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Abstract

This paper presents a novel filtering framework capable of processing cDNA microarray images. The proposed
two-component adaptive vector filters integrate well-known concepts from the areas of fuzzy set theory, nonlinear
filtering, multidimensional scaling and robust order-statistics. By appropriately setting the weighting coefficients
in a generalized framework, the method is capable of removing noise impairments while preserving structural
information in cDNA microarray images. Noise removal is performed by tuning a membership function which
utilizes distance criteria applied to cDNAvectorial inputs at each image location. The classical vector representation,
adoptedhere for a two-channel processing task, aswell asanewcolor-ratiomodel representationareused.Simulation
studies reported in this paper indicate that the proposed adaptive fuzzy vector filters are computationally attractive,
yield excellent performance and are able to preserve structural information while efficiently suppressing noise in
cDNA microarray data.
© 2004 Elsevier B.V. All rights reserved.
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1. Introduction

Complementary deoxyribonucleic acid (cDNA) microarray technology[1,7] is an advanced tool used
in the investigation of toxicological problems determined via cellular response to low-dose ionizing
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Fig. 1. Red–Green image channels of the cDNA microarray: (a) Red channel as a gray-scale image, (b) Green channel as a
gray-scale image, (c,d) colored channels, (e) cDNA microarray visualized as the RGB image with zero B components.

radiation. This new methodological advancement is used to analyze changes in genome-wide patterns of
gene expression in different populations of cells. It is therefore not surprising that cDNA technology is
used to identify potentially hazardous substances, such as carcinogens and reproductive toxins.
A microarray (Fig.1) is a collection of green, red and yellow discrete spots containing DNA, deposited

on the surface of a microscope glass slide[6]. Each spot contains multiple copies of a single DNA
sequence. The spots occupy a small fraction of the image area and they have to be individually located
and isolated from the image background prior to the estimation of its mean intensity.
The cDNA microarray image represents a two-channel Red–Green (RG) image (Figs.1 and2) and

thus should be considered a vector-valued image signal or vector field[17]. In this set-up, variation in
image background and image artifacts, as well as spot sizes and positions represent the major sources
of uncertainty in spot finding and gene expression determination. In particular, non-specifically bounded
DNA or dye molecules and the natural fluorescence of the glass slide result in a substantial noise floor
in the microarray image. These noise impairments along with discrete image artifacts necessitate the use
of image filtering prior to subsequent analysis[6,12]. The purpose of subsequent processing tasks is to
analyze the spots, normalize the arrays and to identify which genes each type of cells are expressing. Due
to thousands of spots, the procedure should be fully automated. Note that any errors or noise introduced
is being propagated through subsequent analysis. Therefore, removing noise in cDNAmicroarray images
makes the spots easier to detect and analyze, and in the end of the process obtained gene expression
measurements are more accurate to interpret[30].
It has been observed that changes of the pixel intensities from the foreground to the background can

be attributed to the Gaussian nature of noise corrupting cDNA chips[19]. Isolated discrete artifacts and
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Fig. 2. Another example of the cDNA microarray and real noise affecting both Red and Green image channels: (a) Red channel
as a gray-scale image, (b) Green channel as a gray-scale image, (c,d) colored channels, (e) cDNA microarray visualized as the
RGB image with zero B components.

outliers present in the cDNA microarray image can be attributed to impairments which are impulsive in
nature[14]. In conventional image processing applications, noise corruption of such nature is most often
modelled throughamixtureofadditiveGaussiannoiseand impulsivenoise[26].Due to thevectorial nature
of the microrray image data and taking into consideration the noise characteristics in cDNA microarray
images, fuzzy logic-based techniquesareadoptedhere to forma two-channel imageprocessing framework
and used as a solution to the estimation problem.
Through the utilization of linguistic terms, a fuzzy rule-based approach to signal processing allows

for the incorporation of human knowledge and intuition into the design, which cannot be achieved
via traditional mathematical modelling techniques. However, there is no optimal way to determine the
number and type of fuzzy rules required for the fuzzy image operation. Usually, a large number of rules are
necessary and the designer has to compromise between quality and number of rules used, since even for a
moderate processing window, a large number of linguistic rules are required. Therefore, data-dependent
filters adopting fuzzy reasoning havebeenproposed to overcome thesedifficulties.Thesedesigns combine
fuzzy concepts, such as membership functions, and fuzzy aggregators with nonlinear filters[23].
This paper builds on the developments in the area of data-dependent fuzzy systems suitable for vector

