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Abstract

In this paper, a class of weighted vector directional filters (WVDFs) based on the selection

of the output sample from the multichannel input set is analyzed and optimized. The WVDF

output minimizes the sum of weighted angular distances to other input samples from the fil-

tering window. Dependent on the weighting coefficients, the class of the WVDFs can be de-

signed to perform a number of smoothing operations with different properties, which can

be applied for specific filtering scenarios. In order to adapt the weighting coefficients to

varying noise and image statistics, we introduce a methodology, which achieves an optimal

trade-off between smoothing and detail preserving characteristics. The proposed angular

optimization algorithms take advantage of adaptive stack filters design and weighted median

filtering framework. The optimized WVDFs are able to remove image noise, while maintain-

ing excellent signal-detail preservation capabilities and sufficient robustness for a variety of

signal and noise statistics.

� 2003 Elsevier Inc. All rights reserved.

Keywords: Multichannel image processing; Impulsive noise; Directional processing of color images;

Order-statistic theory; Weighted median filters; Optimization
* Corresponding author. Fax: +1-416-978-4425.

E-mail address: lukacr@ieee.org (R. Lukac).

1077-3142/$ - see front matter � 2003 Elsevier Inc. All rights reserved.

doi:10.1016/j.cviu.2003.10.013

mail to: lukacr@ieee.org


R. Lukac et al. / Computer Vision and Image Understanding 94 (2004) 140–167 141
1. Introduction

Images acquired by a sensor or transmitted through noisy information channel

can often interfere with noise [2,6]. Noise introduced into the images may corrupt

any of the following image processing steps mostly related [25] to image analysis
(edge detection, image segmentation, and pattern recognition) and computer vision

applications. Therefore, noise filtering [2,25,26,33], is one of the most important im-

age processing steps usually viewed as the pre-processing methods. Its goal is the re-

moval of unprofitable information in digital images without degradation of the

underlying image structures. It is evident that noise filtering and image enhancement

are an essential part of any image processing system [25] whether the final image is

utilized for visual interpretation or for automatic analysis.

Multichannel signal processing [1,33,39] has been the subject of extensive research
during the last years, primarily due to its importance to color image processing.

Many of the techniques used for color noise reduction are direct modification (com-

ponentwise or marginal filters) [34,46] of the methods used for gray scale imaging

[29]. Note that the independent processing of color image channels is inappropriate

and leads to strong artifacts, especially when the filtering schemes [30] are based on

the popular and robust order-statistic theory [2,31]. It has been widely recognized

that the processing of color image data as vector fields is desirable due to the corre-

lation that exists between the image channels and that the nonlinear vector process-
ing of color images is the most effective way to filter out noise [27,33]. Therefore, the

new filtering technique presented in this paper is also nonlinear and utilizes the cor-

relation among the color image channels.

A number of nonlinear multichannel filters, which utilize correlation among mul-

tivariate vectors using various distance measures, have been proposed. The most

popular multichannel filters are based on the ordering of vectors [1,24,30,38] in a pre-

defined sliding window. The output of these filters is defined as the lowest ranked

vector according to a specific ordering technique based on vectors� directions and
vectors� magnitude. In general, vectors� magnitude constitutes a measure of their in-

tensity (brightness), whereas the direction of vector samples describes their chroma-

ticity [25].

Probably the most well-known filter is the vector median filter (VMF) [1]. The

VMF can be derived as a maximum likelihood estimate (MLE), when the underlying

probability densities of input samples are double exponential.

Vector directional filters (VDFs) [39] operate on the direction of the image vectors

and such an approach is referred as directional processing. Applying this filtering
technique, image vectors with atypical directions in the vector space are eliminated

and vector directional filters result in optimal estimates in the sense of color chroma-

ticity [27].

Research [39] described theory related to the analysis of statistical and determin-

istic properties of the basic vector directional filter (BVDF), which is a fundamental

filtering scheme designed within the VDF framework. Note that the BVDF output

direction is the MLE of directions of the input vectors [27]. Because of insufficient

performance of the BVDF, work [39] also introduced its extensions such as the
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generalized vector directional filters (GVDFs), spherical medians, double window

GVDF followed by an a-trimmed mean or by a multistage max-median filter. An-

other improvement was achieved by introducing vector median-vector directional

hybrid filters (HVFs) [12], fuzzy VDF [32] and directional distance filter (DDF) [18].

This paper focuses on a new class of weighted vector directional filters (WVDFs)
as a natural extension of the BVDF. The proposed filters can offer better detail-pre-

serving characteristics, higher flexibility of a filter design and less computational

complexity in comparison with the extensions of the BVDF. In addition to these

properties, the proposed method outperforms in terms of subjective and objective

image quality measures the widely used standard vector approaches such as VMF,

BVDF, and DDF. We also provide the optimization tool for adapting the WVDF

non-negative real weights to signal and noise statistics by a new angular multichan-

nel generalization of the adaptive least mean absolute (LMA) optimization routines
used in the design of weighted median filters of gray-scale images. Using the pro-

posed angular optimization scheme, it is possible to adapt the WVDF weighting co-

efficients under the constraint of negative weights to varying signal and noise

statistics and achieve an excellent balance between the signal-detail preservation

and the noise attenuation.

The rest of this paper is organized as follows. In the next Section, weighted me-

dian filters and their adaptive optimization algorithms are described. Section 3 fo-

cuses on the well-known VMF. Section 4 presents the VDF filtering class, which
utilizes the directional ordering of input samples. In Section 5, we provide a new

class of WVDFs and analyze them in terms of weighting vectors and the obtained

smoothing concept. We also provide new approaches to the adaptation of WVDFs

to varying signal and noise statistics, taking advantage of adaptive stack filter de-

sign and weighted median filter structure. Section 6 is devoted to the analysis of

the proposed WVDF framework in its dependence on filter parameters and the in-

tensity of impulsive noise corruption. This section contains a number of simula-

tions, tests and filtering results, together with tables and graphs depicting the
objective image quality measures. Finally, main ideas, results and future work

are summarized in Section 7.
2. Weighted median filters

Weighted median (WM) filters [2,31] constitute an important nonlinear filtering

class. Their robust smoothing capability in environments impulsive in nature and
flexible design [28] in conjunction with an optimization framework [43,44] make this

filtering class sufficiently attractive. Moreover, the WM filters are computationally

efficient because their implementation takes advantage of binary operations [3,41]

and analysis [23,45].

