 ∈ (0;∞); (16)

g5(x) =
2

1 + e�5x
; �5 ∈ (0;∞); (17)

g6(x) =
1

1 + x�6
; �6 ∈ (0; 1); (18)

g7(x) =

{
1− �7x if x¡ 1=�7;

0 if x¿ 1=�7;
�7 ∈ (0;∞): (19)

In this work the exponential function of (13) is used,
as it proved to yield very good results. Therefore,

	W;n{(i; j); (k; l)}

=
!∑

m=1

exp[− ��W;n
m {(i; j); (k; l)}]; (20)

where � is the !lter design parameter.
For n = 1 and a square (3 × 3) window W the

similarity function 	 is de!ned as follows:

	W;1{(i; j); (k; l)}= exp{−�‖F(i; j)− F(k; l)‖} (21)

Fig. 3. Geodesic paths of length n = 2 connecting points (i; j)
and (k; l).

and then if F(i; j) = F(k; l) then �W;n{(i; j); (k; l)} =
0; 	{(i; j); (k; l)}=1, and for ‖F(i; j)−F(k; l)‖ → ∞,
then 	 → 0 [17].
Fig. 3 illustrates the calculation of the similar-

ity function between two points connected by two
geodesic paths of length n= 2. In this case

�W;2
1 {(i; j); (k; l)}= d1

1 + d2
1;

�W;2
2 {(i; j); (k; l)}= d1

2 + d2
2; (22)

with d1
1; d2

1 distances between neighboring points on
the path �1 de!ned according to (10), while d1

2; d2
2

are similarly de!ned on �2. The total similarity can
be expressed as follows:

	W;2 = exp(−��W;2
1 ) + exp(−��W;2

2 ): (23)

A normalized form of the similarity function can be
de!ned as follows:

 W;n{(i; j); (k; l)}

=
	W;n{(i; j); (k; l)}∑

(l;m)⇔(i; j) 	
W;n{(i; j); (l; m)}; (24)

where (l; m) ⇔ (i; j) denotes all points (l; m) con-
nected by digital geodesic paths with (i; j). It is clearly
seen from (24) that the normalized similarity function
satis!es the following property:∑
(k;l)⇔(i; j)

 W;n{(i; j); (k; l)}= 1: (25)

Assuming that the pixel located at position (i; j) is
the pixel under consideration, with F(k; l) representing
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Fig. 4. (a) The SAP on the two dimensional lattice (b) and the
number of possible paths of length n= 2 connecting center point
with its neighbors in W .

the (k; l) pixel included in the supporting element W
which is connected to (i; j) via a geodesic path, the
!ltering result F̂(i; j) is given as follows:

F̂(i; j) =
∑

(k;l)⇔(i; j)

 W;n{(i; j); (k; l)} · F(k; l): (26)

As can be easily noticed, F̂ is the weighted average of
all points connected by geodesic paths to the central
pixel (i; j).

3. Geodesic path based �lters

3.1. Digital path concept

The performance of the new !lters strongly depends
on the type of digital paths selected. DiJerent models
of paths result in application-speci!c !lters, which are
able to suppress certain types of noise. In this paper we
concentrate on the self-avoiding path model (SAP),
which provides a model suitable for image processing
applications [27].
The SAP is a special type of path taken along

the image lattice so that adjacent pairs of edges in
the sequence share a common vertex of the lattice.
In the SAP approach no vertex is visited more than
once resulting in a trajectory that never intersects
itself. In other words the SAP is a path that does not
pass through the same lattice point twice (Fig. 4a).
Given the fact that on the two-dimensional lattice,
a digital path is a !nite sequence of distinct lattice
points (i0; j0); (i1; j1); : : : ; (in; jn), which are in a neigh-
borhood relation N, the (SAP) should satisfy the

following condition:

∀
k �=m

(ik ; jk) �= (im; jm): (27)

Based on the concept of SAPs a family of image
processing !lters will be introduced.
The !rst member of the family, hereafter denoted

as SAP !lter, allows for the formulation of paths
of size n, where n is the !xed length of the digital
path. Given a path of length n, a supporting window
W of size (k × k), with k = 2n + 1, is considered
with the point under consideration in its center. It
should be emphasized that the number of possible
paths ! leading from the center pixel to its neigh-
bors inside the window W depends on the particular
location of the neighborhood pixel. In this way for
!lters based on paths of length 1; 2; 3 processing win-
dow of size (3 × 3); (5 × 5); (7 × 7), respectively,
will be used. This is illustrated in Fig. 4b when path
length n = 2 de!nes the size of processing window
W . In this case weights used in (26) associated
with points located far from the center are relatively
small.
The computational complexity of the SAP !lter de-

pends on the path length n and the number of paths,
which can be constructed in the supporting window
W of size (k× k). It is not hard to see that for large k,
which may be the case in certain applications, the com-
putational complexity of the !lter renders it inappli-
cable. To decrease the computational burden, another
member of the family is introduced. In this new algo-
rithm, called fast random walk approach (FRWA),
the size of the supporting window (mask) W is set to
(3 × 3) independently of the geodesic path’s length
(Fig. 1).

3.2. Iterative behavior of the new 6lter class

The parameter � in (13) regulates the smooth-
ness of the similarity function. Since the !ltering
structure of (26) is a regression estimator, which
provides a smooth interpolation among the ob-
served, noise-corrupted image vectors, the parameter
� provides the required balance between smooth-
ing and detail preservation. Therefore, it is not
surprising that the best results are obtained when
the smoothing operator F̂ in (26) is applied in an
iterative way.
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Starting with a low value of � enables the smoothing
of the image noise components. At each iteration step
the parameter � is increased. In particular, � can be
modi!ed as follows:

�(') = �('− 1)�; ' = 1; 2; : : : ; (28)

where ' is the iteration number.
However, in this case two parameters � and � are

needed to regulate the performance of the !lter. In or-
der to make the new !lter less dependent on the ini-
tial parameter values, an adaptively determined � was
introduced. The estimation of � is based on the as-
sumption that in noisy images sample pixels values
are varying heavily. Therefore, some measure of dis-
persion of the pixel values should be used for the cal-
culation of �.
In this paper the parameter � is determined adap-

tively from the noise corrupted image data available
through the !xed !lter processing window W . Since
the parameter � is by construction inversely propor-
tional to the generalized standard deviation of samples
in W , its estimated value is obtained as follows:

�̂ = �


 1

NL

∑
i; j∈W

L∑
l=1

(Fl(i; j)− OFl)2



−1=2

(29)

where N is the number of pixels in the processing win-
dow W; L is the dimensionality of the image vectors
(in the RGB color space L=3); OFl denotes the mean
value of the lth component in window W and � is a
normalizing parameter.
The only free parameter in (29) is the design pa-

rameter �. This parameter adds an extra degree of
control over the detail preservation nature of the
!lter. For example using small � values we obtain
Lat, more homogeneous images while increasing this
value preserves sharp edges and !ne details. Experi-
mentation with a wide range of synthetic and natural
images revealed that the best results are obtained for
values of �∈ [4; 10] while a value of � = 6 results in
good performance regardless of the speci!cs of the
input image.

