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Abstract—Mobile terminal location has attracted much interest networks [3]. The medium-term reasons for location-sensitive
for its applications in emergency communications, location-sen- technologies are to create additional revenue opportunities
sitive browsing, and resource allocation. This paper introduces for the network operators by allowing them to provide lo-

the use of nonparametric kernel-based estimators for location of ti iti inf fi b . 4 hicul fleet
mobile terminals using measurements of propagation delays. It cation-sensitive information browsing [4], vehicular flee

is demonstrated that these estimators perform better than the Management, and intelligent traffic control [5]. The long-term
previously used parametric maximum likelihood estimators for reason for location technology is to assist resource allocation in
the case of a simulated microcell environment with line-of-sight the wireless network [6], [7]. It is desired that future wireless
(LOS) and non-line-of-sight (NLOS) radio propagation at several nenyorks be able to provide multimedia communications, such

different levels of measurement noise. Their performance is not - . . . . .
greatly degraded by NLOS effects. Methods for calculating good 25 real-time video, that simultaneously require high bandwidth

values for parameters of the kernel functions are demonstrated, and high quality of service [8]. It has been shown that using
as well as the robustness of the estimators when the values oflocation estimation and prediction for preemptive resource
the parameters vary from the optimal points. A lower bound gllocation is an attractive method of achieving this goal without
on the mean square error of location estimation that considers requiring a daunting level of extra network capacity overhead.
the transition between LOS to NLOS propagation over short Urban cells are the regions that produce the most revenue
distances is presented. It is demonstrated the proposed location . ’ .
estimation method comes close to meeting this bound. for network providers, so these are the regions of greatest in-
terest for mobile terminal location algorithms. The usersin these
regions have the greatest demand for the wireless high-band-
width multimedia services that are driving the development of
next-generation wireless networks.

. INTRODUCTION The importance of urban cells has created a demand for mo-

HERE is much interest within the wireless communicaRile terminal location algorithms that can perform well in this

tions research community on technologies that can egvironment. For location of mobile terminals in urban areas,
mate the location of mobile terminals. The reasons for locati¢ffation algorithms based on propagation time measurements
estimation technology can be classified into three categori@&ve been proposed [3], [9]. Urban cells have propagation con-
short-term, medium-term, and long-term. ditions that can change from line-of-sight (LOS) to non-line-of-

The short-term reason for location estimation, in NortBight (NLOS) over a short distance [10]. The simplest propaga-

America, is the Federal Communication Commission (FCC)ion model is the LOS propagation model, where the shortest
(CRTC in Canada) requirement for mobile terminal locatioflistance straight line path between the transmitter and receiver
during emergency 911 (E-911) calls [1], [2]. The cellulais unobstructed. NLOS propagation occurs when the LOS path
provider is required to locate callers making E-911 calls {g blocked by an obstacle and the radio signal travels via longer
within 100 m over 67% of the time for network-based soludistance paths. Management of the two propagation types is
tions. The cellular provider is expected to locate the callefskey issue of the mobile terminal location problem that has
making E-911 calls to within 50 m over 67% of the timeaused significant degradation of performance in the existing
for handset-based solutions. For handset-based solutions, 3lg@rithms [11], [12].
network providers have until December 2005 to have the The difficulty and importance of locating mobile terminals in
location technology within 95% of all subscriber handsets #fban areas has created much interestin this problem. To handle
their network. The regulatory bodies in many other jurisdictiorf§® measurement noise and changing propagation models, sta-
are considering similar regulations. Standardization of mobfistical estimation techniques are employed. If the joint proba-

terminal location technology is also taking place for Gs\gility density function for the measurement vector of propaga-
tion delay measurements and the location of the mobile terminal

is known, then, given a measurement of delays for a mobile ter-

. . _ minal, it is possible to calculate an optimal estimate of the mo-
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areas prevents parametric techniques from working well for eSS from being used as the sole means of locating mobile ter-

mating the joint probability density function. It would be necesminals, although its low cost does make it attractive for possible

sary to identify and characterize the NLOS propagation regiorgbrid mobile terminal locating schemes.

For this reason, a nonparametric technique where the joint probThe ToA and TDoA techniques are based on the measure-

ability density function is estimated as a sum of kernel functiomsent of propagation times. The code-division multiple-access

based on a survey of propagation delays measured at known(l@BMA) receivers, proposed for most next-generation cellular
cations is proposed to solve this problem. systems, can make precise time measurements of the incoming

Section Il contains a more detailed description of the mesignals using RAKE receivers [16]. A RAKE receiver estimates
surements used to locate the mobile terminal. Different methe delays of the propagation paths with the greatest signal
surement types proposed to locate mobile terminals are listpdwers. The estimated delay of the earliest detected propaga-
and the justification for the use of time measurements in thien path for a base station is the measured propagation delay
paper is provided. The models for the time measurements usedthat base station used for terminal location.

by the estimators are outlined. Section Il describes the nonparaThe ToA location technique involves measuring the time it

metric estimation technique. The probability density functiortakes a signal to travel from the mobile terminal to the base

are approximated as a sum of kernel functions based on surgegtion. Making this measurement requires that the measuring

measurements, and numerical integration is performed to caldevice have accurate knowledge of the time of transmission [9].

late the estimated positions. Rules for selecting the parametéhss can be accomplished by synchronizing the transmitters and

for the estimation technique are presented. Section IV describbeseivers, or by measuring the round-trip delay [3]. If the trans-
the configuration of Monte Carlo simulations of an urban envimitters and receivers are synchronized and a RAKE receiver is
ronment with NLOS propagation used to evaluate the locatiaised, highly accurate propagation time measurements can be
estimation techniques. Section V contains the results of the simade [9], [16]. Synchronizing the transmitters and receivers, the
ulation studies. The improvement that the nonparametric tedfase stations and the mobile terminals in a cellular network, is

nique has over other techniques is shown. The performancecostly. For round-trip measurements, a base station transmits a

the new estimator is compared with the Weinstein— Weiss lowggnal to the mobile terminal, which the mobile terminal im-

bound, which takes into account the environmental terrain antediately retransmits back to the base station. The round-trip

the prior probability density function of the mobile terminal lodelay is proportional to twice the radio propagation time plus

cation—factors not considered by previously presented lowgrocessing delays. The resolution of this method is much less
bounds on location estimator performance. The lower boutfthn that from using synchronized clocks but is much simpler
allows estimator performance to be quantitatively appraisdd.implement and less costly.

