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Abstract. This paper presents a new cost-effective, adaptive multichannel filter taking advantage
of switching schemes, robust order-statistic theory and approximation of the multivariate dispersion.
Introducing the statistical control of the switching between the vector median and the identity op-
eration, the developed filter enhances the detail-preserving capability of the standard vector median
filter. The analysis and experimental results reported in this paper indicate that the proposed method
is capable of detecting and removing impulsive noise in multichannel images. At the same time, the
method is computationally efficient and provides excellent balance between the noise attenuation and
signal-detail preservation. Excellent performance of the proposed method is tested using standard test
color images as well as real images related to emerging virtual restoration of artworks.
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1. Introduction

Computer and machine vision methods find an application in novel commercial
devices such as wireless phones, vision-based pocket devices, sensor networks, and
surveillance and automotive apparatus [7, 10, 13]. Combining recent advances in
the field of computer and machine vision, hardware, software, digital signal/image
processing extends the possibilities of the traditional vision based communication
between end-users or between machine and human.

Due to imperfections in image sensors, digital images are often contaminated
with noise. Image imperfections resulting from impulsive noise are created during
transmission through a communication channel, with sources ranging from human-
made (switching and interference), to signal representation (bit errors), and natural
(atmospheric lightning) [18]. The resulting noisy samples, so-called outliers, have

� Corresponding author e-mail: lukacr@dsp.utoronto.ca, Web: http//www.dsp.utoronto.ca/∼
lukacr.
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significantly deviating characteristics (e.g., amplitude in at least one of the compo-
nents) compared to those of the neighboring samples. Noise affects the perceptual
quality of the image, decreasing not only the appreciation of the image but also
the performance of the task for which the image was intended. Therefore, image
filtering used prior subsequent processing steps such as image analysis and com-
pression is an essential part of any image processing system whether the final image
is utilized for visual interpretation or for automatic analysis [26, 28].

Among the noise reduction techniques, vector processing techniques for multi-
dimensional data set denoising take a great interest of image processing commu-
nity. This can be attributed primarily to the importance of color image process-
ing [18, 28]. The surge of emerging applications [18] such as web-based process-
ing of color images and videos, enhancement of DNA microarray images, digital
archiving and culture heritage preservation suggests that the demand for new, more
powerful and cost-effective vector filtering solutions will continue.

The proposed here multichannel filtering scheme, viewed as the adaptive exten-
sion of the vector median filter [2] utilizes the statistical control of the smoothing
levels and is appropriate for both image pre-processing and final restoration of
noisy color image data. Moreover, it is computationally efficient and may de-
crease the average number of operations necessary in standard vector median fil-
tering [2, 5] or switching vector filtering schemes recently introduced in [16]. The
proposed cost-effective method removes unprofitable information in digital images
without degradation of the underlying image structures and color information.
Therefore, the method can be used not only in traditional color image applications,
however, as it is demonstrated in this paper, it can be successfully used in virtual
restoration of artworks.

The remainder of this paper is organized as follows. In the next section, the
basic description of the vector median filter is presented. Section 3 focuses on the
proposed method. Motivation and design characteristics of the proposed framework
are discussed in detail. Section 4 introduces the analysis and properties of the pro-
posed method. Section 5 is devoted to the experimental results. The computational
complexity of the proposed method is analyzed in Section 6. Finally, conclusions
are drawn in Section 7.

2. Vector Median Filter

In the last decade, a variety of filtering methods for multichannel image processing
have been provided [2, 28, 31]. The common feature of vector filters relates to
the consideration of the inherent correlation which exists between the image color
channels. Since the vector approaches process an input signal as a set of vectors,
color artifacts for which the human visual system is very sensitive [29] cannot be
created as a filter output.

If the image information interferes with the impulsive noise or outliers (samples
deviating from the data population), an efficient solution is provided by filters based
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on robust order-statistics [3, 25, 26]. Since color images represent vector-valued
image signals, the direct extension of order-statistic theory is impossible [24, 30]
and thus, the observed samples are ordered according to specially developed dis-
tance functions.