4. Computational complexity and fast �lter design

Apart from the numerical behavior of any pro-
posed algorithm, its computational complexity is a

realistic measure of its practicality and usefulness,
since it determines the required computing power
and processing (execution) time. A general frame-
work to evaluate the computational requirements of
image !ltering algorithms based on !xed processing
window is given in [2,20]. The requirement of this
approach is that the !lter window W is symmetric
(k × k) and contains k2 vector samples of dimension
L. In most image processing applications a value
k = 3 is considered, while for color RGB images
L= 3.
The computational complexity of a speci!c !lter is

given in terms of the total execution time needed for a
complete !ltering cycle. The total time T is calculated
as

T =
∑
k

+k#k ; (30)

where #k is the number of particular operations re-
quired for a complete cycle, and +k is the relative
weight of this operation.
In our analysis the following operations are used:

ADDS (additions), MULTS (multiplications), DIVS
(divisions), SQRTS (square roots), COMPS (com-
parisons), ARCCOS (arc cosines) and EXPS (expo-
nents). The determination of the weights +k of dif-
ferent operations in (30) is beyond the scope of this
work, (we assume +k = 1).
Since the structure of the new !lters is not based

on !xed window the methodology presented in [2,20]
cannot be directly applied to evaluate the new !l-
ters’ complexity. The complexity of the proposed
here !lters depends mostly on the number of possible
geodesic paths, which in turn depends on the path
type and its length.
For the general SAP !lter the number of all possible

geodesic paths is application dependent. However for
given path length n, the number of geodesic paths �
can be evaluated experimentally (there is no rigorous
mathematical theory of self-avoiding walks [12]) and
thus !lters with prede!ned path length are considered
here in order to facilitate the comparison with the ex-
isting rank-ordered nonlinear !lters. In the sequence it
is assumed that � is a number of all possible paths, n
is the path length and L is the vector space dimension,
with Table 1 depicting the number of possible paths
corresponding to the SAP and FRWA !lters consid-
ered in this comparison.
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Table 1
Number of possible geodesic paths � in dependence on path length n

n 1 2 3 4

SAP 8 56 368 2336
FRWA 8 24 56 69

Based on the above assumptions the complexity
of the SAP and FRWA !lters can be determined as
follows:

(1) Filtering of 1 pixel requires computation of
all weights  W;n (see point 2), L(� − 1) ad-
ditions and L� multiplications.

(2) Computation of all weights  W;n requires
computation of all similarity functions 	W;n

(see point 3), � divisions and (�− 1) addi-
tions.

(3) Computation of all similarity functions 	W;n

requires� computations of distance �W;n
m (see

point 4), (�−1) additions, � multiplications
and � computations of an exponent.

(4) Computation of one distance �W;n
m along path

m requires n computations of Euclidean dis-
tance (if the L2 metric is used) and (n − 1)
additions.

(5) Computation of one particular Euclidean dis-
tance requires Lmultiplications, 2L additions
and 1 square root.

Thus the total number of operations needed to im-
plement the !lters is

(2nL� + �p+ L�− L− 2)ADDS

+(� + L� + 2n)MULTS

+�DIVS + �nSQRTS + �EXPS:

Using the framework in [2] and assuming that size of
the processing window is (k × k) the computational
complexity for the VMF, BVDF and DDF can be eval-
uated. Assuming that the L2 norm is used, the number
of basic operations required to calculate single VMF

output is

[(2L+ 3)k3 − (L+ 2)k2 − (L+ 1)k]ADDS

+L(k3 − 1
2 k(k + 1))MULTS

+(k3 − 1
2 k(k + 1))SQRTS

+(k2 − 1)COMPS:

In the BVDF, instead of the L2 norm, the angular
distance is utilized, therefore

[(5L+ 3)k3 − (2:5L+ 2)k2 − (2:5L+ 1)k]ADDS

+(3L+ 1)(k3 − 1
2 k(k + 1))MULTS

+(k3 − 1
2 k(k + 1))DIVS

+(k3 − 1
2 k(k + 1))SQRTS

+(k3 − 1
2 k(k + 1))ARCOS

+(k2 − 1)COMPS:

Finally for the DDF !lter which utilizes both the angu-
lar and the L2 distance the total number of operations
needed for a complete !ltering cycle is

[(7L+ 4)k3 − (3:5L+ 1)k2 − 3:5Lk]ADDS

+[(3L+ 1)(k3 − 1
2 k(k + 1)) + k2]MULTS

+(k3 − 1
2 k(k + 1))DIVS

+2(k3 − 1
2 k(k + 1))SQRTS

+(k3 − 1
2 k(k + 1))ARCCOS + (k2 − 1)COMPS:

It should be emphasized at this point that the compu-
tational complexity analysis of the new !lter is based
on a straightforward application of the described al-
gorithms without any consideration of a particular im-
plementation. However, it is possible to reduce the
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Fig. 5. Illustration of the FRWA !lter optimization: (a) all neces-
sary distances to calculate, (b) new distances in processing win-
dow if last processed pixel was to the left.

computational complexity of the proposed !lters. To
illustrate this the FRWA !lter is considered. The anal-
ysis of the !ltering equation reveals that the L2 dis-
tance should be evaluated n times for each path of
length n. If the total number of paths in the supporting
window is �, the number of L2 norm evaluations is
(�n). However, most of these calculations are unnec-
essary, since values already computed for other paths
can be used. For example in a (3×3) window there are
only 20 possible distances to be calculated (Fig. 5a).
These values can be computed once and stored in a
look-up table which can be used to determine the path
related weights. Furthermore, other techniques used