Section VI summarizes our conclusions. The TDoA location technique also involves measuring the
propagation times but does not require that the measuring de-
vice know the times of transmission. The difference between

II. MEASUREMENT MODEL the propagation times from the mobile terminal for pairs of
base stations is measured. This can be accomplished two ways.
Several methods have been proposed to locate wireless mMiGeveral base stations are synchronized, they can all transmit
bile terminals based on measuring the 1) angle of arrival (AoAjgnals to the mobile terminal at the same time. Then the mo-
of the radio signal at base stations, 2) received signal strengife can measure the difference between the propagation times
(RSS), 3) time of arrival (ToA), and 4) time difference of arrivafor different base stations. Conversely, the mobile terminal can
(TDoA) of the radio signals. transmit a signal to the base stations. The base stations can mea-
The A0A estimation technique requires that the base statiagnge the time they receive the mobile’s signal and, by comparing

use specialized antennae to measure the bearing of incontingir times, calculate the difference in propagation times [3].

signals from the mobile terminals. If the bearing to the mobilé CDMA signals are used, the time measurements are accom-

terminal is known from two or more base stations, the locatigiished using a RAKE receiver as for the ToA measurements.

of the mobile terminal can be calculated. The biggest disadvaDnly the base stations need to be synchronized. Synchronizing
tage of this technique is that the specialized antennas are expihe-base stations for TDOA measurements is much less expen-
sive and not presently used for standard cellular networks [14ive than synchronizing both the base stations and mobile ter-

This prevents AoA from being considered for any presently derinals for ToA measurements [3].

ployed networks. Each time measurement defines for two-dimensional (2-D)

The RSS technique has the advantage that it is fairly chelapation, in the case of LOS propagation and error-free measure-
since power measurements are already made by handsets aspants, a curve upon which the mobile terminal must reside. This
of the handoff algorithm. If the propagation model is known, aurve is a circle for TOA measurements or a hyperbolic curve for
power measurement can be mapped to a distance measurenT@@bA measurements. Three TOA measurements or two TDoA

If the distance from the mobile terminal to three or more baseeasurements, both created from time measurements by three

stations is known, the mobile terminal position can be calcbase stations, allow the mobile terminal position to be uniquely

lated. Unfortunately, RSS estimation error is higher than that célculated [17].

other localization methods. Also, the mobile terminal needs to Comparisons of location measurements in the literature have

be moving; otherwise, fast fading caused by multipath propagadicated that TOA/TDoA gives the lowest error [14], [15]. The

tion causes disastrously high errors [15]. These factors prevese of ToA for the popular GPS geolocation systems proves that
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ToA can provide highly accurate location estimates. The chan- base station N LA
nelization schemes proposed for next-generation cellular net-
works, such as CDMA and time-division multiple access, make
the ToA and TDoA location schemes most attractive because
the multiple-access schemes allow for high-accuracy time mea-
surements [16], [18]. Because of these reasons, this paper con-
centrates on location based on ToA and TDoA measurements. ‘
Complications in the mobile terminal location problem arise
from two sources. First, the measurements in the field are not
error-free, so that estimation techniques must take into account
measurement noise. Second, the propagation in some cases is
LOS and in others cases NLOS. In the NLOS case, the delay A
measurements will be biased from the LOS values and the ) N o
simple geometric location techniques described above will
lose accuracy or, in some cases, return ambiguous results. Te®
simplest solution to these problems is to use more base stations’ o
measurements. With more base stations, it is possible to averflfecasé whei = 3, the minimum cost measurement case.
out the measurement noise, and base-station measurem&fRfsmethods can be extended to greateith an expected im-
with NLOS propagation can be detected and excluded from tRg?vement of performance as the estimation procedure is pro-
estimation procedure [9], [12]. In real-world cellular networks/ided more information. _ o
the number of base stations that can communicate with thel N measurement vector is denoted asth a subscript indi-
mobile terminal is restricted, limiting the usefulness of ex¢@ting whether ToA or TDOA measurements are made. For ToA
cluding NLOS base stations [19]. Making extra measuremerf$asurements, the measurement vector is defined as
is also costly, so this paper concentrates on locating the mobile ZTon = T. (3)

terminal with three base-station measurements, the minimum )
number required. The next section will provide an analysis &PViously, the length of the ToA measurement veetgy isk,

how the measuring base stations are selected. the number of base-station measurements. For TDOA measure-
Propagation time measurements are converted to propag@nts, the measurement vector is defined as

tion distance measurements by multiplication hythe speed Z1pos = DT (4)

of light. We defined(#) as the vector of true propagation dis- _ . .

tances from the base stations to the mobile terminal when #{g€reD is a(k — 1 x k) difference matrix of rank-1).

mobile terminal is at locatiod. This paper concentrates orf* difference matrix is mostly filled with zeros, with each row
2-D location estimation since this is the case of greatest fjaving a single entry of one and another entry of negative one.

terest for wireless networks [5], [9]. The location vectofis -OF €xample, if all TDOA measurements are made relative to
(x,y), where is thez-coordinate ang is they-coordinate of the propagation time of base station one, the difference matrix

the mobile terminal. The methods described here can be scafedVen by

up to three-dimensional location easily. If a simple one-corner .