Let V ðnÞ ¼ fx1ðnÞ; x2ðnÞ; . . . ; xN ðnÞg be an input set of gray-scale image samples

determined by a filter window of a finite odd length N , where n ¼ 0; 1; . . . ;Q� 1 de-

notes the position of the filtering window centered in the xðnÞ ¼ xðNþ1Þ=2ðnÞ and Q
is the signal length. Let each input sample xiðnÞ be associated with a real valued
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weight wi, for i ¼ 1; 2; . . . ;N . The weighted median of the input set V ðnÞ is the sam-

ple yðnÞ 2 V ðnÞ minimizing the following expression:
f ðyðnÞÞ ¼
XN
i¼1

wijyðnÞ � xiðnÞj: ð1Þ
If each weight wi is equal to 1, the WM filter is equivalent to the well-known

median filter (MF) [29,31]. In order to choose an appropriate weight vector, so that

the WM filter would be able to remove impulses and simultaneously preserve all

desired image features, some optimization algorithms [42,44], that originate from

the stack filter design [7,43], have been developed. The adaptive algorithms de-

scribed in this paper are based on linear and sigmoidal approximations of the sign

function.

Given an input set V ðnÞ and a weight vector w ¼ fw1;w2; . . . ;wNg, the WM out-
put is denoted as yðnÞ ¼ yðw; V ðnÞÞ. Estimating a desired signal oðnÞ is accompanied

with the estimation error eðnÞ ¼ oðnÞ � yðnÞ. Then, the cost function defined under

the mean absolute error (MAE) and the mean square error (MSE) is defined as
JMAEðw; nÞ ¼ EfjoðnÞ � yðw; V ðnÞÞjg; ð2Þ

JMSEðw; nÞ ¼ EfðoðnÞ � yðw; V ðnÞÞÞ2g; ð3Þ

where Ef�g represents statistical expectation used to guarantee the minimum average

loss or risk. With the constraint of non-negative weights, the optimization problem

with inequality constraints can be expressed as follows:
minimize JMAEðw; nÞ or JMSEðw; nÞ subject to wi P 0; for i ¼ 1; 2; . . . ;N : ð4Þ

Both cost functions (2) and (3) appear to be non-convex in the weights and are

characterized by multiple local minimum. Under the assumption that the optimal

weights are at one of the local minima, the conditions for optimality can be derived

as follows:
oJMAEðw; nÞ
owi

¼ o

owi
EfjoðnÞ � yðw; V ðnÞÞjg; ð5Þ

¼ E sgnðoðnÞ
�

� yðnÞÞ oyðnÞ
owi

�
; ð6Þ
and
oJMSEðw; nÞ
owi

¼ 2E ðoðnÞ
�

� yðnÞÞ oyðnÞ
owi

�
; ð7Þ
where
sgnðaÞ ¼
1 a > 0

0 a ¼ 0

�1 a < 0

8<
: ð8Þ
is the sign function.
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Assuming the MAE criteria, the necessary condition for the filter optimality is

given by
sgnðoðnÞ
�

� yðnÞÞ oyðnÞ
owi

�
¼ 0; wi P 0; for i ¼ 1; 2; . . . ;N : ð9Þ
With respect to this analysis, adaptive WM algorithms were developed based on
linear [43] and sigmoidal approximation [44] of the sign function. Using the least

mean square (LMS)-type formulation and the constraint of non-negative weighting

coefficients, the adaptation step related to (2) is given by
wiðnþ 1Þ ¼ P wiðnÞ
�

þ 2l
oJðw; nÞ

owi

�
; ð10Þ
where i ¼ 1; 2; . . . ;N , and Pð�Þ is a projection function
P ðwiðnÞÞ �
0 if wiðnÞ < 0
wiðnÞ otherwise

�
ð11Þ
which changes the negative values to zero.

Replacing the statistical expectation in (6) with the instantaneous estimates results

in the following adaptation formula:
wiðnþ 1Þ ¼ P wiðnÞ
�

þ 2l
oyðw; nÞ
owi

sgnðoðnÞ � yðnÞÞ
�
; ð12Þ
where eðnÞ ¼ oðnÞ � yðnÞ is the error at the nth iteration.
Applying the principle of minimum error criterion with the simultaneous principle

of orthogonality, adaptation formula (12) is redefined as follows:
wiðnþ 1Þ ¼ P wiðnÞ½ þ 2lðoðnÞ � yðnÞÞðxiðnÞ � oðnÞÞ�: ð13Þ

Let us consider the sliding filtering window related to the position n, moving

over an image domain. During processing, the weight coefficients are adjusted

by adding the contribution of the samples multiplied by a certain regulation factor.
If the adaptive WM algorithm based on the sigmoidal approximation of the sign

function is considered, an adjustment of the filter weights can be expressed [44]

as follows:
wiðnþ 1Þ ¼ P wiðnÞ½ þ 2lðoðnÞ � yðnÞÞsgnsðxiðnÞ � yðnÞÞ�; ð14Þ

where i ¼ 1; 2; . . . ;N , Pð�Þ is a projection function (11), oðnÞ is the desired sample,
yðnÞ is the WM output, l is the iteration constant and sgnsð:Þ is the sign function

approximated by the sigmoidal function
sgnsðaÞ ¼
2

1þ e�a
� 1: ð15Þ
Let us consider that P ð�Þ is an identity function, whose argument remains un-
changed. If xiðnÞ � yðnÞ and l is positive, the adaptation formula (14) is given by
wiðnþ 1Þ ¼ wiðnÞ þ 2lðoðnÞ � yðnÞÞ; ð16Þ
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i.e., the importance of the sample occupying the ith position in a supporting window

increases if oðnÞ is greater than the actual WM output yðnÞ and decreases if oðnÞ is
less than yðnÞ. Thus, this difference multiplied by regularization factor represents the

weight increment (for 0 < oðnÞ � yðnÞ), the weight decrement (for 0 > oðnÞ � yðnÞ) or
it can remain the weights unchanged (for oðnÞ � yðnÞ ¼ 0). In general, the initial
weight vector wð0Þ can be set to arbitrary positive values, but the best idea is to start

the weight adaptation with equal weights corresponding to the median. Regarding

the best value of l, research [44] showed that the algorithm converges to sub-optimal

solution for sufficiently small positive value of l, e.g., 10�5.

In the case of adaptive WM filtering with the linear approximation [43], the

weight coefficients are updated as follows:
wiðnþ 1Þ ¼ P wiðnÞ
"

þ 2l xmaxðnÞ
"

� xminðnÞ � 2joðnÞ � xiðnÞj

�
XN
j¼1

wjðnÞðxmaxðnÞ � xminðnÞ � 2jxiðnÞ � xjðnÞjÞ
##

; ð17Þ
where i ¼ 1; 2; . . . ;N , j ¼ 1; 2; . . . ;N , xmaxðnÞ and xminðnÞ represent the maximum and

the minimum of the input set fx1ðnÞ; x2ðnÞ; . . . ; xN ðnÞg, respectively, and l is the

positive adaptation stepsize [43]. Note that the WM optimization with the linear

approximation of the sign function is also restricted by a projection operation P ð�Þ
defined by (11).
3. Vector median filter

In the last decade, a variety of filtering methods for multichannel image processing
were provided [1,33,39]. The common feature of vector filters lies in the consideration

of the inherent correlation that exists between the image color channels. Since the vec-

tor approaches process an input signal as a set of vectors, color artifacts to which the

human visual system is very sensitive [35] cannot be created as a filter output.