Table 2
Number of elementary operations for a complete processing cycle

ADDS MULTS DIVS SQRTS EXPS COMPS ARCCOS

SAP2 947 228 56 112 56 — —
SAP3 8827 1478 368 1104 368 — —
FRWA2 403 100 24 48 24 — —
FRWA3 1139 230 56 168 56 — —
FRWA∗

2 169 22 24 9 24 — —
FRWA∗

3 721 24 56 9 56 — —
VMF3×3 186 63 — 21 — 8 —
VMF5×5 855 330 — 110 — 24 —
BVDF3×3 375 210 21 21 — 8 21
BVDF5×5 1970 1100 110 110 — 24 110
DDF3×3 540 282 21 42 — 8 21
DDF5×5 2785 1455 110 220 — 24 110
�̂3×3 132 56 1 1 — — —
�̂5×5 772 152 1 1 — — —

to improve the performance of the VMF presented in
[2] can be applied in the SAP or FRWA !lter design,
(Fig. 5b).
Finally, it should be noted that the adaptive deter-

mination of the parameter � requires:

(k4 + 2k2L− 3)ADDS + 2(k2L+ 1)MULTS

+1DIVS + 1SQRTS

Table 2 summarizes the total number of operation
for diJerent !lters, with SAPn denoting the SAP algo-
rithmwith path of length n; FRWAn denoting straight-
forward application of FRWA algorithms and FRWA∗

n

the optimized version of FRWA. Finally �̂k×k is used
to indicate an adaptive determination of � through (29)
in a window W of size k × k.
As it can be observed, the fast implementation of the

proposed !lter is computationally more attractive than
the VMF and it signi!cantly outperforms the !lters
based on angular distances.

5. Simulation results

In this section we evaluate the performance of the
new class of !lters and compare them with a number
of image processing !lters listed in Table 4 using a set
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of synthetic and natural images corrupted by additive
noise.

5.1. Noise model

In many practical applications images are corrupted
by noise caused either by faulty image sensors or due
to transmission corruption resulting from man-made
phenomena such as ignition transients in the vicinity
of the receivers or even natural phenomena such as
lightning in the atmosphere. Transmission noise, also
known as salt & pepper noise in gray-scale imag-
ing, is modelled after an impulsive distribution. How-
ever, a common di6culty encountered in the studies
of the eJect of noise on image degradation is the lack
of a commonly accepted multivariate impulsive noise
model.
A number of simpli!ed models has been intro-

duced recently, to assist in the performance evalua-
tion of the diJerent color image !lters. The impulsive
noise model considered in this paper is as follows
[21,31]:

FI =




(F1; F2; F3)T with probability (1− p);

(d; F2; F3)T with probability p1p;

(F1; d; F3)T with probability p2p;

(F1; F2; d)T with probability p3p;

(d; d; d)T with probability p4p

(31)

with FI is the noisy signal, F = (F1; F2; F3)T is the
noise-free color vector, d is the impulse value and∑4

i=1 pi = 1.
Impulse d can have either positive or negative val-

ues. We further assume that |d|�F1; F2; F3. Thus,
when an impulse is added or subtracted, forcing the
pixel value outside the [0,255] range, clipping is ap-
plied to move the corrupted noise value into the inte-
ger range speci!ed by the 8-bit arithmetic.
In many practical situations an image is often cor-

rupted by both additive Gaussian noise due to faulty
sensors and impulsive transmission noise introduced
by environmental interferences or faulty communi-
cation channels. An image can therefore be thought
of as being corrupted by mixed noise according to

the following model:

FM =

{
F+ FG with probability (1− pI);

FI otherwise;
(32)

where F is the noise-free color signal with the additive
noise FG modelled as zero mean white Gaussian noise
and FI transmission noise modelled as multivariate
impulsive noise with pI = (p;p1; p2; p3) determining
the intensity and distribution of the impulsive noise
contamination [21].

5.2. Application to arti6cial images

The use of nonlinear !lters in color image process-
ing is motivated primarily by the good performance
of the !lters near edges and other sharp signal tran-
sitions. Edges are basic images features which carry
valuable information, useful in image analysis and ob-
ject classi!cation. Therefore, any nonlinear process-
ing operator is required to preserve edges and smooth
out noise without altering sharp signal transitions.
Simple examples are introduced in this section to

illustrate the eJectiveness of the proposed !ltering
operations near noisy edges. The self-avoiding walk
(SAP) and the fast random walk (FRWA) algorithms
are compared in terms of their performance with the
VMF and the arithmetic mean 6lter (AMF). Prede-
!ned constant !lter parameters were used in all exper-
iments. The SAP and FRWA !lters use paths of length
2 with �= 20 and �= 1:2. The AMF and VMF oper-
ate on a !ltering window of size (3× 3). It should be
pointed that those parameters used for the FRWA and
SAP !lters are not optimal and in the most cases better
results could be obtained. Especially, optimal values
for images corrupted with “pure” impulsive noise dif-
fer signi!cantly, however in practical situations opti-
mal values of design !lter parameters are not known,
and therefore we decided to use !xed values of these
parameters.
To quantitatively evaluate the behavior of the al-

gorithms, simple three-channel synthetic images were
prepared. For simplicity results obtained for the green
channel are presented.
To examine the performance of the !lter in the case

of an arti!cial edge, the synthetic test image “pyra-
mid” was constructed. The three-channel image of size
(90×90) contains a top-cut pyramid, which is used to
emulate a “ramp-edge” scenario. Fig. 6a shows image
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Fig. 6. Original noise-free pyramid image: (a) line plot of row 45, (b) 3D plot of green channel.

Fig. 7. Results of applying tested algorithms to the noise-free pyramid image: (a) !rst and (b) !fth iteration.
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Fig. 8. 3D plots with results of applying !lters to the noise-free pyramid image: (a) AMF, (b) VMF, (c) FRWA and (d) SAP, (!ve
iterations).

Fig. 9. Pyramid image corrupted by 10% impulsive noise: (a) line plot of row 45, (b) 3D plot of the green channel.



1322 M. Szczepanski et al. / Signal Processing 83 (2003) 1309–1342

Fig. 10. Line plots of row 45 for the pyramid image corrupted by impulsive noise: (a) outputs of the !lters, (b) diJerences between the
original and the !ltered image.