Let x: Zl → Zm represent a multichannel image, where l is an image dimension
and m denotes the number of color channels. In the case of standard color images,
parameters l and m are equal to 2 and 3, respectively. Let W = {xi ∈ Zl; i =
1, 2, . . . , N} represent a filter window of a finite size N , where x1, x2, . . . , xN is a
set of noisy samples and the central sample x(N+1)/2 determines the position of the
filter window. Note that xik, for k = 1, 2, . . . , m, is the kth element of the input
sample xi = (xi1, xi2, . . . , xim).

Let us consider that each input multichannel sample xi is associated with the
distance measure

Li =
N∑

j=1

‖xi − xj‖2 for i = 1, 2, . . . , N, (1)

where ‖xi − xj‖2 quantifies the distance among two m-channel samples xi and xj

using the well-known Euclidean metric� given as [23, 28]:

‖xi − xj‖2 =
(

m∑

k=1

|xik − xjk|2
)1/2

, (2)

where xik is the kth element of xi .
Assuming that the sums of the aggregated vector distances L1, L2, . . . , LN ,

which denote the sums of the aggregated vector distances, serve as the ordering
criterion, i.e.

L(1) � L(2) � · · · � L(N) (3)

and (3) implies the same ordering scheme to the input set x1, x2, . . . , xN , the pro-
cedure results in the ordered sequence of color vectors written by

x(1) � x(2) � · · · � x(N). (4)

Sample x(1) ∈ W associated with the minimum vector distance L(1) ∈ {L1, L2,

. . . , LN } constitutes the output of the vector median filter (VMF) [2] minimizing
the distance to other samples inside the sliding filtering window W .

3. Proposed Adaptive Vector Median Filters

It is commonly observed that the standard low-pass filtering schemes operating
on a fixed supporting window blur image details and eliminate fine image struc-
tures [17]. To avoid this drawback and preserve the structural content of the image,

� The Euclidean metric is the most popular member of the family generalized by the Minkowski
metric [18, 23].
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researchers try to extend the degree of freedom in designing color image filtering
techniques, mostly through the introduction of the weighting coefficients. As a
result, multichannel weighted filters can be adapted for various image and noise
statistics [17, 19, 20, 27, 32]. If the environment is impulsive in the nature, the most
popular and computationally efficient approaches are probably those related to the
switching-based filtering [6, 8, 9, 14, 33]. In this case, the adaptive techniques alter
the nonlinear mode (such as VMF) smoothing out noisy samples and the identity
operation which remains the desired samples unchanged. It is not difficult to see
that this filtering approach is useful in a wide range of applications, where outliers
and noise impairments must be removed while the structural content and the color
information should be preserved. Unfortunately, most of the switching-based filter-
ing schemes have been developed for gray-scale imaging. The extension of these
algorithms to color images may be problematic especially in terms of flexibility
to accommodate the algorithm for a variety of window shapes [8, 33], computa-
tional complexity [33] or number of switching levels [9]. A multichannel switching
scheme in [16] exhibits an excellent performance in color images corrupted by im-
pulsive noise, however, these desired design characteristics are obtained at expense
of the computational complexity. Therefore, an alternative solution is needed.

The proposed method is based on the robust order-statistics theory and ap-
proximation of the multivariate dispersion computed using the input multichannel
samples. Its unique and distinguishing element is a statistical operator used to
control the switching between the robust VMF and the identity operation. The
input central sample is considered to be noisy if it lies outside the range formed by
approximated multivariate dispersion of the input multichannel samples (Figure 1).
To increase the degree of freedom in such a design, the proposed method:

(i) utilizes approximation of the multivariate dispersion multiplied by a certain
regulation parameter,

Figure 1. Modelling of the proposed concept in the 2-dimensional case. The vectors are
classified using the variance multiplied by the adjusting parameter λ1 or λ2.



A STATISTICALLY-SWITCHED ADAPTIVE VECTOR MEDIAN FILTER 365

(ii) extends the concept of a gray-scale adaptive filtering scheme based on a
weighted mean [14], and

(iii) determines the output using the most similar input vectors to the statistical
centroid of the vectorial inputs.