If the image information interferes with impulsive noise [2,6], filters based on the

robust order-statistic theory provide an efficient solution. Note that the direct exten-

sion of the order-statistic theory to color images is impossible due to their vectorial

nature [38]. Therefore, the observed samples are ordered according to specially devel-
oped distance functions.

Let yðxÞ : Zl ! Zm represent a multichannel image, where l is an image dimension

and m denotes the number of color channels. In the case of standard color images,

parameters l and m are equal to 2 and 3, respectively. Let W ðnÞ ¼ fxiðnÞ 2 Zl; i ¼
1; 2; . . . ;Ng represent a filter window of a finite size N , where x1ðnÞ; x2ðnÞ; . . . ;
xN ðnÞ is a set of noisy samples and the central sample xðnÞ ¼ xðNþ1Þ=2ðnÞ determines

the position of the filter window. Note that xikðnÞ, for k ¼ 1; 2; . . . ;m, is the kth ele-

ment of the input sample xiðnÞ ¼ ðxi1ðnÞ; xi2ðnÞ; . . . ; ximðnÞÞ. Like in the previous Sec-
tion, n ¼ 0; 1; . . . ;Q� 1 characterizes the position of running window and Q is the

signal length.
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Let us consider that each input multichannel sample xi is associated with the dis-

tance measure
LiðnÞ ¼
XN
j¼1

kxiðnÞ � xjðnÞkc for i ¼ 1; 2; . . . ;N ; ð18Þ
where kxiðnÞ � xjðnÞkc quantifies the distance between two m-channel samples xiðnÞ
and xjðnÞ using the generalized Minkowski metric [9] given by
kxiðnÞ � xjðnÞkc ¼
Xm
k¼1

jxikðnÞ
 

� xjkðnÞjc
!1

c

ð19Þ
where xikðnÞ is the kth element of xiðnÞ and c characterizes the used norm. The

Minkowski metric includes [33] the city-block distance (c ¼ 1), Euclidean distance

(c ¼ 2) and chess-board distance (c ¼ 1) as the special cases.

Let us assume that the ordering of the aggregated distances of (18) given by
Lð1ÞðnÞ6 Lð2ÞðnÞ6 � � � 6 LðNÞðnÞ ð20Þ
implies the the same ordering scheme to the input set W ðnÞ. This procedure results in
the ordered sequence
xð1ÞðnÞ6 xð2ÞðnÞ6 � � � 6 xðNÞðnÞ: ð21Þ
The sample xð1ÞðnÞ 2 W ðnÞ associated with the minimum aggregated distance
Lð1ÞðnÞ 2 fL1ðnÞ; L2ðnÞ; . . . ; LN ðnÞg constitutes the VMF output [1]. This lowest order-

statistics minimizes the distance to other samples inside the sliding filtering window

W ðnÞ.
4. Directional processing of color images

VDFs [39] employ a vector ordering technique in which the angle between image
vectors serves as the ordering criterion. Since vectors such as multichannel samples

are uniquely characterized by their direction and magnitude, these features can be

exploited in the design of vector filtering classes. Note that the filtering schemes

based on directional processing of color images (or directional processing followed

by magnitude processing) may achieve better performance in comparison with the

VMF based approaches.

4.1. Vector directional filters

In the directional processing of color images [22,27,32,39], each input color vector

xiðnÞ is associated with the aggregated angular measure
aiðnÞ ¼
XN
j¼1

AðxiðnÞ; xjðnÞÞ for i ¼ 1; 2; . . . ;N ; ð22Þ
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where
AðxiðnÞ; xjðnÞÞ ¼ cos�1 xiðnÞ � xjðnÞ
jxiðnÞjjxjðnÞj

� �
; ð23Þ

¼ cos�1 xi1ðnÞxj1ðnÞ þ xi2ðnÞxj2ðnÞ þ � � � þ ximðnÞxjmðnÞffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
x2i1ðnÞ þ x2i2ðnÞ þ � � � þ x2imðnÞ

p ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
x2j1ðnÞ þ x2j2ðnÞ þ � � � þ x2jmðnÞ

q
0
B@

1
CA

ð24Þ

represents the angle between two m-dimensional vectors xiðnÞ and xjðnÞ.

If angular distances (22) serve as an ordering criterion, i.e.,
að1ÞðnÞ6 að2ÞðnÞ6 � � � 6 aðrÞðnÞ6 � � � 6 aðNÞðnÞ; ð25Þ

and this implies the same ordering scheme for the input samples of W ðnÞ, the pro-

cedure results in
xð1ÞðnÞ6 xð2ÞðnÞ6 � � � 6 xðrÞðnÞ6 � � � 6xðNÞðnÞ: ð26Þ
The lowest order-statistics xð1ÞðnÞ associated with the minimum angular distance

að1ÞðnÞ represents the BVDF output [39]:
yBVDFðnÞ ¼ xð1ÞðnÞ: ð27Þ
Since the VDFs and passas to a filter output a sample from a sample set ordered
according to the sum of vector angles, these filters preserve color chromaticity of the

input vectors much better than the VMF technique.

The set of the first r terms of (26) with simultaneous consideration of (25) consti-

tutes the GVDF filtering scheme defined by
yGVDFðnÞ ¼ xð1ÞðnÞ; xð2ÞðnÞ; . . . ; xðrÞðnÞ
� 	

ð28Þ
The GVDF passes to the filter output the set of r vectors whose angle aiðnÞ, for
i ¼ 1; 2; . . . ;N , to all other vectors inside the filter window W ðnÞ is relatively small.

Simply, the GVDF produces a set of vectors with similar directions in color space,

and therefore the samples with atypical directions are eliminated. To choose one out-

put sample, the GVDF filter is accompanied with an additional filter [33,39], process-

ing the samples xð1ÞðnÞ; xð2ÞðnÞ; . . . ; xðrÞðnÞ according to their magnitude. Usually, the
output set of the GVDF technique serves in the second level of processing as an in-

put for an additional filter, e.g., a-trimmed average filter, multistage median filter

and morphological filters. These filters process the samples xð1ÞðnÞ;xð2ÞðnÞ; . . . ;
xðrÞðnÞ according to their magnitude, since these vectors have approximately equal

directions in a vector space. Thus, the GVDF splits the color image processing into

directional and magnitude processing. The drawback of such an approach is that it

heavily increases the computational complexity of the VDFs.