Fig. 11. 3D plots for the pyramid image corrupted by impulsive noise: (a) AMF, (b) VMF, (c) FRWA and (d) SAP, (!ve iterations).
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Fig. 12. Pyramid image corrupted by Gaussian noise with � = 10: (a) line plot of row 45, (b) 3D plot of green image component.

Fig. 13. Line plots of row 45 for the pyramid image corrupted by Gaussian noise: (a) outputs of the !lters, (b) diJerences between the
original and the !ltered image.

intersection on line 45 for all RGB channels, while
Fig. 6b depicts the 3D plot of the green component.
Figs. 7 and 8 depict the edge preservation property

of the various !lters under consideration when they
are applied to the noise-free pyramid image.
In the sequence, the test image was corrupted by

multivariate impulsive noise following the model in
(31) p= 0:1 and p1 =p2 =p3 = 0:25. Fig. 9 depicts
the corrupted pyramid image, while !ltering results
are shown in Figs. 10 and 11.
In the next experiment the test examines the !lter

e6ciency in the presence of Gaussian noise near slope
edges. The test image was contaminated by additive
zero mean Gaussian noise with standard deviation �=
10. Fig. 12 shows the corrupted pyramid image, while
Figs. 13 and 14 summarize !ltering results.

Finally, in a last experiment all algorithms were
tested on an image containing a ramp edge corrupted
with mixed Gaussian and impulsive noise. The pyra-
mid image was contaminated by additive zero mean
Gaussian noise with standard deviation � = 10 and
then with 10% impulsive noise (p=0:1 and p1=p2=
p3 = 0:25) (Figs. 15–17).
All tested !lters, with the exception of the arith-

metic mean !lter, preserve to a certain degree the un-
corrupted image step edge. However, diJerences in
performance could be observed near the corners of the
top-cut pyramid. The new !lters introduced here are
based on weighted averages, and thus the distortion
that is introduced at the top-cut corners is less than
the one introduced by the VMF. Despite the fact that
this seems unlikely, it is easy to understand why it is
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Fig. 14. 3D plots for the pyramid image corrupted by Gaussian noise: (a) AMF, (b) VMF, (c) FRWA and (d) SAP, (!ve iterations).

Fig. 15. Pyramid image corrupted by mixed Gaussian noise (� = 10) and 10% impulsive noise: (a) line plot of row 45, (b) 3D plot of
green image component.
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Fig. 16. Line plots of row 45 for the pyramid image corrupted by mixed Gaussian and impulsive noise: (a) outputs of the !lters
(b) diJerences between the original and the !ltered image.

Fig. 17. 3D plots for the pyramid image corrupted by mixed Gaussian and impulsive noise: (a) AMF, (b) VMF, (c) FRWA and (d) SAP,
(!ve iterations).



1326 M. Szczepanski et al. / Signal Processing 83 (2003) 1309–1342

happening. Pixels on diJerent sides of the edge are
weakly connected by any geodesic path, due to the
fact that the distance function along a path crossing an
edge is very high resulting in a minimal weight. On
the other hand, the VMF outputs the most centrally
located pixel, and it is possible that at corners it may
replace a pixel value with a background sample. In the
slope edges in the pyramid image, the geodesic path
!lters introduce a slight blur (this could be improved
by increasing the � value), while the VMF provides
the most crispy output leaving much of the structure
unchanged (Figs. 7 and 8).
When it comes to edge preservation in noise cor-

rupted images, as it was excepted, the VMF gives best
results for images corrupted with impulsive noise only,
while results obtained for the AMF are the worst in
this case. However, results obtained for the SAP and
FRWA !lters especially for the top-cut square in the
pyramid image are very close to the original (see Figs.
10 and 11).
On the other hand for images corrupted with Gaus-

sian noise, the AMF as expected gave much better
results than the VMF, especially in the Lat homoge-
neous regions, but it blurred object edges. Our !ltering
structure gives superior results in Lat regions and near
the edges of the image regions (see Figs. 13 and 14).
For images corrupted with mixed Gaussian and im-

pulsive noise neither the VMF nor AMF provide ac-
ceptable results. The FRWA and SAP !lters perfor-
mance is excellent. The new !lters remove outliers in-
troduced by impulsive noise (weights associated with
such pixels are close to zero) and smooth Lat regions
leaving the edges of the object almost unchanged (see
Figs. 16 and 17).
In conclusion, based on the above simulation stud-

ies, the following conclusions can be drawn:

(1) The vector median algorithm works little better
than the new !lter class near slope edges when
applied to noise-free images and if only impul-
sive noise is present.

(2) The VMF fails in the presence of Gaussian noise.
(3) The arithmetic mean !lter works well in homo-

geneous regions with additive Gaussian noise.
(4) The proposed algorithms can suppress Gaussian

as well-mixed Gaussian and impulsive noise in
homogeneous regions and near edges much bet-
ter than the AMF and VMF.

Table 3
Noise distributions

Number Noise model

1 Gaussian (� = 30)
2 Impulsive (p= 0:12; p1 = p2 = p3 = 0:3)
2 Mixed: Gaussian (� = 30) + impulsive

(p= 0:12; p1 = p2 = p3 = 0:3)

(5) The proposed !lters induce smoothing eJects in
the vicinity of edges, stronger near slope edges,
and its step edge preservation properties are close
to ideal.

5.3. Application to natural color images

A number of experiments has been performed in
order to evaluate the new !ltering framework pre-
sented in this paper. The noise attenuation proper-
ties of the diJerent !lters were examined by utilizing
the color test images LENA and PEPPERS (Fig. 23).
The test images have been contaminated using various
contamination models in order to assess the perfor-
mance of the !lters under diJerent noise scenarios (see
Table 3).
The root mean squared error (RMSE), the

signal-to-noise ratio (SNR), the peak signal-to-noise
ratio (PSNR), the normalized mean square error
(NMSE) and the normalized color di;erence (NCD)
[21] were used for the analysis. All those standard ob-
jective quality measures, widely used in color image
processing, are de!ned by the following formulas:

RMSE

=

√√√√ 1
NML

N−1∑
i=0

M−1∑
j=0

L∑
l=1

(Fl(i; j)− F̂ l(i; j))2; (33)

NMSE

=

∑N−1
i=0

∑M−1
j=0

∑L
l=1 (F

l(i; j)− F̂ l(i; j))2∑N−1
i=0

∑M−1
j=0

∑L
l=1 Fl(i; j)2

; (34)

SNR =

10 log

[ ∑N−1
i=0

∑M−1
j=0

∑L
l=1 Fl(i; j)2∑N−1

i=0

∑M−1
j=0

∑L
l=1 (F

l(i; j)− F̂ l(i; j))2

]
;

(35)
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Table 4
Filters taken for comparison with the proposed noise reduction
technique

Notation Method Ref.