Designing the proposed scheme, two ways are possible: radius of the spheres with
centers in the lowest ranked vector and in the samples mean. To avoid the com-
putational difficulties connected with calculation of variance–covariance matrices
of multichannel samples [1, 21, 22], the proposed method utilizes approximation
of the variance. In addition to this feature, the proposed framework is flexible and
can be easily adapted for a large window size without any additional settings of the
filter parameters.

3.1. FILTER DESIGN

Let ψ be the approximation of the multivariate variance of the vectors contained in
a supporting window W of sufficiently large window size N , given by

ψ = L(1)

N − 1
, (5)

where L(1) is the distance measure calculated via (1) and (3). The quantity L(1)

denotes the smallest aggregated distance associated with the VMF output x(1), and
can be expressed as follows:

L(1) =
N∑

j=1

‖x(1) − xj‖2. (6)

This approximation defined in (5) represents the mean distance between the vector
median and all other color pixels contained in W . The division of L(1) by (N − 1)

denoting the number of distances from x(1) to all samples from W ensures that the
dispersion measure is non-dependent on the filtering window size.

Then, the output of the proposed adaptive vector median filter (AVMF) is de-
fined as follows:

yAVMF =
{

x(1) for L(N+1)/2 � ξ1,
x(N+1)/2 otherwise,

(7)

where yAVMF is the proposed AVMF output, L(N+1)/2 obtained via (1) denotes the
distance measure of the center pixel x(N+1)/2, the vector x(1) is the VMF output
obtained in (4) and ξ1 is the threshold value given by

ξ1 = L(1) + λ1ψ = N − 1 + λ1

N − 1
L(1), (8)

where ψ is the approximated variance (5) and λ1 is the tuning parameter used to
adjust the smoothing properties of the proposed AVMF method.
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If the distance measure L(N+1)/2 of the central sample x(N+1)/2 is larger than the
threshold ξ1, then x(N+1)/2 is noisy and is being replaced with the lowest ranked
vector x(1). If the accumulated distance L(N+1)/2 corresponding to the window
center x(N+1)/2 is less or equal to ξ1, then x(N+1)/2 is similar to most of the vectorial
inputs and remains unchanged.

In order to follow both concepts shown in Figure 1, it is possible to modify the
decision stage and replace the lowest ranked vector with the sample mean. Then
approximation of the variance is given by

ψx̄ = Lx̄

N
, (9)

where

Lx̄ =
N∑

j=1

‖x̄ − xj‖2 (10)

is the aggregated distance between multichannel input samples x1, x2, . . . , xN and
the sample mean x̄.

In such a case, the output of the modified adaptive vector median filter (MAVMF)
is defined as follows:

yMAVMF =
{

x(1) for L(N+1)/2 � ξ2,
x(N+1/2) otherwise,

(11)

where ξ2 is the threshold value defined by

ξ2 = Lx̄ + λ2ψx̄ = N + λ2

N
Lx̄ (12)

and λ2 is the adjusting parameter like in the AVMF scheme.

3.2. PROPOSED COLOR IMAGE PROCESSING PROCEDURE

Similarly to the conventional VMF operator, the proposed solutions use the local
image statistics of the image vectors {x1, x2, . . . , xN } within a processing win-
dow W of finite size N . The window (Figure 2) slides over the entire image x
placing successively every pixel at the center of a local neighborhood. The proce-
dure replaces the sample x(N+1)/2 located at the window center with the output of
a function (7) for the AVMF or (11) for the MAVF scheme, respectively, operating
over the samples listed in W .

Note that the processing window may have various shapes which determine
both the area of support and the overall performance of the processing procedure.
The concept and the properties of the sliding (running) window are discussed
in detail in [18]. Due to its versatility and demonstrated good performance the
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Figure 2. Arrangements of the vectorial inputs in the supporting window W sliding over the
image domain.

3 × 3 rectangular shape window (Figure 2) is the most commonly used in image
processing� and the one to be used throughout the paper.