4.2. Hybrid filtering schemes

Developed later, theDFF [18] and theHVFs [12] techniques combine both ordering

criteria (18) and (22). This causes both approaches to be computationally demanding.
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Consider the DDF scheme utilizing the power parameter p ranged from 0

to 1. This filters make use of hybrid ordering criteria expressed through a

product of the aggregated Minkowski metrics (18) and the aggregated angular

measure (22):
XiðnÞ ¼ ðLiðnÞÞ1�p � ðaiðnÞÞp for i ¼ 1; 2; . . . ;N ; ð29Þ

XiðnÞ ¼
XN
j¼1

kxiðnÞ � xjðnÞkc

 !1�p

�
XN
j¼1

AðxiðnÞ; xjðnÞÞ
 !p

for i ¼ 1; 2; . . . ;N : ð30Þ
The DDF output is the sample xð1Þ 2 fW ðnÞg minimizing (30), i.e., the sample as-

sociated with the smallest value Xð1ÞðnÞ so that Xð1ÞðnÞ6Xð2ÞðnÞ6 � � � 6XðNÞðnÞ for
XðiÞ 2 fX1ðnÞ;X2ðnÞ; . . . ;XN ðnÞg. If p ¼ 0, the DDF operates as the VMF, whereas

for p ¼ 1, the DDF is equivalent to the BVDF.

The introduction of the DDF inspired a new set of heuristic vector processing fil-
ters such as the HVFs [12], which try to capitalize on the same appealing principle,

namely the simultaneous minimization of the distance functions used in the VMF

and the BVDF. The HVFs operate on the direction and the magnitude of the color

vectors independently and then combine them to produce a unique final output. The

HVF1 technique, viewed as a nonlinear combination of the VMF and BVDF filters,

produces an output according to the following rule:
yHVF1
ðnÞ ¼

yVMFðnÞ if yVMFðnÞ ¼ yBVDFðnÞ;
jyVMFðnÞj
jyBVDFðnÞj


 �
yBVDFðnÞ otherwise;

(
ð31Þ
where yVMFðnÞ is the VMF output, yBVDFðnÞ characterizes the BVDF output and j � j
denotes the magnitude of the vector.

Another more complex hybrid filter, which involves the utilization of an arithme-

tic mean filter (AMF), has also been proposed. The structure of this so-called adap-
tive hybrid filter (HVF2) is as follows:
yHVF2
ðnÞ ¼

yVMFðnÞ if yVMFðnÞ ¼ yBVDFðnÞ;
yout1ðnÞ if

PN
i¼1 jxiðnÞ � yout1ðnÞj <

PN
i¼1 jxiðnÞ � yout2ðnÞj;

yout2ðnÞ otherwise;

8<
:

ð32Þ

yout1ðnÞ ¼
jyVMFðnÞj
jyBVDFðnÞj

� �
yBVDFðnÞ; ð33Þ

yout2ðnÞ ¼
jyAMFðnÞj
jyBVDFðnÞj

� �
yBVDFðnÞ ð34Þ
where yAMFðnÞ denotes the output of the arithmetic mean filter operating inside the

same processing window positioned in n. Both hybrid filters defined in (31) and (32)
are computationally demanding, since they require evaluation of both the VMF and
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BVDF outputs. Thus, the two independent ordering schemes are applied to the input

samples to produce a unique final output.
5. Proposed method

Low-pass vector filters, e.g., VMF and VDF, are used to remove impulses or out-

liers, i.e., high frequency elements in the image. The problem is that these multichan-

nel schemes operating on a fixed supporting window introduce excessive smoothing,

blur details and eliminate fine image structures [24,33]. To avoid these drawbacks the

noise reduction filters should be designed so that noise-free samples remain un-

changed during the filtering operation. In the last decade, a number of approaches

were developed that expanded the possibilities of multichannel filter design. The
most favored approaches relate to the adaptive filters [4,22] based on the switching

between the smoothing function and no filtering, incorporate the structural informa-

tion into the filter design [7,14,15,42] and increase the degree of freedom in the filter

design by introducing the coefficients into the filter structure [11,40,44].

In multichannel filtering, state-of-the-art weighted multichannel filters take advan-

tage of theWMfiltering framework as well as the myriad filtering [16,17] of gray-scale

images. Weighted vector median filters [40] have been introduced as the nearest multi-

channel extension of the WM framework with aspects of their optimization discussed
in [21]. Another works dealt with structural contents of the images, especially with dig-

ital paths defined on the image domain [36,37]. In directional processing of color im-

ages, the weighted filtering schemes along with the optimization framework based

on fuzzy sets have been introduced in [32,33] and this concept is understood as the nor-

malized weighted sum of the input sample multiplied by filter weights.

In this paper, we provide selection weighted vector directional filters (WVDFs)

that enhance the flexibility of the VDF schemes by a simple introduction of a non-

negative weight vector into the filter structure. The proposed framework is the near-
est extension of the VDFs and passes to a filter output the input sample minimizing

the aggregated weighted angular distances to other samples inside the filtering win-

dow W ðnÞ. Therefore, the proposed WVDF framework is capable of removing bit

errors and outliers from the color image while preserving the desired structure and

color information. Such applications [25] include television and video [19,34] as well

as new emerging fields such as DNA microarrays [8,10], digital art reconstruction

[5,20], automatic systems of visual inspection [13]. To adapt a filter behavior to vary-

ing image and noise statistics we provide a new optimization framework which can
be viewed as the angular multichannel generalization of the WM optimization. The

problems that hindered the introduction of such an optimization in the past relate to

polarity (sign) in adaptation formulas (14) and (17).

5.1. Selection weighted vector directional filters

Let W ðnÞ ¼ x1ðnÞ;x2ðnÞ; . . . ; xNðnÞ be a set of multichannel vector-valued samples

spawned by a filter window of a finite size N and let xðNþ1Þ=2ðnÞ be a central sample
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corresponding to the window reference position. Let us assume that w1;w2; . . . ;wN

represent a set of positive real weights, where each weight wj, for j ¼ 1; 2; . . . ;N , is

associated with the input sample xjðnÞ. Then, the aggregated angular distance

biðnÞ equivalent to the sum of weighted angular distances associated with the input

sample xiðnÞ is given by
biðnÞ ¼
XN
j¼1

wjAðxiðnÞ; xjðnÞÞ for i ¼ 1; 2; . . . ;N ; ð35Þ
where AðxiðnÞ; xjðnÞÞ represents the angle (23) between two multichannel samples

xiðnÞ and xjðnÞ.
Assuming that the ordering scheme given by ordered angular measures
bð1ÞðnÞ6 bð2ÞðnÞ6 � � � 6 bðNÞðnÞ ð36Þ
implies the same ordering scheme to input vector-valued samples inside W ðnÞ, the
procedure results in the ordered input set xð1ÞðnÞ; xð2ÞðnÞ; . . . ; xðNÞðnÞ.