diffraction model is used for NLOS propagation, as shown in D= [—1k—111k—1} ()

Fig. 1, thejth entry ofd(#) is given by (1) at the bottom of the

page, with ¢;,y;) being the location of thgth base station and Wherel,._, is a length f—1) vector with all entries of one and
(z.,y.) being the location of the corner. If the propagation i —1 is a :—1x k—1) identity matrix. The TDOA measurement
NLOS, thejth entry ofd(#) is a function not only of the mobile vector’s length is £—1).

terminal and base stations’ positions but also a function of thelf it is assumed that the measurement noise for the propaga-
positions of the obstacles to the LOS propagation path. We wipn time for each base-station time measurement is indepen-

_
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Propagation environment.

define the measured propagation distance veces dently and identically distributed, then the computation of the
covariance of the measurement vectarsa andzrp,a given
T=d(0)+v. (2)  the mobile terminal location is trivial. The covariancezoind

Thev vector represents measurement noise witfitiientry ~ C» using (3) and (4) fok being the number of base-station mea-
being the measurement noise for base statidie dimension- Surements, is

ality of the T andv vectors isk, the number of base stations [ o1, for TOA ©6)
used to locate the mobile terminal. This paper discusses only "1 2DDT  for TDoOA
d (9) — { \/(CL’ B xj)2 + (y - yj)2 LOS case (1)
! V(@ =)+ (y = ye)? + /(we — ) + (yo — yj)> NLOS case
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with o2 being the covariance of the propagation time measuf@MSE estimator and the MLE is made clearer by expanding the
ment for a single base station (superscfiptienotes matrix fy(#|z) pdf as follows:
transpose).
For general discussions of estimation technique applicableto g, ,;sp = /QMCM -
either the ToA or TDoA methods or where the type of measure- fz(2)
ment data is clear from context, the subscript will be omitted s
_ Js0fz(z|8)fe(0)dd

from z for conciseness. =2 .
Js fz(2|0) fe(0)d6

The key difference from the MLE is that the MMSE estimator

uses prior knowledge of the location of the mobile terminal, i.e.,
Most work on location estimation methods is based on tfilee pdffe(@), to improve the location accuracy.

maximum likelihood estimator (MLE) technique [9], [17], The conditional pdffz(z|f) is dependent on the probability

[20]-[24]. The MLE location estimat#;; i is calculated using of NLOS propagation and LOS propagation at locatoand
the conditional pdf of excess delay if NLOS propagation is oc-

gMLE = arg m;X f2(z|8) @) curring, both o_f which are un_knovv_n prior to_Iocation estimation
[12]. The solution in the previous literature is to use an assumed
conditional pdf. The accuracy of the location estimates is depen-
g?nt on the accuracy of the assumed conditional pdf and thus the
validity of the assumed propagation model. In the literature on
MLE location estimation, the propagation model used is LOS

Js fz.e(z,0)d0

(10)

Ill. ESTIMATION TECHNIQUE

where fz(z|6) is the conditional probability density function
(pdf) of the measurements given the location [25]. The es
mated location vector i8 = (Z,y), wherez is the estimated

tx-coprd;nzte abn@ IS tthe.”eztlmate(z}-gogrgclxna.te d(')f t?et?()b"e_} propagation and the measurement noise vecigrassumed to
erminal. A subscript will be appende 0 Indicate the €s- 1, 5 Gaussian vector with a covariance matrix equil tde-
timation algorithm. The main attraction of the MLE technlqu%ned in (6) [9], [17]

is that given propagation and noise models, it is possible to es

) : . . To implement the MMSE estimator in (10), the joint pdfaof
timate the location of the mobile terminal from measurements, 14 i< ceded. This is equivalent to knowledge of the condi-

The MLE solution requires no prior information about the loceﬁonal pdf of the measurement vectargiven locationd, dis-

tioln of the_motr)]ile termin?]I. il K h K ussed in the previous paragraph, and also knowledge of the
n practice, however, the cellular network has some nomg%arginal pdf of the locatiorfo (8).

edge_of the Iocat_|on of the mobile ter_mlnal [15]. The har_1do This paper proposes the generation of the assumed pdf from
algorithm determines which base station serves the mobile t85ia collected from the location environment. There are two

minal at any given t|r_ne, Wh'.Ch prowd_es prior stat|sfuca! knOWIfnethods of estimating the pdf from data: parametric and non-
edge about the mobile terminal location. This location inform farametric

tion is returned in Phase | of the FCC’s E911 wireless locati Nrhe parametric technique calculates the estimated joint pdf
requirement [1]. as
The simplest estimator that makes use of prior information
about location is the maximum a posteriori (MAP) estimator. fz.0(2.0) = g(2,0,p1,p3. . ... pn) (11)
The MAP estimator in its general form is given by [13] T ' '
R max with py,po, ..., p, being parameters of the probability density
Oriap = arg fe(0|z). (8) function. The values gf; would be calculated based on models
0 of the propagation environment and survey measurements. For

This estimator does not make optimum use of the prior knov@xample, ifz andé were jointly Gaussian, then the parame-
edge of mobile terminal location. An estimator that makes betf&ts would be their means and covariances for which methods
use of the prior knowledge to reduce the estimation error is pf-estimation from data are well known. The difficulty in loca-
sented next. tion estimation is that simple parametric models of the propaga-
If prior information about the mobile terminal location existstion environments only exist except for LOS propagation cases
the mean square error (MSE), definedizdd — 6]7[9 — 6]}  [26]- Dealing with NLOS propagation cases is much more com-

(E[]denotes the expectation operator) where the expectatioR@X- The tools that do exist for NLOS modeling use ray-tracing

with respect tod and@, can be used as the criterion of opti-to estimate the propagation conditions at predetermined points

mality. The optimal estimator is the minimum mean square errgfthin the environment but do not provide parametric models
(MMSE) estimator, which is given by for variations of the attributes of interest over regions [27]-[29].