4. Filter Properties

The uniqueness of the proposed concept is demonstrated through the analysis of
its most prominent properties. Although the properties listed in this section are
derived mainly for the AVMF filter, many of them can be generalized also for the
MAVMF scheme.

4.1. POSITIVITY OF THE ADJUSTING PARAMETER

Let us consider that x(1) ∈ {x1, x2, . . . , xN } is the lowest ranked vector, i.e. the
sample associated with the smallest aggregated distance L(1) ∈ {L1, L2, . . . , LN }.
Because x(1) minimizes the distance to other samples inside W , and thus L(N+1)/2

� L(1), their relationship is given by

L(N+1)/2 = L(1) + �. (13)

Then, considering the switching rule used in (7) it results in the following
inequality

�

L(1)

� λ1

N − 1
. (14)

� The processing filters operating on the larger area of support such as those determined by a 5×5
or 7 × 7 window may have better noise attenuation capability than the employed here 3 × 3 filters.
However, this improvement is accompanied by the substantial degradation of the essential filters’
preserving characteristics and at the same time, the use of the larger window significantly increases
computational expenses.
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This expression shows that the adjusting parameter λ1 has to be a nonnegative
number, because the right side of (14) is always nonnegative.

4.2. BOUNDARY OF THE IDENTITY OPERATION

Depending on condition (14) it is clear that the proposed method will perform the
identity operation for any value of λ1, if and only if the lowest ranked vector x(1)

is identical with the central sample x(N+1)/2 and thus � = 0. This property is
interesting in the context of deterministic properties usually expressed through the
analysis of root signals. Assuming that x(1) �= x(N+1)/2 the AVMF output is a root if
and only if the ratio �/L(1) is larger than or equal to the tuning element λ1/(N−1).
Note that the second extreme for the identity operation can be expressed by

(N − 2)(N − 1) � λ1 (15)

which means that an additional increasing of λ1, e.g., up 56 in the case of a 3 × 3
filtering window, makes the filter idempotent.

4.3. CONVERGENCE TO VMF AND IDENTITY OPERATION

The filtering efficiency depends on the adjusting parameter λ1. If λ1 = 0, then
the filter output is always the VMF. On the other hand, for big values of λ1 the
proposed filter output will be always the central pixel x(N+1)/2 as follows:

y =
{

x(1) if λ1 = 0,

x(N+1)/2 if λ1 → ∞.
(16)

4.4. CAPABILITY OF LOW-PASS FILTERING

The previous property determines the range of output samples. Since the output of
the proposed AVMF and MAVMF filters is always restricted to be the input central
sample x(N+1)/2 or the lowest ranked vector x(1) and both samples belong to the
input set W , the output of the proposed method can never be outside the range
of input samples inside W . It means that the proposed method is only capable of
low-pass filtering.

4.5. SCALE AND BIAS NON-DEPENDENCE

Let us consider the input set W1 = {x1
i ∈ Zl; i = 1, 2, . . . , N} and the modi-

fied input set W2 = {x2
i ∈ Zl; i = 1, 2, . . . , N} achieved by adding the vector

constant k to the input set W1 multiplied by scalar constant k, i.e. x2
i = kx1

i + k.
It can be easily shown that adding the vector constant has no influence on a fil-
ter control, since vector distances L1(W1), L2(W1), . . . , LN(W1) are equivalent to
L1(W2), L2(W2), . . . , LN(W2). The multiplied input set has also no influence on
the switching condition L(N+1)/2 � ((N − 1 + λ1)/(N − 1))L(1), since
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L(N+1)/2(W2) = kL(N+1)/2(W1), (17)

L(1)(W2) = kL(1)(W1), (18)

and then

L(N+1)/2(W1) � N − 1 + λ1

N − 1
L(1)(W1), (19)

L(N+1)/2(W2) � N − 1 + λ1

N − 1
L(1)(W2) (20)

are equivalent.
Thus, the decision stage of the proposed method is scale and bias non-dependent.