AMF Arithmetic mean !lter [21]
VMF Vector median !lter [1]
BVDF Basic vector directional !lter [30]
GVDF Generalized vector directional !lter [29]
DDF Directional-distance !lter [7]
HDF Hybrid directional !lter [6]
AHDF Adaptive hybrid directional !lter [6]
FVDF Fuzzy vector directional !lter [17]
ANNF Adaptive nearest-neighbor !lter [16]
ANP-EF Adaptive nonparametric (Exponential) !lter [19]
ANP-GF Adaptive nonparametric (Gaussian) !lter [19]
ANP-DF Adaptive nonparametric (Directional) !lter [19]
VBAMMFVector Bayesian adaptive median/mean !lter [19]

PSNR = 20 log
(

255
RMSE

)
; (36)

whereM; N are the image dimensions, and Fl(i; j) and
F̂ l(i; j) denote the lth component of the original image
vector and its estimation at pixel (i; j), respectively.
The NCD perceptual measure is evaluated over the

uniform L∗u∗v∗ color space. This diJerence measure
is de!ned as follows:

NCD =

∑N−1
i=0

∑M−1
j=0 XELuv∑N−1

i=0

∑M−1
j=0 E∗

Luv

; (37)

where XELuv =[(XL∗)2 + (Xu∗)2 + (Xv∗)2]1=2 is the
perceptual color diJerence and E∗

Luv=[(L∗)2+(u∗)2+
(v∗)2]1=2 is the norm or magnitude of the uncorrupted
original image pixel in the L∗u∗v∗ space.

The performance of new !lters is compared with
the performance of a number of standard color image
processing !lters listed in Table 4.
Results obtained using the new !ltering techniques

in comparison with the standard !ltering algorithms
are collected in Tables 5–10. Additionally, Figs. 24
and 25 show the comparison of the new !ltering tech-
nique with the standard vector median.
In the tables, following notation is used: SAP-2, 3

denote the SAP !lter with 2 and 3 steps, respectively,
SAP-AD denotes the adaptive version of SAP-2 (n=2)
while FRWA-2, 3 denote the FRWA!lter, FRWA-AD
denotes adaptive version of FRWA-2. Subscripts

denote the number of performed iterations. For all
reference !lters the best iteration in terms of PSNR
is presented. In all test images prede!ned parame-
ter values were used. Namely, the parameter values
� = 13; � = 1:2 were used in the SAP-2, SAP-3 and
in the FRWA. The SAP-AD and FRWA-AD !lters
use �= 6.
Additionally in Tables 6 and 9 presenting results

of applying tested !lters to images corrupted with
impulsive noise SAP-2∗ and FRWA-2∗ denote appro-
priate !lters when optimal values of parameters were
used.
In our experiments a wide range of !lter parameters

was evaluated. Figs. 18 and 19 depict the e6ciency of
the proposed algorithms in terms of PSNR and NCD
quality measures, as a function of the design parame-
ters � and �. It can be easily noticed that both algo-
rithms yield comparable results with a Lat maximum
of PSNR (minimum of NCD), which ensures their ro-
bustness to optimal parameter settings. The compar-
ison of the new !lter e6ciency with some standard
noise suppression techniques is presented in Fig. 20,
where the PSNR and NCD dependency on the amount
of mixed impulsive and Gaussian noise is shown. For
all compared !lters the best restoration result obtained
in a series of iterations was chosen.
Figs. 21 and 22 show the PSNR, SNR, NMSE and

NCD dependence on the design parameter � for adap-
tive versions of our !lter (SAP-AD and FRWA-AD),
when applied to LENNA and PEPPERS test images
with mixed Gaussian and impulsive noise, respec-
tively (Figs. 24b and 25b).
Tables 5–10 indicate that the new !lters outperform

existing !lters for the Gaussian as well as Gaussian
and impulsive noise. The best results for Gaussian
noise attenuation for the majority of existing !lters are
obtained after many iterations, while for !lters based
on the geodesic paths’ concept the best results are
obtained after two or three iterations. The new !ltering
techniques give superior results in terms of objective
quality measures and in terms of visual appearance. In
addition to excellent noise attenuation properties, our
!lters produce images with well-preserved and even
enhanced edges, while !lters such as the VMF produce
visible color clusters (Figs. 24 and 25).
The eJectiveness of the new !lters is particularly

clear in the case of mixed noise corruption (see Tables
7 and 10 and Figs. 26 and 27), where the new !lters are
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Table 5
Comparison of the new algorithms with the standard techniques (Table 4) using the LENA standard image corrupted by Gaussian noise
� = 30 (subscript denotes the iteration number)

MethodN NMSE (10−3) RMSE SNR (dB) PSNR (dB) NCD (10−4)

None 420.550 29.075 13.762 18.860 250.090

AMF1 66.452 11.558 21.775 26.873 95.347
VMF5 87.314 13.248 20.589 25.688 117.170
BVDF3 279.540 23.705 15.536 20.634 117.400
GVDF5 76.713 12.418 21.151 26.250 84.876
DDF5 100.500 14.213 19.979 25.077 108.960
HDF5 66.584 11.569 21.766 26.865 92.769
AHDF5 60.166 10.997 22.206 27.305 91.369
FVDF3 57.466 10.748 22.406 27.504 77.111
ANNF3 63.341 11.284 21.983 27.082 82.587
ANP-E3 60.396 11.018 22.190 27.288 76.896
ANP-G3 60.443 11.023 22.187 27.285 76.890
ANP-D3 58.389 10.834 22.337 27.435 78.486

SAP-21 51.876 10.212 22.850 27.949 80.838
SAP-22 45.043 9.515 23.464 28.562 69.260
SAP-23 47.880 9.810 23.198 28.297 68.355