The basic idea of nonparametric estimation is, from a given

@MMSE —E[f|z] set of data, to create an approximation of the pdf that created
. the data. This approximate pdf is a sum of kernel functions.
= /0,f9(0|z)d9 (9) Eachcomponentfunction is centered at a single survey measure-

ment, and its value decreases monotonically as the distance from

its central point increases. Thus points close to several survey
wherefy(8|z) is the posterior conditional pdf of locatiérgiven  points will have higher approximate pdf values than points far
the measurement vectayandS is the region in which the mo- away from survey points. With a good selection of kernel func-
bile terminal is known to reside [13]. The difference between thi®ns, this technique can create good approximations of the pdf.
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For the location estimation problem, the survey set for a re- TABLE |
gion S consists of measurements; , z. . . . , z, } made at re- KERNEL FUNCTIONS
spective true location§, 6, ... ,0,}. Optimally, the pdf of
survey point locations is the prior pdf of mobile terminal lo-
cation before location measurements are made. In the absence Kernel name Kernel function X (x)
of any other information, a uniform density function o¥&rthe
known region of mobile terminal residence, is used, as this is the
prior density with the highest relative entropy [13]. The propa-
gation survey data can be obtained from field measurements or Parzen Gaussian [30,32] (
generated using computer ray-tracing propagation models.

In general nonparametric estimation, the kernel function for
survey pointj is a function of the location of the survey point
0; and the measurement at that survey pajntA simple esti-
mator with good performance is created if this kernel function
is the product of separate kernel functions for the locafipn .
and measurement [30]. This results in an approximate den- Distance based [33] =1 7 100
sity function that is very simple to manipulate. We will designate
the kernel functions for the measurementdas$z) and kernel
function for the locations a&y(#). The joint pdf of locations

and measurements is approximated as a sum of the produchof,per of survey points, and 3) the distribution of survey
the kernel functions for each survey measurement [31] point locations. Each of these will be discussed in order below.
. 1< a B 7 — 7 0—6. The kernel functions used in this paper are listed in Table I.
fo.z(6.2)=~ > (h)"H(he) K. < . J) Ko ( ]> - The matrixC used in the Parzen Gaussian kernel is the covari-
ance matrixC defined in (6). These kernel functions are selected
The constant is the length of the measurement vectbr= pecause of good pgrformance when applied to estimation in sim-
: . ilar problem domains [30], [31].

k) for ToA location and(l = k£ — 1) for TDoA location. The . ) . -

Selecting optimal values for andh., is a difficult task, made

smoothing constants, andh, determine the width of each of difficult i th timal val f his d dent
the kernel functions. For simplicity, one usually chooses kern pre dimcutt since the optimal value ot each I1s dependent on
e value of the other. Larger values/of result in each survey

functions that are multivariate probability density functions with ™ . i ; .
point having a larger region of influence in the sample space for

zero mean [30]. . . .
[30] e estimated density. Small valuegigfmean that the influence

If we substitute the estimated probability density from (12t . L : . .
into the MMSE equation (10) and perform the integrations, t ggion of each survey point is small with the estimated density
' ction becoming a sum of delta functionsfas— 0.

resulting estimated location is a weighted averaged of the sur H ; ,
point positions with the weights being determined by the mea. | "€ Optimal values ok andn for each kernel are a function

surement data (the full details of the derivation of the weight&¥ the actual density function being estimated and are thus un-
average estimator are provided in [31] as follows: known .for any given estimation problem. It is, however, known
that using values df., andn that have the correct order of mag-

k -
) 1C1 4 exp (-57)

Gy
B

Parzen Laplace [32] % exp ("”X”l)

|Ix]|? is the L, distance of x from the origin.

hg
12)

i=1

) _ Zn: 8w, (z) (13) nitude allows one to obtain results almost as good as using those
MMSE = el obtained using the optimal value in many cases [30].
= An examination of the kernel functions in Table | and (12)
where reveals that, has some relation to the standard deviation of
K (ﬂ) the measurement noise. For example, when the Parzen window
w;(z) = EANLE (14) Gaussian kernel from Table | is uséd,goes in the place where
S K. (Z—th) the standard deviation appears in the Gaussian density function.

_ o _ Therefore, itappears that is of the same order of magnitude as
Using the survey data, it is possible to create a nonparametfie standard deviation of the measurement noise. In Section V,

version of the MAP estimator. Assuming that the noise probghe relative insensitivity of the estimation technique to variations
bility density function has zero mean and decreases monotdRithe value ofs. will be shown.

cally for noise values farther from the mean, the nonparametricthe number of survey points is a critical factor on
MAP estimator is given by the performance of the system. The mean distance error

|z — Zj||2 = min ||z —z|)* Vi € {1,2,...,n} E[\/(m —#)* + (y — §)°], where ¢, y) is the location of the
(15) mobile terminal and %, ) is the estimated location of the
mobile terminal, can be viewed as a distance. Survey points
where]|| - ||2 specifies the Euclidean distance. This approximatbat are separated by a distance less than the mean distance
estimator approaches the true MAP estimatos as co. error cannot be reliably differentiated by a location estimator.
The performance of the nonparametric location estimatdfg¢he survey set does not have measurement noise, then survey
is dependent on 1) selection & .(-), 2) the value of the points that are separated by a distance less than the mean
smoothing constant for the measurement vectorsand the distance error add redundant information to the survey set.