The output of the WVDF is the sample xð1ÞðnÞ 2 fW ðnÞg associated with the min-

imum weighted angular distance bð1ÞðnÞ 2 fb1ðnÞ; b2ðnÞ; . . . ; bN ðnÞg. Thus, the
WVDFs are outputting the sample from the input set, so that the local distortion

is minimized and no new color artifacts are produced.

WVDF filters constitute a generalized vector filtering class operating on the direc-

tional domain of color images. If all weight coefficients are set to the same value, all

angular distances will have the same importance and the WVDF operation will be

equivalent to the BVDF. If only the center weight can vary in the value, whereas

other weights remain unchanged, i.e.,
wi ¼
N � 2k þ 2 for i ¼ ðN þ 1Þ=2;
1 otherwise;

�
ð37Þ
where k ¼ 1; 2; . . . ; ðN þ 1Þ=2 is a smoothing parameter, the WVDFs perform the
center weighted vector directional filtering (CWVDF). In the case of the

smoothing parameter k ¼ 1, the central weight wðNþ1Þ=2 has the maximum pos-

sible value wðNþ1Þ=2 ¼ N and the CWVDF performs the identity operation. This

causes that the CWVDF output is equivalent to the unchanged input central

sample xðNþ1Þ=2. The larger value of k increases the smoothing capability of the

CWVDF. For the maximum value of k, i.e., k ¼ ðN þ 1Þ=2, the CWVDF pro-

vides the maximum amount of smoothing, which is equivalent to the BVDF

operation.
Let us consider that xð1ÞðnÞ; xð2ÞðnÞ; . . . ; xðNÞðnÞ is the set of multichannel order sta-

tistics achieved using the conventional angular ordering criteria (22). The sample

xð1ÞðnÞ is the lowest ranked vector and xðNÞðnÞ is the uppermost ranked sample.

The WVDF output yðw;W ðnÞÞ is a function of the weight vector w ¼
fw1;w2; . . . ;wNg and it can be expressed as the sample yðnÞ minimizing
yðw;W Þ ¼ argmin
yðnÞ

XN
i¼1

wiAðyðnÞ; xiðnÞÞ ¼ argmin
yðnÞ

F ðyðnÞÞ ð38Þ
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Then, the following statements can be declared:

1. The WVDF filter has only N independent parameters, since its output yðw;W ðnÞÞ
depends only on the weight vector w.

2. The WVDF output corresponds to one of the local minimums of F ðyðnÞÞ.
3. The WVDF output yðw;W ðnÞÞ is always within the range of the order-statistics

xð1ÞðnÞ and xðNÞðnÞ, corresponding to the minimum að1ÞðnÞ and minimum aðNÞðnÞ
aggregated angular distances (22).

4. The WVDF output is restricted to the dynamic range of the input samples. There-

fore, it cannot cause any new outliers and color artifacts.

5.2. Proposed angular optimization

The variety of smoothing operations provided by the WVDFs represents sufficient
motivation for the optimization of their weighting coefficients. In general, filter op-

timization belongs to the most important tasks related to the filter design. The rela-

tionship between the pixel under consideration (window center) and each pixel in the

filter window should be reflected in the decision for the weight coefficients. In the

adaptive design, the weights provide the degree to which the input vector contributes

to the output of the filter.

In this paper, we adaptively determine the sub-optimalWVDFweight vector. Using

directional generalizations of sigmoidal and linear WM optimization approaches, the
proposed methods is capable of tracking varying noise and image statistics.

Main problems related to the extension of the scalar expression (14) to the mul-

tichannel case is the modification of the sign function. The reason is the difficulty of

determining the polarity of the distance measure between two multichannel samples.

In order to solve this problem using the directional processing base calculation, we

replace the difference between two scalar samples a and b with the angle between two

multichannel samples a and b. The polarity of this distance measure is given by the

difference between magnitudes of vectors a and b.
Let us consider the following transformation of the difference a� b between two

scalar samples a and b leading to the generalized difference between two multichan-

nel samples a and b:
Dða� bÞ ¼ Sða; bÞAða; bÞ; ð39Þ

where
Sða; bÞ � þ1 for jaj � jbjP 0;
�1 for jaj � jbj < 0

�
ð40Þ
is the polarity function.
Note that the polarity function introduced here saves the sign of the difference be-

tween the scalar image samples a and b, since for a scalar case m ¼ 1 the magnitude

of a and b is equivalent to a and b, respectively. The polarity function based (39) is

used to design the angular WVDF adaptation mechanisms.

Given an input set W ðnÞ ¼ xð1ÞðnÞ;xð2ÞðnÞ; . . . ; xðNÞðnÞ and a weight vector

w ¼ w1;w2; . . . ;wN , denote the WVDF output as yðnÞ ¼ yðw;W ðnÞÞ. Following pure
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directional processing, the processing error in filtering a desired signal oðnÞ is defined
as eðnÞ ¼ AðoðnÞ; yðnÞÞ, where Að�Þ is the angle of two multichannel samples (23). Us-

ing a simple replacement of the scalar distance in the WM framework with the angle

of multichannel samples (23), it is possible to avoid the complicated derivations and

determine the cost functions corresponding to (2) and (3) as follows:
JMAEðw; nÞ ¼ EfAðoðnÞÞ; yðw;W ðnÞÞg; ð41Þ

JMSEðw; nÞ ¼ EfA2ðoðnÞÞ; yðw;W ðnÞÞg; ð42Þ

where Ef�g represents statistical expectation. With the constraint of non-negative

weights, the optimization problem with inequality constraints is the same as (4)

under (41) and (42).