4.6. EQUIVALENCE BETWEEN AVMF AND MAVMF

Both proposed methods are equivalent, if a special relation between ξ1 and ξ2 is
satisfied. Let us consider λ1 and λ2 as adjusting parameters in the AVMF and
MAVMF schemes, respectively, and the threshold values ξ1 and ξ2 defined by (8)
and (12). Then, both filters are equivalent if and only if ξ1 = ξ2 and thus

L(1)

Lx̄
= (N − 1)(N + λ2)

N(N − 1 + λ1)
. (21)

From (21) it is clear that for λ1 = 0 and λ2 = 0, both filters are equivalent if
and only if L(1) = Lx̄. Note that this equivalence can occur only in monotonous
noise-free image area, when the VMF and the sample mean are equivalent.

5. Experimental Results

Performance of the proposed multichannel filtering tools is evaluated in the most
important area of vector processing, namely color image filtering.� Note that all
filtering results presented in this paper were obtained with a 3 × 3 square window,
i.e. for N = 9. In order to compare the performance of the new method with
the state-of-the-art color image filters, we used the standard test images shown in
Figures 3(a)–(c), their corrupted versions depicted in Figures 3(d)–(f) and also real
images shown in Figures 12(a), (d).

5.1. RESULTS ACHIEVED USING STANDARD TEST IMAGES

The 256×256 color test images shown in Figures 3(a)–(c) have been contaminated
by impulsive noise (Figures 3(d)–(f)) defined as follows [17]:

xi =
{

vi with probability pv,
oi with probability 1 − pv,

(22)

� The figures in this paper can be seen in color at http://www.dsp.utoronto.ca/∼lukacr/color4.pdf.
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(a) (b)

(c) (d)

(e) (f)

Figure 3. Test images: (a) original image Lena, (b) original image Peppers, (c) original image
Parrots, (d)–(f) image Lena corrupted by impulsive noise with the probability: (d) pv = 0.05,
(e) pv = 0.10 and (f) pv = 0.20.

where i characterizes the sample position, oi is the original sample, xi represents
the sample from the noisy image and pv is a corruption probability (also termed the
percentage number of corrupted pixels). The impulse vi = (vi1, vi2, . . . , vim) is in-
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dependent from pixel to pixel and has generally much larger and smaller amplitude
than the neighboring samples at least in one of the components.

The accuracy of the proposed switching mechanisms is evaluated using the
impulse successful detection (SDT) and false detection (FDT) criteria. The SDT
and FDT rates are obtained as follows [16]:

SDT = η − εc

η
· 100, (23)

FDT = εm

K1K2 − η
· 100, (24)

where εm denotes the number of noise-free samples detected as impulses, εc is the
number of undetected impulses, η denotes the total number of impulses and the
product K1K2 is the number of image samples.

To provide some measure of closeness between two digital images, a number of
different objective measures based on the difference in the statistical distributions
of the pixel values can be utilized. In this paper, we will make use of the commonly
employed objective measures [19] such as the mean absolute error (MAE), the
mean square error (MSE) and the normalized color difference (NCD) criterion.
The MAE and MSE are defined as follows:

MAE = 1

mK1K2

m∑

k=1

K1K2∑

i=1

|oik − xik|, (25)

MSE = 1

mK1K2

m∑

k=1

K1K2∑

i=1

(oik − xik)
2, (26)

where oi = (oi1, oi2, . . . , oim) is the original pixel, xi = (xi1, xi2, . . . , xim) is the
noisy (or restored) pixel, i is the pixel position in a K1 × K2 color image and k

characterizes the color channel.
The measure of color distortion is, in the perceptual way to humans, evaluated

using the NCD criterion defined as follows [27, 28]:

NCD =
∑K1K2

i=1

√
(L∗

oi
− L∗

xi
)2 + (u∗

oi
− u∗

xi
)2 + (v∗

oi
− v∗

xi
)2

∑K1K2
i=1

√
(L∗

oi
)2 + (u∗

oi
)2 + (v∗

oi
)2

, (27)

where L∗ represents lightness values and (u∗, v∗) chrominance values correspond-
ing to original oi and noisy (or filtered) xi samples expressed in CIELUV color
space [29].