— Oyiap =0,
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This suggests that a heuristic for the number of survey poirtgawing lines connecting the base stations’ positions without
needed within a regiof is to divide the area af by = times crossing, then the mobile terminal position should be located in
the squared mean distance error. This assigns each survey phiatpolygon’s interior. If the mobile terminal is located outside
an area equal to the area of a disc with a radius equal to tfeghis polygon, then GDOP effects can increase the estimation
mean distance error. Unfortunately, the mean distance ereoror. This phenomenon is described in [35] and [36].

is not known for a given location scenario. A solution to this Using the prior information about mobile terminal position
dilemma is to replace the mean distance error in the formula fesm handoff data, it is possible to reduce bad base-station se-
n with a lower bound on the root-mean-squared error (RMSkgction by using the prior location information to make sure that
\/E[(a: — )% + (y — )], which can be calculated. This giveshe base stations selected describe a polygon that encloses as
an estimate for the value of for the optimal value ofs,. Much of the known region of residence as possible. Reduction
Since other values of. will result in higher RMSE and thus f GDOP is notthe only consideration for base-station selection.
need fewer survey points, use of the lower bound on RMJRU€ to restrictions on maximum transmission power and inter-
gives an approximate upper bound en The lower bound ference thata base station is allowed to generate in surrounding
on the RMSE can be calculated using the Weinstein—-wef@@llS, the maximum distance between a base station and mobile
lower bound described in the Appendix. This bound takes intgrminal that it can communicate with is limited. Therefore, the
consideration both the prior pdf of location and the effects Gimber of base stations that can possibly make measurements
NLOS propagation. to locate a given mobile terminal is limited. Furthermore, the

We will now consider the effect of measurement noise on tigformation that can be used to make the base station selection
required number of survey points. Measurement noise in tife@lso restricted.
survey set measurements means that the survey set has impdpthers [9] have assumed that the closest base stations are
fect know|edge of the propagation environment. |ncreagjng used, but such a p0|lcy provides the estimator with information
will reduce the effect of measurement noise in the survey ddf@t would not be available in the field. If a network has per-
on estimation error as the effect of measurement noise is avi&ct knowledge of which base stations are closest to a mobile
aged out. Using the Weak Law of Large Numbers [34], it can Bigrminal and knowledge of all base-station positions, regions
shown that as — oo, the survey set gives perfect informatiorfan be deterministically removed frash In other words, if we
about the mean value of the measurement vector at all point&ipw that one base station is selected while a second base sta-
the regionS. Fortunately, our simulation results in Section \tionis not, all survey points i closer to the second base station
show that genera”m 0n|y needs to be increased by a factor (ﬂhan the first base station can be excluded from the position es-
one to four to reduce the effect of survey set measurement ndigaation calculation.
to acceptable levels. In actual cellular networks, each serving base station has a
The prior pdf off contains information from the handoff al-handoff set consisting of all of its neighboring base stations. We
gorithm, as mentioned in the Introduction, and the selection will assume that a mobile terminal is served by the base station
base stations whose measurements are used to locate the mabitethe lowest distance measurement. The base-station selec-
terminal. In terms of nonparametric estimation, the prior pdf ¢fon method used in this paper is to use the currently serving base
location is equivalent to the problem of choosing the subset ##tion plus thé&—1 base stations out of the handoff set with the
all collected survey points that will be used to locate a given miswest distance measurements to locate the mobile terminal for
bile terminal. We will first address the problem of base-statichtotal ofk base-station measurements. This method has the ad-
selection and then discuss how the result of this selection is us@gtage that only information available to the mobile terminal
for survey point selection. is required to make the base-station selection. Additionally, by
Which base stations are selected to estimate a mobigstricting base-station selections to only surrounding cells, the
terminal’s position can affect the accuracy of the results. Thigobability that the mobile terminal will be surrounded by the
so-called geometric dilution of precision (GDOP) refers to thease stations is high, reducing GDOP effects.
ratio of root mean square position error to root mean squareThe system does not have perfect knowledge of mobile ter-
ranging error [35]. The GDOP ratio is dependent on the relatimainal cell residency. For this reason, we use survey points in
position of the mobile terminal to the base stations. The GDQRe cell of the serving base station plus some survey points from
describes the phenomena of high location estimation er@mjacent cells to locate the mobile terminal. For the simulations
when the mobile terminal is within certain regions [36]. reported later in this paper, the survey points used to locate the
The problem is worse for TDoA estimation than for ToA lomobile terminal are all survey points within a distance of 1.25
cation estimation. The root cause of this is that the propagatioell radii from the base station with the smallest propagation
time difference measurements used in TDoA location estimdistance measurement. The optimum distance into other cells
tion contain less information than the time measurements ughdt the survey set should extend is a function of the measure-
in ToA location estimation. ment noise. If the measurement noise is high, the mobile is more
The use of MMSE-based estimation techniques redudégly to be in a cell adjacent to the cell of the serving base sta-
the GDOP problem. Knowledge of the prior pdf #fallows tion so more survey points from adjacent cells are required. The
possible ambiguous location estimates to be removed framlues of 1.25 was selected, as it gave reasonable performance
consideration. at relatively low additional cost for a wide range of value dor
Optimally, one would like to select base stations that sur- It is possible with the measurement-based base-station selec-
round the mobile terminal. That is, if a polygon is formed byion method to calculate a revised location ggf#), where the
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density function value at a poidtis proportional to the prob- from the corner to the mobile terminal. This propagation dis-
ability that the selected base stations will have the lowest meance isd. + d,., as shown in Fig. 1.