SAP-31 73.903 12.188 21.313 26.412 100.080
SAP-32 51.015 10.127 22.923 28.022 78.633
SAP-33 48.027 9.826 23.185 28.284 73.222

SAP-AD1 52.093 10.233 22.832 27.931 81.007
SAP-AD2 45.540 9.568 23.416 28.515 68.912
SAP-AD3 49.343 9.959 23.068 28.166 68.150

FRWA-21 87.030 13.227 20.603 25.702 110.020
FRWA-22 50.823 10.107 22.939 28.038 79.661
FRWA-23 46.632 9.682 23.313 28.412 73.902

FRWA-31 90.815 13.511 20.418 25.517 108.910
FRWA-32 50.807 10.106 22.941 28.039 78.547
FRWA-33 47.760 9.798 23.209 28.308 73.568

FRWA-AD1 85.854 13.137 20.662 25.761 109.950
FRWA-AD2 50.405 10.066 22.975 28.074 79.322
FRWA-AD3 46.857 9.705 23.292 28.391 73.594

compared with the VMF and DDF using three color
test images: LENA, PEPPERS and GOLDHILL.
It should be pointed out that in case of images

slightly corrupted by Gaussian or mixed Gaussian and
impulsive noise, the AMF obtains the best quantitative
results. However, visual inspection reveals that results
obtained via our methods look subjectively better. As
the intensity of noise increases, the quantitative re-
sults obtained through our !lters become signi!cantly

better than those obtained by any other !lter (see
Fig. 20).
For impulsive noise as expected the VMF utilizing

L2 norm gives best results, although the FRWA !lter
utilizing a path of length n = 2 is in some cases as
good as VMF. This is due to the fuzzy construction of
the new !lter class, which is not well suited for pure,
low intensity impulsive noise removal, due to the lack
of incorporated noise detecting module.
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Table 6
Comparison of the new algorithms with the standard techniques (Table 4) using the LENA standard image corrupted by impulsive noise
(p = 0:12; p1 = p2 = p3 = 0:3) (subscript denotes the iteration number)

MethodN NMSE (10−3) RMSE SNR (dB) PSNR (dB) NCD (10−4)

None 474.400 30.881 13.239 18.337 100.480

AMF1 75.815 12.345 21.202 26.301 101.740
VMF(L1)1 16.303 5.725 27.877 32.976 39.771
VMF(L2)1 17.663 5.959 27.529 32.628 40.252
BVDF1 22.807 6.771 26.419 31.58 41.333
GVDF1 19.474 6.257 27.105 32.204 41.773
DDF1 18.318 6.068 27.371 32.470 40.186
HDF1 18.610 6.116 27.303 32.401 41.275
AHDF1 18.310 6.067 27.373 32.472 41.166
FVDF1 22.251 6.688 26.527 31.625 44.686
ANNF1 26.800 7.340 25.719 30.817 48.009
ANP-E1 78.601 12.570 21.046 26.144 82.457
ANP-G1 78.623 12.571 21.045 26.143 82.478
ANP-D1 24.178 6.971 26.166 31.264 46.070

SAP-21 24.421 7.006 26.122 31.221 50.512
SAP-22 30.173 7.788 25.204 30.302 51.412

SAP-2∗1 24.169 6.970 26.167 31.266 49.606
SAP-2∗2 29.194 7.661 25.347 30.446 50.472

SAP-AD1 23.936 6.936 26.210 31.308 49.967
SAP-AD1 29.324 7.678 25.328 30.426 50.686

FRWA-21 22.630 6.745 26.453 31.552 52.290
FRWA-22 21.375 6.555 26.701 31.800 45.748

FRWA-2∗1 26.237 7.262 25.811 30.909 49.178
FRWA-2∗2 20.055 6.349 26.978 32.076 42.940

FRWA-AD1 22.446 6.717 26.489 31.587 51.497
FRWA-AD2 21.005 6.498 26.777 31.875 44.986

Filters based on a larger supporting elementW , such
as the SAP !lter, yield worse performance for impul-
sive noise but give superior results for images con-
taminated with Gaussian noise. This is a well-known
property of ranked-order !lters which also applies to
our !ltering schemes. In general larger in size support-
ing window W , and thus a larger geodesic path, will
result in extensive smoothing. However, unlike !xed
window, ranked-type !lters, the proposed here !lters
control the degree of smoothing by changing appropri-
ately the parameter � during successive iterations. For
example, a high � value in the !rst iteration, results in
aggressive outlier removal at the expense of lower per-

formance in terms of quality measures such as PSNR
or NCD. However, using a cooling value �¡ 1, which
leads to lower � values in subsequent iterations, visu-
ally sharpened images and excellent quantitative re-
sults are obtained. Similar behavior can be obtained
by tuning the parameter value � when the adaptive
version of the algorithm is considered (see Tables 6
and 9).
In conclusion, from the results listed in the tables,

it can be easily seen that the new !lters, especially
the FRWA !lter, provide consistently good results in
all types of the noise, outperforming the other multi-
channel !lters under consideration. The FRWA !lter
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Table 7
Comparison of new algorithms with standard techniques using LENA image corrupted by 12% impulse and Gaussian noise � = 30
(subscript denotes the iteration number)

MethodN NMSE (10−3) RMSE SNR (dB) PSNR (dB) NCD (10−4)

None 905.930 42.674 10.429 15.528 305.550

AMF3 97.444 13.996 20.112 25.211 95.800
VMF5 96.464 13.925 20.156 25.255 121.790
BVDF3 336.460 26.006 14.731 19.829 123.930
GVDF5 91.118 13.534 20.404 25.503 89.277
DDF5 110.620 14.912 19.561 24.660 113.390
HDF5 74.487 12.236 21.279 26.378 97.596
AHDF5 68.563 11.740 21.639 26.738 96.327
FVDF3 73.796 12.179 21.320 26.418 83.629
ANNF3 75.652 12.332 21.212 26.310 86.836
ANP-E3 90.509 13.488 20.433 25.532 97.621
ANP-G3 90.523 13.489 20.432 25.531 97.603
ANP-D3 74.203 12.213 21.296 26.394 85.026

SAP-21 64.287 11.368 21.919 27.017 86.841
SAP-22 50.048 10.030 23.006 28.105 72.783
SAP-23 51.180 10.143 22.909 28.008 71.245