The comparison of the structure of both proposed methods suggests that the
suboptimal value of λ2 used in the MAVMF scheme should be larger than that λ1

of the AVMF approach. Visual inspection of the results depicted in Figures 4–6
reveals that the optimal value of λ1 and λ2 slightly decreases with the degree of
the noise corruption. It also confirms that the MAVMF scheme should correspond
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(a)

(b)

(c)

Figure 4. Performance of AVMF and MAVMF techniques in dependence on adjusting para-
meters λ1, λ2 and impulsive noise intensity pv using the test image Lena; (a), (c), (e) AVMF,
(b), (d), (f) MAVMF.

to larger value of λ2 in comparison with λ1 of the AVMF. Note that these results
were achieved using the test image Lena (Figure 3(a)), Peppers (Figure 3(b)) and
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(d)

(e)

(f)

Figure 4. (Continued.)

Parrots (Figure 3(c)) corrupted by impulsive noise with intensity pv ranged from
pv = 0.01 (1% noise) to pv = 0.20 (20% noise) with stepsize 0.01. The results
presented in the sequence were obtained using λ1 = 4 and λ2 = 12 denoting the
robust settings of the adjusting parameter used in the proposed schemes.
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(a)

(b)

(c)

Figure 5. Performance of AVMF and MAVMF techniques in dependence on adjusting pa-
rameters λ1, λ2 and impulsive noise intensity pv using the test image Peppers; (a), (c), (e)
AVMF, (b), (d), (f) MAVMF.

Tables I–IV summarize the detection rates observed for the switching schemes
such as the adaptive componentwise switching medians based on local contrast
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(d)

(e)

(f)

Figure 5. (Continued.)

probability (LCP) [6] and the standard deviation of the input set (SF) [14]. The rep-
resentatives of the vector switching schemes include the switching center-weighted
vector directional filter (SCWVDF) [16] and the proposed AVMF and MAVMF
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(a)

(b)

(c)

Figure 6. Performance of AVMF and MAVMF techniques in dependence on adjusting para-
meters λ1, λ2 and impulsive noise intensity pv using the test image Parrots; (a), (c), (e) AVMF,
(b), (d), (f) MAVMF.

solutions. The reported results indicate that the proposed schemes achieve an ex-
cellent trade-off between the SDT and FDT rates and hold these characteristics
for the entire range of considered pv. Note that the use of detection rates does
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(d)

(e)

(f)

Figure 6. (Continued.)

not express the quality of the output image which is influenced by accuracy of
both the switching mechanism and the smoothing filter. Therefore, the use of the
conventional image quality measures (25)–(27) has a greater information value.
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Table I. Comparison of the detection capability using impulsive noise corruption pv = 0.05.

Image Lena Peppers Parrots

Method FDT SDT FDT SDT FDT SDT

LCP 39.084 99.758 37.923 99.433 30.686 99.636

SF 27.929 99.073 27.139 98.784 22.209 90.190

SCWVDF 0.358 97.736 0.799 96.919 0.125 96.996

Proposed AVMF 7.042 98.563 6.931 97.430 5.556 98.518

Proposed MAVMF 10.255 98.845 10.439 97.946 9.286 98.353

Table II. Comparison of the detection capability using impulsive noise corruption pv = 0.10.

Image Lena Peppers Parrots

Method FDT SDT FDT SDT FDT SDT

LCP 31.123 99.415 29.957 99.051 23.042 99.130

SF 20.836 98.579 20.204 98.166 15.844 98.239

SCWVDF 0.360 96.631 0.828 95.840 0.144 96.519

Proposed AVMF 5.042 97.266 5.193 97.094 4.248 97.904

Proposed MAVMF 7.286 97.527 7.706 96.803 6.947 97.995

Table III. Comparison of the detection capability using impulsive noise corruption pv = 0.20.