sured distance if the mobile terminal is located at that point. Un- Measurement noise is modeled as the sum of two indepen-
fortunately, this function’s value cannot be calculated within théent noise sources. The first source is a zero-mean Gaussian
real-time constraints of a mobile terminal location system. Thendom vector with a covariance matrix @f times an iden-
survey points in which thé base stations selected for locationity matrix representing the error in the synchronization in the
measurements by the mobile terminal location process have thebile terminal’s receiver [38]. The second noise source repre-
lowest surveyed distance measurements can be used to cregits small scatterers such as people, vehicles, and foliage. The
an approximate prior probability density function for the mobilgalue of this delay is the smallest value of 20 independent draws
terminal location. For our nonparametric kernel-based estimfgom a uniform distribution from 0—=720 m. This matches the
tors, this prior function can be included by only using the survegwest excess propagation delay when the channel is modeled
pOintS in our calculation that are ||ke|y to have hlgh CalCUlatq(jjsing the “urban” propagation model from [39] The measure-
values from the prior location probability density function. Thenent noise for each of the base station’s measured propagation
survey point selection process is to only include survey poirdgstance vector defined in (2) is independently and identically
inwhich the set of; +n base stations with the lowest measuregjstributed for all base stations. The measurement noise is also
propagation distances includes thease stations that were seingependent from generation of the survey set to generation of
lected by the location process. Only these survey points are uged measurement vectors.

in the calculation of (13) and (14). The optimal valueiofs de-  \easurements from three base stations are used to locate the
pendent on the cell layout, with being higher for cases wherep,gpjje terminal = 3. The method described in the previous
more cells border each other. For cases where six cells bordggyion is used to select the measuring base stations from a set
the current cell, the standard hexagonal cell case, or where fgyhssiple base stations consisting of the base station with the
cells border the current cell, an urban grid of cells, a value f@fi et distance measurements and its eight closest neighbors.
m of one or two gives good results. This gives an estimatigfy,. TpoA measurement data, the base station with the lowest
algorlthm w 'th lower compL_ltatlonaI .C.OSt' where 0'1"5’5““’63’ distance measurement is the reference base station. Only those
pomt_s sapsfymg the selection conditions are used instead of Irvey points where the three selected measuring base stations
n points in the survey set. are in the set of the five base stations with the lowest measure-
ments are used to locate the mobile terminal. This is the survey
point selection algorithm withn, = 2 described in the preceding
section.

The estimators are evaluated for location accuracy whenThe figure of merit used to judge performance is the RMSE
the mobile terminal is located outdoors in urban microcellgefined as the square root of the sum of the mean squared error
since this is the region of greatest interest to cellular netwoftr each of the estimated coordinate values.
providers. No good model exists for propagation delay mea-The objective of the simulations is to evaluate the perfor-
surements for indoor locations. It can be assumed that indenance of the nonparametric kernel-based estimators and show
locations will have mostly NLOS propagation and incur largghat these estimators are robust to variations of the parameters
path-loss penalties from having to penetrate building windowes$ the kernel functions and the environment.
and/or walls [37]. These attributes can be used to differentiateThe first set of simulations was performed with 100 survey
indoor and outdoor measurement vectors, so if indoor survggints,n = 100. The survey points are uniformly distributed
points were added to the survey set, it would not reduce tbeer street locations so that there arsurvey points within a
location accuracy. distance of 1.25 cell radii of each base station. A uniform density

A square microcell with sides of length 30@ m was used to is used since this is the density with the highest relative entropy
evaluate the estimator accuracy. The geometry of the base-stgpresenting the prior probability density function with the least
tion configuration for a single cell is shown in Fig. 1. Theamount of information. The value &f, was varied to see how
hatched regions represent buildings. This configuration wesbust the estimators are to variations of this parameter.
used since it has been used to evaluate other mobile terminarhe second set of simulations was performed to show the ro-
location schemes [9]. The central cell and the two rings of celisistness of the kernel estimators to different sizes of the survey
around it are included in the simulations. The mobile terminakt. The number of survey pointswas varied from ten to 100,
location is sampled from a uniform distribution over the centraind the RMSE of the different estimators was recorded.
cell's street locations. This is the worst case when there is noThe third set of simulations was performed to measure the
prior information about mobile terminal location other than ceflerformance at different levels of measurement noise. The stan-
residence and the mobile terminal is located outdoors since tterd deviation of the Gaussian measurement neigevaried
entropy of the mobile location distribution is maximized. from 15 to 50 m and the RMSE recorded. The simulations are

When the LOS path between a base station and mobile tperformed with random survey point locations and survey point
minal is unobstructed, the propagation distance is simply the Hoeations arranged in a regular deterministic pattern to see if the
clidean distance between the mobile terminal and base statilatter will alter performance. For the deterministic pattern, the
For NLOS propagation, the radio signal is assumed to diffrastirvey points are placed in two perpendicular lines down the
around the corners of buildings. The propagation path is thoenter of the vertical and horizontal streets with regular spacing.
the distance from the base station to the corner plus the distaAcdewer bound on the RMSE for location estimation error was

IV. SIMULATION DESCRIPTION
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L§3o-
[~ and the mobile terminal is the true distance between them when
29t the propagation is LOS and is equaldp + d,., as shown in
Fig. 1 when the propagation is NLOS. Only the Gaussian mea-
28} surement noise is considered in the Weinstein—Weiss bound cal-
culations. No estimator can have lower RMSE than the value the
05T }ﬁ 5 25 3 35 4 a5 5 lowerbound indicates. The RMSE of the simulated estimators
/0, smoothing parameter value relative to the lower bound indicates how well the estimators
, _ o make use of the measurement and prior information. The com-
Fig. 3; TDoA estimator performance for differirig values ¢ = 100,0 = putation of the bound is described in the Appendix
15 m). '
V. RESULTS