SAP-31 58.478 10.842 22.330 27.429 79.085
SAP-32 54.580 10.474 22.630 27.728 71.575
SAP-33 58.917 10.883 22.298 27.396 71.859

SAP-AD1 64.388 11.377 21.912 27.010 87.087
SAP-AD2 50.575 10.083 22.961 28.059 72.615
SAP-AD3 52.611 10.284 22.789 27.888 71.201

FRWA-21 111.760 14.988 19.517 24.616 118.950
FRWA-22 60.190 11.000 22.205 27.303 85.175
FRWA-23 53.167 10.338 22.744 27.842 78.516

FRWA-31 123.260 15.741 19.092 24.190 119.910
FRWA-32 60.665 11.042 22.171 27.270 84.690
FRWA-33 54.572 10.474 22.630 27.729 78.638

FRWA-AD1 116.040 15.272 19.354 24.453 121.780
FRWA-AD2 63.225 11.273 21.991 27.090 86.255
FRWA-AD3 54.950 10.510 22.600 27.699 78.643

could be used as universal !lter able to attenuate
diJerent types of noise with image detail and edge
preservation.

6. Conclusions

In this paper a new class of algorithms for !l-
tering color image data has been introduced. These

!lters utilize fuzzy membership functions over vec-
torial inputs connected via geodesic paths to adapt
to local image features. The behavior of the new
!lters was analyzed and their performance was
compared with the commonly used color image
!lters.
Experiments on the synthetic and natural images

reveal that the new !lters induce slight smooth-
ing eJect in the vicinity of edges, but its strength
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Table 8
Comparison of the new algorithm with the standard techniques using the PEPPERS standard image corrupted by Gaussian noise � = 30
(subscript denotes the iteration number)

MethodN NMSE (10−3) RMSE SNR (dB) PSNR (dB) NCD (10−4)

None 502.410 28.683 12.989 18.978 244.190

AMF3 88.815 12.060 20.515 26.504 99.043
VMF5 105.180 13.124 19.781 25.770 123.390
BVDF5 367.740 24.539 14.345 20.334 124.350
GVDF3 99.400 12.758 20.026 26.015 97.348
DDF5 118.820 13.949 19.251 25.240 114.400
HDF5 79.698 11.424 20.986 26.975 101.140
AHDF5 72.331 10.883 21.407 27.396 99.673
FVDF3 72.888 10.925 21.373 27.362 89.743
ANNF3 80.934 11.512 20.919 26.908 96.789
ANP-E3 79.688 11.423 20.986 26.975 100.860
ANP-G3 79.674 11.422 20.987 26.976 100.850
ANP-D3 73.211 10.949 21.354 27.343 89.078

SAP-21 65.991 10.395 21.805 27.794 101.000
SAP-22 54.659 9.461 22.623 28.612 91.343
SAP-23 56.886 9.651 22.450 28.439 91.386

SAP-31 61.486 10.034 22.112 28.101 95.622
SAP-32 59.335 9.857 22.267 28.256 91.650
SAP-33 65.249 10.337 21.854 27.843 93.237

SAP-AD1 64.935 10.312 21.875 27.864 98.429
SAP-AD2 55.061 9.495 22.592 28.581 89.165
SAP-AD3 58.824 9.814 22.304 28.293 89.858

FRWA-21 113.400 13.627 19.454 25.443 126.950
FRWA-22 63.888 10.228 21.946 27.935 99.028
FRWA-23 58.818 9.814 22.305 28.294 95.479

FRWA-31 118.160 13.910 19.275 25.264 126.590
FRWA-32 63.910 10.230 21.944 27.933 98.983
FRWA-33 60.045 9.916 22.215 28.204 96.033

FRWA-AD1 112.240 13.557 19.498 25.487 125.070
FRWA-AD2 63.121 10.167 21.998 27.987 96.364
FRWA-AD3 58.500 9.787 22.328 28.317 92.844

depends on the type of edge: stronger smoothing
eJect can be observed near slope edges and very
weak near step edges and this process is not sig-
ni!cantly ampli!ed when iterating, moreover, step
edges are going to be sharpened during the iteration
process

The new !lters, while iterating, yield piecewise con-
stant solutions, but it does not induce edge dislocation
eJects, as the proposed method can be seen as a spe-
cial case of anisotropic diJusion, which has the nice
property of not dislocating edges, in contrast to the
scale-space approaches.
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Table 9
Comparison of the new algorithms with the standard techniques (Table 4) using the PEPPERS standard image corrupted by impulsive
noise (p = 0:12; p1 = p2 = p3 = 0:3) (subscript denotes the iteration number)

MethodN NMSE (10−3) RMSE SNR (dB) PSNR (dB) NCD (10−4)

None 618.340 31.820 12.088 18.077 93.777

AMF1 105.490 13.143 19.768 25.757 116.390
VMF(L1)1 25.401 6.449 25.951 31.940 51.152
VMF(L2)1 26.422 6.578 25.780 31.769 51.465
BVDF1 57.583 9.710 22.397 28.386 55.796
GVDF1 31.856 7.222 24.968 30.957 52.701
DDF1 29.684 6.972 25.275 31.264 51.547
HDF1 26.819 6.627 25.716 31.705 51.424
AHDF1 26.430 6.579 25.779 31.768 51.317
FVDF1 33.337 7.388 24.771 30.760 54.074
ANNF1 45.115 8.595 23.457 29.446 65.891
ANP-DF1 37.240 7.809 24.290 30.279 56.393
ANP-EF1 106.700 13.218 19.718 25.707 99.762
ANP-GF1 106.690 13.218 19.719 25.708 99.745