signal processing. It has beenobserved that fuzzy filters canbe successfully applied tomanynoise removal
problems[22] and thus, there is a supposition that this signal processing framework may also be suitable
in cDNA microarrays. To the best of the authors knowledge it is the first time ever that vector processing
filters based on fuzzy logic concepts are designed and used to attenuate noise in two-channel images such
as cDNAmicroarrays. Since in this application environment the original noise-free data are not available
to the designers, the problem of determining the optimal filtering structure becomes more challenging
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compared to the case of natural color image filtering design. To minimize distortion introduced during
processing and to increase the precision in estimating true cDNA values, the filtering scheme considered
here utilizes weighting coefficients which are adaptively determined on the basis of local signal context
expressed via aggregated distances between the vectorial inputs. The adaptive approaches adopted here
for the two-channel, cDNA microarray image processing integrate well-known concepts from the areas
of fuzzy set theory, nonlinear filtering, multidimensional scaling and robust order-statistics. In addition
to the classical vector distance based solutions, a novel design based on the color-ratio model is also
introduced, studied and applied. Utilizing the existing correlation between the R and G channels in the
cDNA image, the color-ratios serve as the input to filter’s membership function. Since the color-ratio
quantities have significantly decreased the high-frequency portion of the signal, the filtering procedure is
able to faithfully preserve edges and structural content of the cDNA image.
The rest of this paper is organized as follows. In Section 2, the fundamentals of cDNA imaging are

introduced.The formulation of the problem is given and the state-of-the-art in vector filtering techniques is
discussed.A generalized framework for filtering noise in cDNAmicroarrays using fuzzy logic principles
is introduced in Section 3. Motivation and design characteristics are discussed in detail. Variations of the
proposed structure are recommended and analyzed with respect to their properties and parameters used.
In Section 4, the proposed methods are tested in a variety of cDNA microarray images. Conclusions are
offered in Section 5.

2. cDNA imaging

2.1. Biological background

Deoxyribonucleic acid (DNA) is a chemical structure that forms chromosomes. A piece of a chromo-
some that dictates a particular feature is called a gene. Note that many genes are used to specify features
unique to each type of cell and DNA repair is one of the most critical cellular functions. Therefore,
deficiencies in repair commonly relate to susceptibility to genetic diseases, chromosome abnormalities,
and cancers. Recent developments in the microarray technology allow for looking at many genes at once
and determine a particular cell type with specific gene expression[7,8].

2.2. Microarray basics

The cDNAmicroarray technology is based on arraying of known cDNAsequences, the so-called cDNA
probes, onto a glass slide with labelled cDNA target sequences[3]. Expression arrays containing up to
80,000 probes are printed onto a 2× 4 cm2 area on a microscope glass slide. The arrays parameters
are 75–100�m probe diameter and 150�m spacing between probes. Based on the widely used two-
color Cy3/Cy5 system[18], the control sequence is usually fluor-tagged with green (Cy3), where as the
experimental (target) sequence is tagged with red (Cy5). The hybridization procedure refers to the pairing
of the fluorescent cDNA to the spotted DNA. Following a 16–24h long washing at 65◦C temperature,
the slides are scanned at the corresponding wavelengths (i.e.∼ 540 nm for green and∼ 630 nm for red)
generating two 16-bit images[10]. The composed RG color image contains red, green and yellow spots
which indicate that a particular gene is expressed in the control channel, experimental channel or both of
them, respectively.
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Fig. 3. Differences between the two-dimensional vectorsxi = [xi1, xi2]T andxj = [xj1, xj2]T expressed in theRG color space:
(a) expressed through the Euclidean metrics‖xi − xj‖2 in the magnitude domain, (b) expressed through the angle A(xi , xj ) in
the directional domain.