also calculated to see how close the estimator comes to optimal
performance. The robustness of the nonparametric estimators to variations
The Weinstein—Weiss lower bound was used to bound the e$the smoothing paramet&g is demonstrated in the first set of
timator’'s performance. It gives a lower bound on the MSE a&imulations. The standard deviation of the measurement noise
a parametric estimator [40] when the prior distribution of th&yas 15 m, and 100 survey points were generated=( 15,
parameter to be estimated is known. The true prior probability= 100). The plot of RMSE versus, value for the ToA esti-
density function for the mobile terminal location given the sehator is shown in Fig. 2. The results for the TDoA estimator are
of base stations selected for measurements in the simulationsigwn in Fig. 3. The optimal values bf are shown in Table II.
as described above, a function of the base-station selection algbe ToA estimators gave better performance than the TDoA es-
rithm and is difficult to derive. We use a prior probability densityimators. For all estimators and kernel functions, the impact of
function that is more informative than the true prior density insing values of.. greater than the optimum value was less than
the Weinstein—Weiss lower bound calculation. The extra infothat of using values of . less than the optimum value. The re-
mation in this prior ensures that the lower bound calculatedsslts show that the value éf only needs to be within the same
lower than the lower bound calculated using the true prior deorder of magnitude as the optimum value for good results. For
sity. Thus, the RMSE lower bound calculated is guaranteedtte following simulations, the optimum value bf is used for
be lower than the RMSE from the simulations allowing for vali¢ach kernel estimator.
comparisons. The true propagation distances used in the Weinthe second set of simulations shows the results for variations
stein—Weiss calculations take into account NLOS effects froofithe number of survey points. The results for different values
the buildings. The propagation distance for a given base statfim are shown in Fig. 4 for the ToA estimator and Fig. 5 for the
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TDoA estimator. Once the survey set reaches a certain size, riewl TDoA simulations with random survey point locations are
survey points are adding mostly redundant information. Thihown in Figs. 6 and 8. The next set of simulations is performed
point appears to be around= 60 for both the ToA and TDoA with the deterministic regular positions of survey points. The
estimators. The decision of how many survey points are neededults are shown in Fig. 7 for ToA estimators and Fig. 9 for
is a function of the cost of taking the survey measurements alBoA estimators. A comparison of these results with the re-
how much accuracy is desired. However, the designer shosldts for random positions of survey points shows that the ac-
remember that there is a limit to MSE accuracy determined byracy of kernel estimators is not greatly affected by variations
the measurement noise. This limit is discussed in the Appendaf.survey point placement. For both deterministic and random
Using the heuristic for calculating described in Section Ill, survey point locations, the estimators are robust to variations
with lower bound on the MSE fos = 10 m and ToA loca- of the intensity of measurement noise. The estimators perform
tion (see Fig. 6) calculated using the Weinstein—Weiss boundsifghtly better when the survey points are in the regular deter-
100 n? and a street area in each cell(@00 - 20) + (20-20) = ministic pattern than with random placements, but the improve-
23600 m?, we get an estimate af ~ 23600/(7-100) = 75.12 mentin accuracy was only a few meters. This indicates that reg-
points in a cell. The ToA estimators perform slightly better thamlarly spaced survey points, such as those likely to be collected
the TDoA estimators. The reason for this is the information r&y an automatic propagation survey method, will result in good
duction of TDoA with respect to ToA estimators. For all of theperformance for mobile terminal location.
following simulation resultsp = 100. The last set of simulations compares the accuracy of the
The third set of simulations measured the performance of tkernel estimators against the accuracy of nonparametric MAP
estimators as the standard deviation of the Gaussian comporestimators and parametric MLE estimators. The results are
of the measurement noige was varied. The results for ToA graphed on Fig. 10 for a range of measurement noise variances.
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45 ' ' ' ' ' ' LOS propagation model. Indeed, the performance of the MLE
- g“rze“ Laplace - estimators can be improved if the estimators have greater knowl-
40} arzen Gaussian o4 - ’
-5~ Distance based edge of the propagation model. If an accurate parametric model
—8- Weinstein—Weiss bound of the propagation environment exists, then the optimal esti-
35¢ 1 mator is the MMSE estimator, not the improved MLE estimator.

However, usually a parametric model does not exist, so the non-
parametric techniques described in this paper are proposed.

W
(=}
T

oo}
T

VI. CONCLUSION

RMSE position (m)

This paper has introduced the use of nonparametric kernel-
based estimators for location of mobile terminals in wireless
networks using measurements of propagation delays. It has been
demonstrated that these estimators perform better than the pre-
| , , , , , , viously used parametric MLE estimators for the case of a sim-

15 20 25 30 35 40 45 50 ulated microcell environment with NLOS radio propagation.
o, standard deviation of measurement noise . .
These estimators were shown to give excellent results at sev-
Fig. 9. TDoA estimator performance for differing values (deterministic eral different levels of measurement noise. Methods for calcu-
survey point locationsz = 100). lating good values for parameters of the kernel functions were
demonstrated, as well as the robustness of the estimators when

N
(=]
T

—
wn
T

350 ' — u the values of the parameters vary from the optimal points.
'_:_' gammemc %g (¥DA°A) The performance of ToA and TDoA location estimators is
3004 arametric (ToA) | | ih th ) | ; .
-@- MAP (TDoA) very close, with the ToA consistently outperforming TDoA.
-6~ MAP (ToA) * This result is not surprising, given that TDOA measurements
2250)| =# - Parzen Gaussian (TDoA) R can be derived from ToA but not vice versa, indicating that
) =+ Parzen Gaussian (ToA) T . . .
g P o ToA measurements contain more information than TDoA mea-
= 200 __*.-—'* surements. The nonparametric estimators are compared with a
2 *_,.—'*' Weinstein—Weiss lower bound on estimator performance. This
‘%“5 - comparison shows that the ToA and TDoA estimators have
& accuracy comparable to the lower bound and are thus fairly
efficient.
APPENDIX
0 : ; ) ) . . WEINSTEIN-WEISS LOWER BOUND ON MSE
15 20 25 30 35 40 45 50 FOR LOCATION ESTIMATES