Image Lena Peppers Parrots

Method FDT SDT FDT SDT FDT SDT

LCP 20.963 98.580 20.884 98.173 14.361 98.341

SF 12.247 96.668 11.944 96.554 8.917 96.604

SCWVDF 0.405 94.850 1.112 93.644 0.134 95.211

Proposed AVMF 2.539 95.296 2.217 95.375 2.014 95.451

Proposed MAVMF 5.060 95.338 5.376 95.824 4.350 95.533

Table IV. Comparison of the detection capability using impulsive noise corruption pv = 0.30.

Image Lena Peppers Parrots

Method FDT SDT FDT SDT FDT SDT

LCP 16.315 97.638 16.061 97.075 11.338 96.933

SF 8.196 95.130 8.286 94.402 6.318 94.688

SCWVDF 0.913 87.602 1.902 86.433 0.783 88.639

Proposed AVMF 1.270 89.362 1.357 88.508 1.227 90.476

Proposed MAVMF 1.995 88.140 1.987 87.405 1.836 89.116
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Tables V–VIII summarize the objective results obtained using the MAE, MSE
and NCD error criteria. The results correspond to the use of the test images shown
in Figures 3(a)–(c). The proposed methods are compared with the componentwise
median filter (MF) [34], the adaptive componentwise LCP and SF techniques, and
the vector filtering schemes such as the VMF, the basic vector directional filter
(BVDF) [31], the directional distance filter (DDF) [12], the generalized vector
directional filter (GVDF) [31], the spherical median (SMF) [31], the hybrid vector
filters (HVF1, HVF2) [11], and the SCWVDF [16]. The obtained results indicate
that the proposed filters are clearly superior and outperform other (standard and
adaptive) filtering techniques including the CWVDF scheme in terms of the ro-
bustness expressed through all objective image quality measures. For the images
corrupted by impulsive noise with the noise intensity pv > 0.30, re-optimization of
the filter parameter may be recommended to obtain the robust smoothing capability.
It should be emphasized that the switching schemes such as the considered AVMF
and MAVMF are primarily geared to address to the problem of impulsive noise
removal in the images with a low or moderate amount of corrupted pixels. For
such a task, the proposed solutions hold excellent performance.

Figures 7–10 allow for the visual comparison of the images recorded at the
various stages of a processing pipeline. Visual inspection of the images depicted in
Figures 7 and 9 reveal that the detail-preserving capability of the proposed method
is satisfactory. Figures 8 and 10 depict the enlarged parts of the original, noisy and

Table V. Comparison of the presented filters using impulsive noise corruption pv = 0.05.

Image Lena Peppers Parrots

Method/ MAE MSE NCD MAE MSE NCD MAE MSE NCD

Criterion

Noisy 3.762 427.3 0.0445 3.988 486.1 0.0441 3.805 443.6 0.0432

MF 3.394 49.7 0.0442 3.248 43.1 0.0484 2.718 63.1 0.0170

VMF 3.430 50.8 0.0403 3.169 43.9 0.0452 2.669 64.2 0.0132

BVDF 3.818 58.6 0.0407 3.740 60.7 0.0438 3.460 109.0 0.0116

DDF 3.509 52.3 0.0402 3.182 44.6 0.0431 2.645 65.3 0.0117

GVDF 3.587 55.3 0.0420 3.433 57.9 0.0453 3.036 93.6 0.0126

SMF 3.523 45.6 0.0406 3.442 42.9 0.0456 2.927 61.6 0.0130

HVF1 3.587 51.8 0.0410 3.282 42.9 0.0441 2.786 65.7 0.0122

HVF2 3.573 50.4 0.0409 3.274 41.9 0.0441 2.771 63.5 0.0121

SF 1.764 33.3 0.0204 1.614 27.7 0.0217 1.416 45.5 0.0067

LCP 2.214 38.8 0.0263 2.046 33.1 0.0279 1.747 51.4 0.0086

SCWVDF 0.419 13.4 0.0040 0.538 18.0 0.0070 0.405 20.5 0.0013

AVMF 0.777 18.3 0.0082 0.729 16.5 0.0090 0.699 27.8 0.0027

MAVMF 0.980 21.4 0.0103 0.878 18.2 0.0107 0.840 31.1 0.0031
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Table VI. Comparison of the presented algorithms using impulsive noise corruption pv = 0.10.