2.3. Image representation

Let us consider, aK1 × K2 two-channel imagex : Z2 → Z2 representing a two-dimensional matrix
of 2-component samplesxi = [xi1, xi2]T. Note that cDNA microarrays represent RG images[14,25], as
shown in Fig.1 and2. Componentsxik, for k = 1,2 andi = 1,2, . . . , Q; Q = K1K2, represent thekth
elements of the vectorial inputxi .
Each two-channel samplexi can be considered as a two-dimensional vector in the vector space

(Fig. 3). As such, each vector is uniquely defined by its length (magnitude) and orientation (direction) in
the vector space[17]. For a color vectorxi , its magnitudeMx : Z2 → R+ is defined as follows:

Mxi
= ‖xi‖ =

√
(xi1)2 + (xi2)2. (1)

The directionality ofxi is expressed viaDx : Z2 → S defined as

Dxi
= 1

‖xi‖xi = 1

Mxi

xi , (2)

dxik
= xik

‖xi‖ = xik

Mxi

, for k = 1,2, (3)

whereS is a unit ball inR2 and‖Dxi
‖ = 1.

Assuming zero B components, a cDNA microarray can be easily visualized in the RGB color space
or stored as a conventional RGB color image[17]. Following this interpretation, as shown in Fig.4, the
magnitudeMxi

obtained in (1) and directionDxi
= [dxi1, dxi2,0]T, forDx : Z2 → S2, of theRGBvectors

xi = [xi1, xi2,0]T of the three-channel imagex : Z2 → Z3 constitute a measure of their brightness and
chromaticity, respectively.

2.4. Problem formulation

Although recognition of spots in either control or experimental channels seems to be straightforward,
the task is complicated and challenging. The cDNA microarray image suffers from high-level noise and
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Fig. 4. Basic quantities of the color vectorxi = (xi1, xi2, xi3) used in RGB color image processing: (a) brightnessMxi , (b)
chrominance defined as the pointDxi on unit sphere.

edge uncertainty[29]. A number of noise sources mostly in the form of photon noise, electronic noise,
laser light reflection and dust on the slide contribute to impairments and defects. These imperfections
alongwith the background fluorescence introduce into the image considerable variability in intensity both
within and between the individual spots[30]. It has been observed that changes of the pixel intensities
from the foreground to the background can be attributed to the Gaussian nature of noise[19]. Isolated
discrete artifacts and outliers present in the cDNA microarray image can be attributed noise impulsive in
nature[14]. Heterogeneous brightness of outliers as well as variability of multipixel artifacts in shape and
size make spots hard to detect and remove automatically. Automated spot finding tools can mistakenly
detect bright artifacts as spots. It has to be mentioned that spots are themselves of variable size and
brightness and this significantly complicates the task.
It is therefore reasonable to assume that unprocessed cDNA microarray data can be represented via

the commonly used additive noise model[4,22]:

xi = oi + vi , (4)

wherexi = [xi1, xi2]T represents the observed (noisy), two-channel cDNA sample,oi = [oi1, oi2]T is
the desired (noise free) sample,vi = [vi1, vi2]T is the vector describing the impairment withi denoting
the spatial position of the samples in the image array.

2.5. Background on vector signal processing

Based on these noise characteristics, local filtering operators are designed to replace the corrupted
cDNA RG vectorial input with the vectors which are statistically close to its neighbors. Such a filter is
operating on some type of sliding windowW = {xi ∈ Z2; i = 1,2, . . . , N} of finite sizeN (Fig. 5).
The filtering procedure usually affects one image sample as a time (mostly the samplex(N+1)/2 placed
in the center of the window), changing its value through a function applied to a local neighborhood area
{x1, x2, . . . , xN } [21,26]. This window operator slides over the image to individually affect all the image
pixels.
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Fig. 5. Arrangements of the vectorial inputs in the sliding supporting windowW.

2.5.1. Vector median filter
Probably the most well-known color image filter is the vector median filter (VMF)[4]. The VMF can

be derived as a maximum likelihood estimate (MLE), when the underlying probability densities ofvi are
double exponential. The output of theVMF scheme is the input vectorx(1) ∈ W minimizing the distance
to other samples inside the input setW:

min arg
x(1)∈W

N∑
i=1

‖x(1) − xi‖L, (5)

where‖xi − xj‖L is the generalized Minkowski metric[23] determining here the distance between two
cDNA image vectors which represent two-channel samplesxi = [xi1, xi2]T andxj = [xj1, xj2]T:

‖xi − xj‖L =
(

2∑
k=1

|xik − xjk|L
)1/L

, (6)

whereL denotes the norm parameter, e.g. the city-block distance (L = 1) or Euclidean distance (L = 2)
andxik is thekth element ofxi .
The output of the VMF filter can be equivalently determined using the vector order-statistics. Let us

denote

Di =
N∑

j=1
‖xi − xj‖L for i = 1,2, . . . , N (7)

as the aggregated measure associated withxi , then the ordered sequence ofD1, D2, . . . , DN is given
byD(1)�D(2)� · · · �D(N). Assuming that the ordering ofD(i)’s implies the same ordering of the input
setx1, x2, . . . , xN , the procedure results in ordered setx(1), x(2), . . . , x(N), wherex(i) is associated with
D(i). In this case, the VMF output is defined as the lowest order-statisticsx(1), which is equivalent to the
sample minimizing earlier definition (5).
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Based on the VMF-framework operating on the magnitude of the vectorial inputs, the adaptive VMF
scheme[14] and the digital path approach[25] were successfully used to remove noise in cDNAmicroar-
rays, which are the special case of a color image. Whereas the conventional VMF as well as the adaptive
VMF scheme are designed to remove impulses or isolated outliers, the digital path filtering technique is
capable of removing noise which is statistically close to the additive Gaussian noise model.

2.5.2. Vector directional filters
Within the vector processing framework, the class of vector directional filters (VDF)[28], is operating

on the directional domain of the color image. It has been observed that the output of the basic vector
directional filter (BVDF) defined within theVDF class is the color vectorx(1) ∈ W whose direction is the
MLE of directions of the input vectors[20]. Thus, the BVDF outputx(1) minimizes the angular ordering
criteria to other samples inside the sliding filtering windowW:

min arg
x(1)∈W

N∑
i=1

A(x(1), xi), (8)

where

A(xi , xj ) = arcos

(
xi · xj

|xi ||xj |
)

= arcos


 xi1xj1 + xi2xj2√

x2i1 + x2i2

√
x2j1 + x2j2


 (9)

represents the angle between two cDNA image vectorsxi andxj .
Similarly as in the VMF scheme, the BVDF filter can be equivalently expressed through the order-

statistic approach. Assuming that each vectorial input is associated with the aggregated angular measure

�i =
N∑

j=1
A(xi , xj ) for i = 1,2, . . . , N (10)

and the ordering of�i ’s implies the same ordering of the input vectorsxi , the samplex(1), i.e. the lowest
ranked vector or the lowest order-statistics, associated with the minimum aggregated angular measure
�(1) ∈ {�1, �2, . . . , �N } is the BVDF output.
The angular minimization approach is useful for color data as it preserves chromaticity. Since au-

tomated gene expression techniques utilize the color information to indicate a channel (control and/or
experimental) and spots as well as noise vary in color, directional processing may be also useful in cDNA
microarrays. Except pure directional processing, the filtering techniques can be designed to combine both
directional and magnitude processing. Such a filtering class includes the generalized vector directional
filter (GVDF) and the double window GVDF[28]. These filters eliminate the color vectors with atyp-
ical directions in the vector space and the vectors with the most similar orientation are then processed
according to their magnitude. Thus, the GVDF splits the color image processing into the directional
processing and the magnitude processing. Selection weighted vector directional filters[15,16]minimize
the aggregated weighted angles between the color vectors and improve the detail-preserving filtering
characteristics of the conventional VDF schemes.
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3. Fuzzy vector filtering framework

Many fuzzy techniques developed for low-level image processing tasks have been proposed for
monochromatic images[2,5,24]. Most of these image processing tasks relate to gray-scale edge detection,
image sharpening, video coding and noise removal. Recent works incorporate fuzzy logic, fuzzy set the-
ory and fuzzy rules to develop efficient and cost-effective color image processing systems[13,22,23,27].
Before the introduction of adaptive fuzzy vector filters designed to remove noise and simultaneously
preserve the color/structural content of the cDNA microarrays, let us briefly describe fuzzy logic basics.