o, standard deviation of synchronization noise
It is desirable when estimating a parameter to have a lower
Fig. 10. Comparison of parametric and nonparametric estimators. bound on the estimation error. This allows the estimation de-
signer to judge the performance of their estimator. A popular
The parametric MLE estimators assume LOS propagatitower bound in location estimation is the Cramer—Rao lower
models, and the estimates are calculated using iterative solvimynd [11], [41]. (It should be noted that [42] derives a bound
techniques [9], [17]. The parametric estimators assumettet is equivalent to the Cramer—Rao bound.) These bounds are
Gaussian noise model and are given perfect knowledge of theal bounds: they give bounds on the estimation erroréfor
noise variance. The ToA estimators perform better than tidien@ is a fixed known value.
TDoA estimators, with the nonparametric kernel estimators There are two problems with existing lower bounds. First, the
giving the best performance. The nonparametric MAP estlerived bounds also assume that the estimator is locally unbi-
mators give the next best set of performance figures, with theed, that iski[#|8] = @ for all 8. It has been shown that any
parametric estimators giving the worst performance. MMSE estimator is biased [43], and the GDOP can cause large
The Weinstein—Weiss bounds show that the nonparametric b&s in location estimation with MLE estimators [35]. Second,
timators give results within an order of magnitude of the besiie bounds do not take into account the known prior probability
possible values. The ToA estimators perform better than tHensity functions fob.
TDoA estimators. Since the Weinstein—Weiss bounds are cal-There is an extension of the Cramer—-Rao lower
culated for an estimator with a more informative prior proba&sound—the Bayesian Cramer—Rao lower bound, described
bility density function for the location than the simulated estin [43]—which incorporates the prior probability density
mators and without the additional small scatterer noise, the fer # with the Cramer—Rao bound to calculate a bound on
sults show that the nonparametric estimators give very attractthe MSE. This bound does require that the estimator be
performance values. locally unbiased. One of the conditions for the Bayesian
A seemingly plausible argument could be made that the pa@ramer—Rao bound to be valid for location estimation is that
performance of the MLE estimators is a result of assuming tl@z e(z.,0))/(0z), (9 fz.e(z,0))/(0z), (0fz.e(z.0))/(dy),
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(0% fz.0(2,0))/(02?), (0% fz.0(2,0))/(0y?), and This does not invalidate the bounds, as the additional noise can

(02 fz.0(z,0))/(0x0y) be absolutely integrable with respecbnly make the location errors increase. The conditional density

to z, y, and z [43]. Unfortunately, the points of transition of TDOA measurements given location is

between LOS and NLOS propagation create discontinuities in

the joint probability density function that cause this conditionfzve(zm) = (27r)—§ |C|‘% exp {_l [Z(g)]T Cc-! [2(9)]} .

to be violated, making the Bayesian Cramer—Rao lower bound 2 >3

invalid for this application. (23)
We propose the use of the Weinstein—Weiss bound on Ms\g

which does not have the stringent requirements of the Bayesian | . . 1 1

Cramer—Rao lower bound and also takes into account the prﬁb{g» h) :/ / f2(2|0 +h)f7(z|0) f5(0) fg (6 + h)dzdf.

ith a little manipulation, it can be shown that

known probability density function df [40]. We define a func- S/ Rk
tion L°(z,0 + h,0) as . N . _ _ (24)
Expanding the conditional density functions gives
L0+ .0) = | P20 R | (16) : o
fZ,G(Z70) ) <§7h> ://(27{')_7|C|_5
It has been demonstrated that for any vector funatigr) S’ Rk
LT a2
E{l0-e@]b-e]"} >HGH  (@17) X exp {—z 2@l
~ 2
with G being the 2x 2 matrix with elements given by (18) and + [|z(0 + h)||c—1} }
(19) as shown at the bottom of the page for any veclerslf,) xfé-% (0)f§ (8 + h)dzdé. 25)

and scalarss(, s2). The tightest Weinstein—Weiss lower bound

is achieved by calculating the valuessaf s, hy, andh, that  yging the standard practice when working with Gaussian prob-

and computationally expensive task. A good bound can be found

with 51 = 52 = (1/2) and (o) =[x {- 5 @) -0 +
H:h-[(l) ﬂ (20) s o
< 38)58(@+h) [ n) oyt
The elements oG can be rewritten as Rk
(3, h; —hy) — (L b +h)) 1|2(8)+%(8 +h)|*
G;; =2 ETARIER ™) (21) exp {—5 — c_l}dzdﬂ.
p(s,h) =E[L*(z,0 + h,0)]. (22) (26)

A tight bound can be found by determining the valughat By noting that the integration with respect4ds an integra-
maximizes (17) with the other variables set as above. The linitn of a probability density function and is thus unity, we obtain
of this case for, — 0 is identical to the Bayesian Cramer—Rao '
lower bound [43]. o | u(5o0) = [ {5 lm@ - 20+ i |
To simplify the following derivations, we will de- 2 . 2(4)
note the Mahalanobis quadratic distance function [44] as s ; ;
IX[%., = XTC'X. We will denote the expected value x fg(8)fg (6 +h)db (27)
of the measurement vectarwhen the mobile terminal is at
locationd asz(f) = E[z|8]. The difference between the meaWhere
surement vector. and the expected value of the measurement r_
vector for locatiord will be denotedz(8) = z — z(0). §=50{0lf+h e S}. (28)
The expressionin (27) is a 2-D integral no matter what the length
A. TDoA Lower Bound of the measurement vector and can be computed using numer-
The bounds for location will consider only the Gaussian megal quadrature techniques. The values for (21) can then be cal-
surement noise, not the additional scatterer measurement naiséated and substituted into (17) to calculate a lower bound.

G AL (z0+hi0) ~ L' (2,6 ~ 0. 0)] [L7 (2.0 +h;.6) ~ L' (2.6 — h;.0)]}
CA E{L*(z,0 + h;,0)} E{L" (2,0 + h;,0)}
H =T[hy, hy] (19)

(18)
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