Like in the WM design, both cost functions (41) and (42) appear to be non-convex

in the weights and dispose with multiple local minimum. Assuming that the optimal
weights are at one of the local minimums, the conditions for optimality are given by
oJMAEðw; nÞ
owi

¼ E sgnðDðoðnÞ
�

� yðnÞÞÞ oyðnÞ
owi

�
; ð43Þ

oJMSEðw; nÞ
owi

¼ 2E AðoðnÞ; yðnÞÞ oyðnÞ
owi

� �
: ð44Þ
5.2.1. Angular sigmoidal approach

Let fx1ðnÞ; x2ðnÞ; . . . ; xN ðnÞg be the input set of m-channel samples and oðnÞ the
desired (original or noise-free) sample. Let us consider that each input sample

xiðnÞ be associated with the nonnegative real weight wiðnÞ, for i ¼ 1; 2; . . . ;N . Then,

we can modify the sigmoidal optimization (14) and formulate its directional gener-

alization for the multichannel case as follows:
wiðnþ 1Þ ¼ P wiðnÞ½ þ 2lDðoðnÞ � yðnÞÞsgnsðDðxiðnÞ � yðnÞÞÞ�; ð45Þ

where yðnÞ is the the output of the sigmoidally optimized WVDF (SWVDF) scheme

related to the actual weight coefficients w1ðnÞ;w2ðnÞ; . . . ;wNðnÞ and the spatial in-

dicator n ¼ 0; 1; . . . ;Q� 1. Notation xiðnÞ describes the input sample with the ith
position in the filter window W ðnÞ. Function Dð�Þ denotes the transformation in-

troduced in (39), sgns characterizes the sigmoidal function (15) and P ð�Þ is a pro-

jection function (11).

5.2.2. Angular linear approach

Let us now consider the generalized linear approximation of the sign function.

The extension of the LMA algorithm (17) based on linear approximation of the sign

function from the scalar case to the vector expression requires to determine the max-

imum and the minimum of the vector-valued input set W ðnÞ and replace the absolute

difference between two scalar samples with the angle (23) between the two multichan-

nel samples. Let the uppermost ranked sample xðNÞðnÞ associated with the maximum

conventional angular distance measure (22) represent the maximum sample of the

vector-valued input set W ðnÞ and the lowest ranked vector xð1ÞðnÞ minimizing the
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sum of angles to other input samples represent the minimum input sample of W ðnÞ.
Thus, the update of the weight coefficients in the adaptive WVDF scheme based on

the linear approximation of the sign function (so-called LWVDF scheme) can be sta-

ted as follows:
Fig. 1

(C) 5%
wiðnþ 1Þ ¼ P ½wiðnÞ þ 2l½DðxðNÞðnÞ � xð1ÞðnÞÞ � 2AðoðnÞ; xiðnÞÞ�

�
XN
j¼1

wjðnÞ½DðxðNÞðnÞ � xð1ÞðnÞÞ � 2AðxiðnÞ; xjðnÞÞ��; ð46Þ
where i ¼ 1; 2; . . . ;N , j ¼ 1; 2; . . . ;N , and l is the positive adaptation stepsize. The

negative weight coefficients are modified by projection operation (11).

The restrictions of both adaptation algorithms (45) and (46) follows the WM op-

timization framework. The adaptation stepsize l should be set a certain small value

(a sensitivity analysis is presented in next Section) and the obtained weight coeffi-

cients cannot be negative. Therefore, the negative weights are projected (42) to zero.

The starting weight vector wð0Þ may be set to arbitrary positive values, however, all

weights in starting vector should have an equivalent importance. Moreover, the pro-
posed optimization schemes require a learning signal like in the WM optimization.
6. Experimental results

The primary purpose of all filtering schemes presented in this paper is to remove

impulses and outliers from the image. Therefore, original test images Lena (Fig. 1A)
. Test color images, (original and contaminated): (A) original image Lena, (B) 2% impulsive noise,

impulsive noise, (D) 10% impulsive noise, (E) 15% impulsive noise, and (F) 20% impulsive noise.
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and Peppers (Fig. 2A) have been corrupted by the impulsive noise [22,33], modeled

as follows:
Fig. 2

noise,

noise.
xðnÞ ¼ vðnÞ with probability pv;
oðnÞ with probability 1� pv;

�
ð47Þ
where n, for n ¼ 0; 1; . . . ;Q� 1, characterizes the spatial position of the samples, Q is

the signal length, oðnÞ is the original sample, xðnÞ represents the sample from the

noisy image and pv is the corruption probability (also referred to a percentage
number of corrupted pixels). Noise vector vðnÞ ¼ ðvRðnÞ; vGðnÞ; vBðnÞÞ is independent
from pixel to pixel and has generally much larger and smaller amplitude than the

neighboring samples at least in one of the components.

The results were evaluated by the commonly used objective measures [2,33], such

as MAE, MSE, and NCD. In designing the proposed method we will minimize these

criteria and try to achieve the best balance between noise attenuation and preserva-

tion of the color/structural information.

Mathematically, the MAE and the MSE are given by
MAE ¼ 1

mQ

Xm
k¼1

XQ�1

n¼0

jokðnÞ � xkðnÞj; ð48Þ

MSE ¼ 1

mQ

Xm
k¼1

XQ�1

n¼0

ðokðnÞ � xkðnÞÞ2; ð49Þ
where okðnÞ and xkðnÞ denote the original and filtered (noisy) value, respectively,

corresponding to the kth image channel and the n-th spatial position in a K1 � K2

color image. Note that n ¼ 0; 1; . . . ;Q� 1, for Q ¼ K1K2.
. Test color images, (original and contaminated): (A) original image Peppers, (B) 2% impulsive

(C) 5% impulsive noise, (D) 10% impulsive noise, (E) 15% impulsive noise, and (F) 20% impulsive
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The NCD criteria [33] expresses well the measure of the color distortion. The

NCD is defined on the Lu*v* color space by
Fig. 3

dent o

tion, (

and (F
NCD ¼
PQ�1

n¼0

ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
ðLoðnÞ � LxðnÞÞ2 þ ðuoðnÞ � uxðnÞÞ2 þ ðvoðnÞ � vxðnÞÞ2

q
PQ�1

n¼0

ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
ðLoðnÞÞ2 þ ðuoðnÞÞ2 þ ðvoðnÞÞ2

q ; ð50Þ
. WVDF linear optimization (LWVDF filter) expressed through objective quality measures depen-

n the iteration stepsize l. Training set was obtained through the image Lena with: (A) no corrup-

B) 2% impulsive noise, (C) 5% impulsive noise, (D) 10% impulsive noise, (E) 15% impulsive noise,

) 20% impulsive noise.
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where LoðnÞ; uoðnÞ; voðnÞ and LxðnÞ; uxðnÞ; vxðnÞ are values of the lightness L and

chromaticity components u; v of the original image sample oðnÞ and the noisy image

sample xðnÞ, respectively.
The WVDF weighting coefficients were adapted for the color image filtering task

using the well-known color test images Lena (Fig. 1A) and Peppers (Fig. 2A) and
also their corrupted versions (Figs. 1B–F and Figs. 2B–F) contaminated with 2, 5,