3.1. Fuzzy logic basics

For understanding of fuzzy logic it is important to discuss fuzzy sets[33]. Fuzzy sets are commonly
considered as sets with unsharp boundaries and thus, they are better suited to deal with tolerance for
some inexactness and imprecision compared to a conventional set theory approach. The characteristic
function of a fuzzy set is called the membership function and depending on definition it can take a variety
of different shapes[32,33].
The fuzzy rule-based system shown in Fig.6 utilizes fuzzy logic to convert the linguistic term into the

fuzzy quantities. In order to use fuzzy logic in a particular processing task, the fuzzification procedure
transforms the input data into fuzzy values. These are processed in the inference engine using the set of
IF-THEN-ELSE fuzzy-rules usually constituted in the if-then format. Defuzzification procedure converts
the fuzzy output into the original (crisp) application format.

3.2. Adaptive filter design based on vectorial inputs

Since the images are highly non-stationary in edges and due to the difficulty in distinguishing between
noise and edge pixels, fuzzy sets are highly appropriate for image filtering tasks[23]. A number of fuzzy
filters adopt a window-based, rule-driven approach leading to data-dependent fuzzy solution. Using a
bank of fuzzy rules the fuzzy filter directly yields the filtered output taking into account selected patterns
in the neighborhood of the element to be processed. Since the antecedents of fuzzy rules can be composed
of several local characteristics, it is possible for the fuzzy filter to adapt to local data. Local correlation
in the data is utilized by applying the fuzzy rules directly on the signal elements which lie within the
operational window. Thus the output of the fuzzy filter depends on the fuzzy rule and the defuzzification
process, which combines the effects of the different rules into an output value.
Todesign the fuzzy-system,as theoneshown inFig.6, for aparticular processing task (e.g. filtering), the

fuzzy rules must be optimally set using the optimization procedure[11]. Such an approach is appropriate
in applications, where the original signal and the time enough for learning are available. Most often the
training is performed via genetic algorithm optimization[9] which can significantly increase the overall
computational cost. Such an approach for color images has been introduced in[27]. With respect to the
application considered here, where the original data are not available, the fuzzy vector filters are designed
to remove noise in cDNA microarrays operating directly on (noisy) cDNA vectorial inputs. In this way,
no fuzzy rules are required in designing the proposed microarray image processing tools.
Since the most commonly used method to decrease the level of random noise present in the signal is

smoothing, an averaging operation is required in order to replace the noisy vectorx(N+1)/2 at the window
center with a suitable vector representative for the local image areaW = {x1, x2, . . . , xN }. The general
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Fig. 6. Block scheme of the conventional fuzzy system with the learning mechanism.

Fig. 7. Block scheme of the adaptive fuzzy vector filter considered here.

form of the system presented here is given as a fuzzy weighted average[22] of the input vectors inside
the supporting windowW:

y = f

(
N∑

i=1
wixi

)
= f

(
N∑

i=1
�ixi/

N∑
i=1

�i

)
, (11)

wheref (·) is a nonlinear function that operates over the weighted average of the input set andwi is the
filter weight and�i is the fuzzy membership function, both associated with the input color vectorxi . The
weightswi , for i = 1,2, . . . , N , provide the degree to which an input vector contributes to the output
of the filter. The relationship between the central samplex(N+1)/2 and its neighborsxi ∈ W should be
reflected in the decision for the weights of the filter. Since the solution is unbiased, the fuzzy estimator
(11) must satisfy two conditions[22]: i) wi �0, and ii)

∑N
i=1 wi = 1.

Operating on the cDNA vectorial inputsxi , the weightswi of (11) are determined adaptively here
using functions of a distance criterion between the input vectors (Fig.7). Such a distance criterion can
be based on Minkowski metrics (6), angular measure (9) or other distance measures which can be found
in [23]. The weights can be considered to be a membership function based on a given vectorial input set
W. As it can be seen from (11), the proposed fuzzy vector filtering scheme uses the membership values
�i to calculate the final filtered output. Using a distance between input vectors, a membership function
value can be used to quantify the degree of similarity of the samplexi to the other samples inW. Such a
membership function can be defined as

�i = 1

1+ f (d(xi , xj ))
, (12)
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whered(xi , xj ) denotes the distance between input vectorsxi andxj . Based on the above definition,
�i → 0 for d(xi , xj )→∞ and�i = 1 for d(xi , xj ) = 0. Depending on the specific distance measure that
is applied to the input data, a different fuzzy membership function can be devised.
Since the relationship between distances measured in physical units and perception is generally ex-

ponential[22], an exponential type of function maybe suitable to be used in the weighting formulation.
Utilizing the sigmoidal membership function and the aggregated chrominance (angular) criteria�i of
(10), the weight adaptation in (11) is performed as follows:

�i = � (1+ exp{�i})−r , (13)

where� is a normalizing constant andr is a parameter adjusting the weighting effect of the membership
function. Based on the aggregated Minkowski metricsDi of (7), the adaptation formula (13) is redefined
as follows:

�i = � (1+ exp{Di})−r . (14)

Thus, the proposed fuzzy vector filters can operate either onmagnitude or direction of the vectorial inputs.
Since�i andDi significantly differ in the values, (13) and (14), respectively, produce different degrees of
membership and the filtering scheme (11) will result in two different outputs. This increases the degree
of freedom in design of the proposed method.
To avoid optimization of fuzzy rules, the proposed adaptive fuzzy system utilizes the inference engine

in the form of transformed distance metrics between the vectorial inputs ofW. Since the output of the
adaptive fuzzy systemconsideredhere dependson local neighborhoodW, the system is capable of tracking
the varying image and noise statistics. The training or learning of the weighting coefficients is only based
on local image features without the use of linguistic fuzzy rules or local statistics estimation.
The cost-effective defuzzification step is realized via the filtering procedure, which replaces the noise-

corrupted cDNA image vectorx(N+1)/2 located at the window center by a prototype vectory. Such an
output has theminimization property, since it determines themost appropriate vectorial value to represent
a collection of cDNA inputsx1, x2, . . . , xN whose membership functions have been constructed over a
universe of discourse. It has been proved that a widely used centroid defuzzification approach, the so-
called center of gravidity, generates the defuzzified value which is at the center of the values of a fuzzy
set[22]. Therefore, the generalized filtering scheme of (11) based on membership functions defined via
the distance concept also satisfies minimization property required in noise removal applications.
Thedefuzzifiedvectoryobtained through thecentroiddefuzzificationapproach isnot part of theoriginal

input setW. In some image processing application[17], constrained solutions such as theVMF of (5) and
the BVDF of (8) that can provide higher preservation of image details compared to the unconstrained
solutions, are required. Therefore, the different defuzzification strategy should be used and the adaptive
weights in (11) can be re-defined as follows:

wi = ��
i∑N

i=1 ��
i

= (�i/�(max))
�∑N

i=1 (�i/�(max))
�
, (15)

where�(max) ∈ {�1, �2, . . . , �N } is the largest membership value.
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Given that�i < �(max) and�→∞, the weighting coefficients of (15) are obtained via the maximum
defuzzifier strategy as follows[23]:

wi =
{
1 if �i = �(max),

0 if �i �= �(max).
(16)

If the maximum value occurs at a single point only, the output of an adaptive fuzzy system is defined as

ŷ = xi , for�i = �(max). (17)

In this case, the fuzzy adaptive filter is designed to perform a selection filtering operation, which identifies
the one of the samples inside the processing windowW as the filter output. This property is essential
for preserving the structural image content. However, unlike selection vector filters which are primary
designed to remove impulsive noise[16], the proposed fuzzy filters can be optimized for any noise model
by appropriately tuning their membership function. Therefore, they can be used to remove the additive
noise corrupting cDNA chips.

3.3. Adaptive filter design based on color-ratios

The proposed here filtering class can exploit the correlation between the two channels in the cDNA
image using not only differences between the vectorial inputs but Red/Green (R/G) ratios as well. The
color-ratio approach takes advantage of the expected relative uniformity of the local R/G ratios. Due to the
decreased high-frequency portion of the signal, color-ratio based processing is able to preserve edges and
structural content of the cDNA image better than the conventional approaches operating in the intensity
domain.
Let us consider the cDNA vectorial inputsxi , for i = 1,2, . . . , N . Each samplexi can be used to

produce the R/G color ratioxi1/xi2. Using the concept of aggregated distances between the vectorial
inputs determined inside the processing windowW, procedure (7) or (10) reduces to calculation of
absolute differences between color ratios:

ci =
N∑

j=1
|xi1/xi2 − xj1/xj2| for i = 1,2, . . . , N. (18)

Based on aggregated scalar measure (18), the fuzzy weights are calculated as follows:

�i = �(1+ exp{ci})−r , (19)

wherer is used to tune the weighting effect of the membership function and� is a normalizing constant.
Using the color ratiosxi1/xi2, for i = 1,2, . . . , N , and the defuzzified weighting coefficientswi =

�i/
∑N

i=1 �i , the output vectory = [y1, y2]T is obtained as follows:

y1 = x∗
2

N∑
i=1

wixi1/xi2, (20)

y2 = x∗
1

[
N∑

i=1
wixi1/xi2

]−1
, (21)
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wherex∗ = [x∗
1, x

∗
2]T is a vector, whose components are used to normalize the output color ratio∑N

i=1 wixi1/xi2 to the individual intensitiesy1 and y2 corresponding to the recover Red and Green
color channels, respectively.
The normalization vectorx∗ can be considered as equivalent to a robust estimate which statistically

represents the input setW. Using robust order-statistics[21] principle,x∗ is defined as the component-
wise median filter (MF)[31]. Note that in most casesx∗ is considered to be the output of a filtering
procedure. In this schemex∗ serves only as a normalization factor. Thus, the adaptive fuzzy filter based
on color-ratios combines the fuzzy weighted averages and the nonlinear median operation to normalize
the output of the color-ratio based filter.

4. Application to cDNA microarray images

A number of cDNA microarray images have been used to evaluate the proposed filtering framework.
Examples are shown in Fig.8a and9a. These images have been captured using lasermicroscope scanners.
The images vary in complexity and noise appearance. Note that all filtering results presented in this paper
were obtained with a 3× 3 square window, i.e. forN = 9.
The adaptive fuzzy filters (AFF) considered here for comparison purposes are the magnitude-based

AFF1 defined by (11) and (14), the directional AFF2 of (11) and (15), and the color-ratio-based AFF3
defined in (18)–(21). The noise attenuation properties and detail-preserving capability of the adaptive
fuzzy filters are compared, in terms of performance with a set of color image filters widely used in color
image processing applications. The comparisons include component-wiseMF[31],VMF [4], BVDF [28]
and adaptive VMF (AVMF)[14].
Since the original signal is not available, we make use of the subjective evaluation approach (Table1).

In this approach, the image quality is evaluated with respect to the structural content (edges, textures and
fine details) preservation and the presence of unremoved impulses or introduced artifacts as a result of
faulty processing.
Table2 allows for the comparison of a variety of filtering techniques applied to cDNA microarray

images. The results indicate that the proposed AFF3 provides best results among the tested filters and its
performance is satisfactory robust for a wide range of cDNA microarray images.
Figs. 8,9 show that all the proposed AFF schemes achieve excellent balance between signal-detail

preservation and noise attenuation. However, only AFF3 is capable of removing the complete set of im-
pairments (including strong varied background intensities) introduced in course of the cDNAmicroarray
technology.
By the visual inspection of the corresponding enlarged parts of the obtained outputs (Figs.10 and

11) it can be easily observed that the filtering techniques such as MF, VMF and AVMF excellently
suppress impulses present in the image. However, these schemes are not capable of removing variations
in background. Moreover, the BVDF scheme enhances this noise and introduces additional impairments
into the image. The proposed AFF1 and AFF2 attenuate noise including background imperfections in a
better way compared to the previous schemes. It should be emphasized that only the color-ratio-based
AFF3 technique among all the tested schemes removes fluorescence artifacts and background noise. This
is also confirmed by the results depicted in Figs.12 and13 corresponding to the 3-D plots of cDNA
microarray image intensity corresponding to the selected areas of cDNA image inputs. Note that the
areas plotted in these figures have been found difficult, in terms of spot preservation, for the examined
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Fig. 8. Results obtained using the cDNA image with noise impairments affecting mainly the Red channel: (a) original image,
(b) MF output, (c) VMF output, (d) BVDF output, (e) AVMF output, (f) AFF1 output, (g) AFF2 output, (h) AFF3 output.