SAP-21 31.685 7.203 24.992 30.981 59.948
SAP-22 34.556 7.522 24.615 30.604 59.976

SAP-AD1 32.286 7.271 24.910 30.899 58.700
SAP-AD2 35.214 7.594 24.533 30.522 58.300

FRWA-21 34.337 7.498 24.642 30.631 64.126
FRWA-22 26.387 6.573 25.786 31.775 53.454

FRWA-2∗1 34.753 7.544 24.590 30.579 61.614
FRWA-2∗2 25.105 6.412 26.002 31.991 51.596

FRWA-AD1 35.002 7.571 24.559 30.548 63.902
FRWA-AD2 27.267 6.682 25.644 31.633 52.830

The new !lter class based on digital paths and con-
nection cost can be seen as a powerful generalization
of the multichannel anisotropic diJusion presented
[3,13] and an extension of the fuzzy adaptive !lters
[18,19].
The path connection costs evaluated over all possi-

ble digital paths, are used to derive fuzzy membership
functions that quantify the similarity between vecto-
rial inputs. The proposed !ltering structure is then
using the function outputs to appropriately weight
input contributions in order to determine the !lter-
ing result. The proposed !ltering schemes parallelize

the familiar structure of the adaptive multichannel
!lter introduced in [18] and they can successfully
eliminate Gaussian, impulsive as well as mixed-type
noise.
Simulation results indicate that the proposed !l-

ters’ performance expressed through standard image
restoration measures is superior to the examined !l-
ters for the noise models under consideration. More-
over, the analysis of the computational complexity
shows that some of the presented !ltering techniques
are faster than the optimized version of the vector
median !lter.
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Table 10
Comparison of new algorithms with standard techniques using PEPPERS image corrupted by 12% impulse and Gaussian noise � = 30
(subscript denotes the iteration number)

MethodN NMSE (10−3) RMSE SNR (dB) PSNR (dB) NCD (10−4)

None 1052.000 41.505 9.780 15.769 191.590

AMF3 125.890 14.357 19.000 24.989 118.480
VMF5 84.436 11.758 20.735 26.724 85.847
BVDF5 193.870 17.817 17.125 23.114 88.756
GVDF5 113.300 13.621 19.458 25.447 82.889
DDF5 88.961 12.069 20.508 26.497 82.072
HDF5 77.452 11.262 21.110 27.099 81.870
AHDF5 73.811 10.994 21.319 27.308 81.235
FVDF3 87.091 11.942 20.600 26.589 86.830
ANNF3 96.695 12.583 20.146 26.135 91.361
ANP-E3 120.470 14.045 19.191 25.180 120.610
ANP-G3 120.450 14.044 19.192 25.181 120.590
ANP-D3 88.051 12.008 20.553 26.542 88.486

SAP-21 90.496 12.173 20.434 26.423 94.373
SAP-22 65.532 10.359 21.835 27.824 88.880
SAP-23 64.212 10.254 21.924 27.913 90.492

SAP-31 75.521 11.120 21.219 27.208 91.964
SAP-32 66.369 10.425 21.780 27.769 90.512
SAP-33 70.382 10.735 21.525 27.514 92.893

SAP-AD1 85.337 11.821 20.689 26.678 92.370
SAP-AD2 64.778 10.299 21.886 27.875 87.451
SAP-AD3 65.231 10.335 21.855 27.845 89.520

FRWA-21 151.560 15.754 18.194 24.183 107.190
FRWA-22 84.341 11.752 20.740 26.729 89.887
FRWA-23 73.304 10.956 21.349 27.338 90.240

FRWA-31 180.200 17.178 17.442 23.431 112.410
FRWA-32 85.053 11.801 20.703 26.692 92.542
FRWA-33 73.344 10.959 21.346 27.335 92.549

FRWA-AD1 149.800 15.662 18.245 24.234 106.180
FRWA-AD2 82.738 11.640 20.823 26.812 87.809
FRWA-AD3 72.223 10.875 21.413 27.402 88.034
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Fig. 18. E6ciency of the (a) SAP and (b) FRWA in terms of PSNR and its dependence on the � and � values for LENA standard image
corrupted by 12% impulsive and Gaussian noise, (� = 30) (n = 2, 3 iterations).



M. Szczepanski et al. / Signal Processing 83 (2003) 1309–1342 1335

Fig. 19. E6ciency of the (a) SAP and (b) FRWA in terms of NCD and its dependence on the � and � values for LENA standard image
corrupted by 12% impulsive and Gaussian noise (� = 30) (n = 2, 3 iterations).
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Fig. 20. Comparison of standard !lters e6ciency in terms of the (a) PSNR and the (b) NCD with the new ones for diJerent amounts of
noise (mixed Gaussian and impulsive noise—intensities are shown in (c)).

Fig. 21. E6ciency of the (a) adaptive SAP and (b) adaptive FRWA in terms of PSNR, SNR, NCD and NMSE for LENA standard image
corrupted by 12% impulsive and Gaussian noise, (� = 30) (n = 2, 2 iterations).
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Fig. 22. E6ciency of the (a) adaptive SAP and (b) adaptive FRWA in terms of PSNR, SNR, NCD and NMSE for PEPPERS standard
image corrupted by 12% impulsive and Gaussian noise (� = 30) (n = 2, 2 iterations).

Fig. 23. The test color images (a) LENA and (b) PEPPERS.
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Fig. 24. Comparison of the e6ciency of the new !lters with the VMF: (a) parts of LENA original image, (b) images corrupted with
mixed Gaussian (� = 30) and impulsive noise (p = 0:12; p1 = p2 = p3 = 0:3), (c) images restored with FRWA (� = 10; � = 1:25,
5 iterations) (d) images restored with VMF (3× 3 mask, 5 iterations).
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Fig. 25. Comparison of the e6ciency of the new !lters with the VMF: (a) parts of PEPPERS original image, (b) images corrupted
with mixed Gaussian (� = 30) and impulsive noise (p = 0:12; p1 = p2 = p3 = 0:3), (c) images restored with FRWA (� = 10; � = 1:25,
5 iterations) (d) images restored with VMF (3× 3 mask, 5 iterations).
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Fig. 26. Comparison of the e6ciency of the new !lters with the standard ones: (a) test images (LENA, PEPPERS and GOLDHILL),
(b) images corrupted with mixed Gaussian (� = 30) and impulsive noise (5%), (c) result of the standard vector median !ltering (3× 3
mask), (d) result of the DDF !ltering (3× 3 mask), (e) result of the FRWA !ltering (� = 10; � = 1:25; n = 2, 5 iterations).
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Fig. 27. Comparison of the e6ciency of the new !lters with the standard ones: (a) test images (LENA, PEPPERS and GOLDHILL),
(b) images corrupted with mixed Gaussian (� = 60) and impulsive noise (10%), (c) result of the standard vector median !ltering (3× 3
mask), (d) result of the DDF !ltering (3× 3 mask), (e) result of the FRWA !ltering (� = 10; � = 1:25; n = 2, 5 iterations).
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