10, 15, and 20% impulsive noise as the training sets, respectively. All filtering results

were obtained with a 3� 3 square window and the number of samples N ¼ 9.
Fig. 4. WVDF linear optimization (LWVDF filter) expressed through normalized measures dependent on

the iteration stepsize l. Training set was given by the image Peppers with: (A) no corruption, (B) 2% im-

pulsive noise, (C) 5% impulsive noise, (D) 10% impulsive noise, (E) 15% impulsive noise, and (F) 20% im-

pulsive noise.
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The proposed WVDF optimization started with the same initial weighting vector

wð0Þ ¼ ½1; 1; 1; 1; 1; 1; 1; 1; 1� which corresponds to the BVDF operation. The

achieved results are shown in Figs. 3–6 as functions of the image restoration quality

measures in dependence on the value of the iteration constant l, which ranged from

10�5 to 103. The obtained results indicate that the performance of the WVDF based
on linear approximation of the sign function (LWVDF), decreases with the increas-

ing value of l. The most appropriate value of l related to the LWVDF (Fig. 3 and
Fig. 5. WVDF sigmoidal optimization (SWVDF filter) expressed through normalized measures dependent

on the iteration stepsize l. Training set was delivered by the image Lena with: (A) no corruption, (B) 2%

impulsive noise, (C) 5% impulsive noise, (D) 10% impulsive noise, (E) 15% impulsive noise, and (F) 20%

impulsive noise.
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Fig. 4) was found to be around 0.001. For larger values of l, the LWVDF does not

converge to sub-optimal solution and its performance is worse. In the case of the

WVDF with sigmoidal approximation of the sign function (SWVDF), the most ap-

propriate l was found (Fig. 5 and Fig. 6) to be around 0.1. For smaller l the

SWVDF provides worse detail preserving characteristics and after some critical
point, which depends on the statistical properties of the training sequence, it con-

verges to the filtering operation close to the one performed by the BVDF.
Fig. 6. WVDF sigmoidal optimization (SWVDF filter) expressed through quality measures dependent on

the iteration stepsize l. Training set was given by the image Peppers: (A) no corruption, (B) 2% impulsive

noise, (C) 5% impulsive noise, (D) 10% impulsive noise, (E) 15% impulsive noise, and (F) 20% impulsive

noise.



Fig. 7. Achieved results related to image Lena degraded by 10% impulsive noise (training set). (A) VMF

output, (B) BVDF output, (C) MF output, (D) WVDF1 output (E) LWVDF output, and (F) SWVDF

output.
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To achieve the robust weighting coefficients used throughout this paper, we used

the test image LENA corrupted by 10% impulsive noise as the training set. The rea-

son is that this image and the considered noise corruption represent a compromise

between the image features complexity and the degree of noise corruption. After
the optimization of the WVDF weight coefficients, we tested the performance of

the new methods using both original and noisy images, performing a series of tests
Fig. 8. Estimation errors emphasized by a factor of 2.5 related to the results shown in Fig. 7. (A) VMF,

(B) BVDF, (C) MF, (D) WVDF1, (E) LWVDF, and (F) SWVDF.



Fig. 9. Zoomed results obtained using the Lena test image. (A) original image, (B) noisy image (2%

impulsive noise), (C) VMF output, (D) BVDF output, (E) LWVDF output, and (F) SWVDF output.
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in which the images were corrupted by impulsive noise with a wide degree of noise

corruption intensities. The considered image disturbance ranged from 0 to 20% im-

pulsive noise with fixed stepsize 1%. These values correspond to the impulse proba-
bility pv ranging from 0 to 0.20 with the fixed stepsize of 0.01.
Fig. 10. Estimation errors emphasized by a factor of 2.5 related to the test image Lena degraded by 2%

impulsive noise: (A) VMF, (B) BVDF, (C) MF, (D) WVDF1, (E) LWVDF, and (F) SWVDF.



Fig. 11. Zoomed results related to test image Peppers. (A) original image, (B) noisy image (15% impulsive

noise), (C) VMF output, (D) BVDF output, (E) LWVDF output, and (F) SWVDF output.

R. Lukac et al. / Computer Vision and Image Understanding 94 (2004) 140–167 161
Fig. 7 shows the results related to the filtering of the training set. It can be ob-

served that the optimal filters LWVDF (Fig. 7E) and SWVDF (Fig. 7F) provide im-

proved signal-detail preservation capabilities in comparison with the componentwise

MF (Fig. 7C) and standard vector filters such as VMF (Fig. 7A), BVDF (Fig. 7B).
This behavior is more visible in Fig. 8, which corresponds to the estimation errors of
Fig. 12. Estimation errors emphasized by a factor of 2.5 related to the test image Peppers degraded by

15% impulsive noise: (A) VMF, (B) BVDF, (C) MF, (D) WVDF1, (E) LWVDF, and (F) SWVDF.
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the above mentioned methods. Note, that the WVDF1 and the WVDF2 describe the

non-optimized WVDFs with the weighting vectors [2,1,2,1,3,1,2,1,2] and

[1,2,1,4,5,4,1,2,1], respectively. The undesired effect of blurring of fine image details

introduced by VMF, BVDF, and componentwise MF is shown in Figs. 8A–C. It can

be easily observed that the VMF filter (Fig. 8A) excellently suppresses impulses pres-
ent in the image, however some edges and image details are heavily blurred, espe-

cially at transitions between image regions. In the case of the BVDF, the
Fig. 13. Performance of the relevant methods for increasing intensity of the impulsive noise corruption.

(A,C,E) test image Lena, (B,D,F) test image Peppers (A,B) MAE criteria, (C,D) MSE criteria, and

(E,F) NCD criteria.
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increased estimation error (Fig. 8B) is caused by pure directional processing. In some

situations, the decreased noise attenuation capability of the BVDF can result in the

presence of impulses in the filtered image. Since the DDF combines the properties of

both VMF and BVDF, it can achieve better results than that of the BVDF and

VMF. However, in the case of the MF, the corresponding image is often character-
ized (Fig. 8C) by larger estimation error than the VMF or BVDF, since its output

usually represents a new image sample of different color in comparison with the de-

sired neighborhood. The outputs (Figs. 7E and F) of the proposed LWVDF and

SWVDF filters are characterized by an excellent balance between signal-detail pres-

ervation and the noise suppression. This results in very small estimation error de-

picted in Figs. 8E and F.

Figs. 9–12 show the results of the new methods when applied to images different

from the training sequence. It can be observed again that the proposed LWVDF and
SWVDF achieve better results than standard filters, despite the fact that the optimal

WVDFs were optimized using the training set with different amount of injected

noise.