Fig. 9. Results obtained using the cDNA image with noise present mainly in the Green channel: (a) original image, (b) MF
output, (c) VMF output, (d) BVDF output, (e) AVMF output, (f) AFF1 output, (g) AFF2 output, (h) AFF3 output.

filtering schemes. It can be seen that theVMF does not remove variations from the backgrounds, whereas
the proposed AFF3 scheme produces output intensities close to the ideal case.
Apart from thenumerical behavior (actual performance) of any algorithm, its computational complexity

is a realisticmeasure of its practicality andusefulness.Therefore, the selected filtering classesare analyzed
here in terms of normalized operations, such as additions (ADDs), subtractions (SUBs), multiplications
(MULTs), divisions (DIVs), square roots (SQRTs), comparisons (COMPs), exponents (EXPs), absolute
values (ABVs) and arc cosines (ARCCOSs). Table3 summarizes the total number of operations for
VMF, BVDF andAFF schemes. The computational complexity analysis of the adaptive designs requires
knowledge of the membership function used to calculate the adaptive weights and the exact form of the
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Table 1
Subjective image evaluation guidelines

Score Overall evaluation Noise removal
of the distortion evaluation

1 Very disruptive Poor
2 Disruptive Fair
3 Destructive but not disruptive Good
4 Perceivable but not destructive Very good
5 Imperceivable Excellent

Table 2
Filters’ practicability expressed via subjective evaluation

Filter Reference Score

MF [31] 4.05
VMF [4] 4.00
BVDF [28] 2.80
AVMF [14] 3.90
AFF1 (11), (14) 4.15
AFF2 (11), (15) 3.95
AFF3 (18)–(21) 4.80

Fig. 10. Enlarged parts of the images shown in Fig.8: (a) original image, (b) MF output, (c) VMF output, (d) qBVDF output,
(e) AVMF output, (f) AFF1 output, (g) AFF2 output, (h) AFF3 output.

selected distance measure used. The computationally intensive part of the AFF1 and AFF2 schemes rests
in calculating the distance. This part, however, is common to both VMF and BVDF techniques. On the
other hand, due to absolute differences between the color-ratios, the AFF3 is a computationally most
attractive case among the considered filtering schemes.
In conclusion, the following can be stated:

• In the proposed framework, there is no requirement for fuzzy rules or explicit determination of local
statistics. Features extracted from local data, in the form of aggregated vector distances between the
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Fig. 11. Enlarged parts of the images shown in Fig.9: (a) original image, (b) MF output, (c) VMF output, (d) BVDF output,
(e) AVMF output, (f) AFF1 output, (g) AFF2 output, (h) AFF3 output.

Fig. 12. Microarray image intensity plotted for selected parts of the achieved results: (a) original image, (b) MF output, (c) VMF
output, (d) BVDF output, (e) AFF1 output, (f) AFF3 output.
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Fig. 13. 3-D plots of microarray image intensity selected in the areas with strong variations in the image background: (a) original
image, (b) MF output, (c) VMF output, (d) BVDF output, (e) AFF1 output, (f) AFF3 output.

cDNA vectors or aggregated absolute differences between the color-ratios, are used as inputs to the
membership function.

• The proposed fuzzy filters remove noise present in the cDNA microarray images in a robust way.
• The signal-detail preserving capability of the filters designed within the fuzzy filtering framework is
sufficient for a particular task (cDNA image processing).

• The proposed fuzzy filtering framework produces better results than well-known vector filtering
schemes (VMF, BVDF) based on a sliding supporting window.
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Table 3
Cost-effectiveness of 3×3 vector filtering schemes expressed via the number of elementary operations for a complete processing
cycle

Operation ADDs SUBs MULTs DIVs SQRTs EXPs ARCCOSs ABVs COMPs

VMF 108 72 72 — 36 — — — 8
BVDF 180 — 162 36 9 — 36 — 8
AVMF 252 72 288 — 36 — — — 25
AFF1 133 72 89 18 36 9 — — —
AFF2 205 — 179 54 9 9 36 — —
AFF3 97 36 19 27 — 9 — 36 58

• The filter complexity of AFF1 and AFF2 techniques is comparable with widely usedVMF and BVDF
schemes. The AFF3 approach based on the color-ratios is the most cost-effective solution among the
considered vectorial schemes.

5. Conclusion

The paper introduced a new generalized cDNA processing tool based on principles of fuzzy logic.
The proposed adaptive fuzzy filters operate either on cDNA vectorial inputs or color-ratios defined over
cDNA data. The behavior of the introduced filtering class was analyzed in details. Simulation results
and comparisons reported here indicate that the proposed framework is sufficiently robust and capable
of removing noise in cDNA microarray images while preserving required data features for subsequent
analysis.
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