The robust behavior of the new filters in environments corrupted by impulsive

noise is presented in Fig. 13. These results correspond to the objective criteria depen-

dent on degree of the noise corruption. Note that the intensity (probability) of im-

pulsive noise ranged from pv ¼ 0 to pv ¼ 0:20 with the stepsize 0.01. In general,

the proposed SWVDF framework provides the best signal-detail preservation ex-
pressed through the MAE measure. In the case of the NCD criteria, both optimal

filters designed within the proposed WVDF framework provide the best results

among the tested filters.

Tables 1–4 allow for the numerical, objective comparison of the results. Compo-

nentwise MF filter [46], standard vector filters (VMF [1], BVDF [39], and DDF [18]),
Table 1

Comparison of the presented algorithms using original images

Image Lena Peppers

Method/

Criterion

MAE MSE NCD MAE MSE NCD

MF 3.123 43.5 0.03987 2.946 35.5 0.04330

VMF 3.190 45.4 0.03816 2.885 36.7 0.04111

BVDF 3.605 52.7 0.03870 3.458 50.2 0.04031

DDF 3.288 46.8 0.03812 2.907 37.5 0.03965

AVDF 4.112 50.2 0.04698 3.853 44.8 0.05248

GVDF 3.489 52.4 0.04124 3.350 50.4 0.04642

HVF1 3.341 46.1 0.03900 2.997 35.9 0.04082

HVF2 3.332 45.4 0.03894 2.992 35.5 0.04079

WVDF1 2.842 41.3 0.03063 2.690 40.1 0.03105

WVDF2 2.379 32.5 0.02557 1.852 23.9 0.02347

LWVDF 2.212 27.6 0.02378 2.043 27.2 0.02373

SWVDF 1.552 16.2 0.01644 1.596 20.4 0.01915



Table 2

Comparison of the presented algorithms using impulsive noise corruption pv ¼ 0:05

Image Lena Peppers

Method/

Criterion

MAE MSE NCD MAE MSE NCD

Noisy 3.762 427.3 0.04450 3.988 486.1 0.04414

MF 3.394 49.7 0.04420 3.248 43.1 0.04841

VMF 3.430 50.8 0.04031 3.169 43.9 0.04520

BVDF 3.818 58.6 0.04073 3.740 60.7 0.04378

DDF 3.509 52.3 0.04023 3.182 44.6 0.04309

AVDF 4.301 54.3 0.04834 4.068 51.4 0.05522

GVDF 3.697 59.2 0.04301 3.605 62.5 0.04855

HVF1 3.587 51.8 0.04101 3.282 42.9 0.04413

HVF2 3.573 50.4 0.04095 3.274 41.9 0.04413

WVDF1 3.054 47.7 0.03267 2.974 52.2 0.03449

WVDF2 2.643 41.5 0.02826 2.197 38.1 0.02751

LWVDF 2.399 33.4 0.02569 2.296 37.6 0.02677

SWVDF 1.783 24.2 0.01885 1.876 33.9 0.02274

Table 3

Comparison of the presented algorithms using impulsive noise corruption pv ¼ 0:10

Image Lena Peppers

Method/

Criterion

MAE MSE NCD MAE MSE NCD

Noisy 7.312 832.0 0.08401 7.677 943.3 0.08696

MF 3.703 56.8 0.04893 3.579 53.9 0.05463

VMF 3.687 56.5 0.04285 3.503 55.0 0.04935

BVDF 4.099 67.6 0.04321 4.151 82.7 0.04844

DDF 3.733 57.3 0.04240 3.512 56.6 0.04749

AVDF 4.540 59.5 0.05029 4.370 61.6 0.05946

GVDF 3.925 66.8 0.04481 3.862 72.7 0.05091

HVF1 3.857 56.9 0.04344 3.626 53.6 0.04855

HVF2 3.840 55.5 0.04339 3.614 52.4 0.04853

WVDF1 3.347 58.2 0.03537 3.399 77.1 0.03932

WVDF2 2.989 56.3 0.03138 2.659 65.9 0.03249

LWVDF 2.661 42.5 0.02810 2.642 55.2 0.03103

SWVDF 2.114 39.8 0.02192 2.330 67.3 0.02745
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adaptive vector directional filter (AVDF) [32] and two hybrid vector filters (HVF1

and HVF2) [12] are compared in terms of performance with the proposed non-opti-

mized (WVDF1 and WVDF2) and optimized (LWVDF and SWVDF) filters. These

results again confirm that the proposed WVDF framework can be designed to pro-

vide an excellent trade-off between noise attenuation and signal-detail preserving

characteristics. Moreover, the proposed framework outperforms basic filtering

schemes in terms of the commonly used objective measures as well as visual compar-



Table 4

Comparison of the presented algorithms using impulsive noise corruption pv ¼ 0:20

Image Lena Peppers

Method/

Criterion

MAE MSE NCD MAE MSE NCD

Noisy 14.019 1604.6 0.16252 14.912 1832.0 0.16938

MF 4.521 87.9 0.06198 4.487 91.4 0.07266

VMF 4.335 80.3 0.04924 4.232 85.7 0.06008

BVDF 4.859 107.8 0.04987 5.111 152.9 0.06024

DDF 4.321 78.8 0.04834 4.254 90.4 0.05796

AVDF 5.258 80.4 0.05722 5.226 98.3 0.07394

GVDF 4.345 83.4 0.04928 4.395 106.5 0.05771

HVF1 4.548 80.4 0.05003 4.411 86.4 0.05998

HVF2 4.547 79.5 0.04999 4.409 84.5 0.05996

WVDF1 4.212 106.8 0.04306 4.571 167.2 0.05317

WVDF2 4.113 131.6 0.04141 4.275 206.5 0.05033

LWVDF 3.466 92.3 0.03533 3.824 148.6 0.04467

SWVDF 3.345 136.1 0.03333 4.064 234.1 0.04648
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isons and significantly improves performance of directional processing based multi-

channel filters.
7. Conclusion

An important task in nonlinear image filtering relates to developing of a unified

theory, which would generalize a variety of existing nonlinear filters and provide ver-
satile optimization algorithms. In this sense, we introduced a generalized WVDF

framework for color image filtering based on the color vectors� directionality. New

angular multichannel optimization algorithms of the WVDF weighting coefficients

have been provided as well. The successful adaptation of the WVDFs to varying im-

age noise statistics was confirmed by the presented results. The proposed filtering

technique clearly outperforms the standard vector filters including widely used

VMF and BVDF schemes. Moreover, the developed multichannel angular optimiza-

tion is fast, saves memory space and is easy to implement. After the optimization, the
proposed WVDFs are sufficiently robust and useful for practical image processing

applications.

Future research will focus on the automatic setting of the adaptation parameter in

the proposed filter class and the design of versatile self-adaptive optimization elim-

inating the need for a learning signal.
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