Image Lena Peppers Parrots

Method/ MAE MSE NCD MAE MSE NCD MAE MSE NCD

Criterion

Noisy 7.312 832.0 0.0840 7.677 943.3 0.0869 7.526 882.0 0.0857

MF 3.703 56.8 0.0489 3.579 53.9 0.0546 2.960 70.0 0.0198

VMF 3.687 56.5 0.0428 3.503 55.0 0.0494 2.890 69.6 0.0142

BVDF 4.099 67.6 0.0432 4.151 82.7 0.0484 3.630 113.5 0.0127

DDF 3.733 57.3 0.0424 3.512 56.6 0.0475 2.839 69.7 0.0128

GVDF 3.925 66.8 0.0448 3.785 73.4 0.0492 3.188 96.2 0.0137

SMF 3.907 53.1 0.0439 3.723 52.3 0.0499 3.133 67.1 0.0141

HVF1 3.857 56.9 0.0434 3.626 53.6 0.0485 3.002 69.9 0.0132

HVF2 3.840 55.5 0.0433 3.614 52.4 0.0485 2.999 68.6 0.0131

SF 1.775 37.1 0.0207 1.667 36.2 0.0225 1.507 51.6 0.0078

LCP 2.254 43.1 0.0271 2.101 41.6 0.0288 1.824 57.3 0.0095

SCWVDF 0.800 26.7 0.0072 0.979 41.8 0.0113 0.754 38.6 0.0025

AVMF 0.959 25.9 0.0105 0.941 27.4 0.0117 0.862 35.4 0.0041

MAVMF 1.123 28.3 0.0121 1.063 29.0 0.0133 1.016 40.6 0.0047

Table VII. Comparison of the presented algorithms using impulsive noise corruption pv = 0.20.

Image Lena Peppers Parrots

Method/ MAE MSE NCD MAE MSE NCD MAE MSE NCD

Criterion

Noisy 14.019 1604.6 0.1625 14.912 1832.0 0.1694 14.213 1663.0 0.1608

MF 4.521 87.9 0.0619 4.487 91.4 0.0726 3.623 97.3 0.0276

VMF 4.335 80.3 0.0492 4.232 85.7 0.0601 3.448 91.9 0.0174

BVDF 4.859 107.8 0.0499 5.111 152.9 0.0602 4.183 140.0 0.0165

DDF 4.321 78.8 0.0483 4.254 90.4 0.0579 3.386 91.2 0.0161

GVDF 4.345 83.4 0.0493 4.562 122.4 0.0586 3.450 100.9 0.0174

SMF 4.617 74.9 0.0505 4.554 82.3 0.0620 3.749 97.8 0.0181

HVF1 4.548 80.4 0.0500 4.411 86.4 0.0599 3.594 92.7 0.0169

HVF2 4.547 79.5 0.0499 4.409 84.5 0.0599 3.599 91.5 0.0168

SF 2.295 66.5 0.0284 2.267 73.6 0.0326 2.036 83.4 0.0136

LCP 2.739 70.6 0.0345 2.743 79.5 0.0404 2.290 85.0 0.0148

SCWVDF 1.826 84.2 0.0163 2.269 124.3 0.0244 1.626 90.8 0.0067

AVMF 1.816 77.6 0.0212 1.898 97.3 0.0251 1.618 90.0 0.0116

MAVMF 1.928 75.4 0.0221 1.995 94.2 0.0266 1.803 96.3 0.0128
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Table VIII. Comparison of the presented algorithms using impulsive noise corruption pv = 0.30.

Image Lena Peppers Parrots

Method/ MAE MSE NCD MAE MSE NCD MAE MSE NCD

Criterion

Noisy 20.111 2313.1 0.2312 21.052 2567.2 0.2383 20.223 2368.8 0.2275

MF 5.576 140.2 0.0774 5.659 156.1 0.0954 4.585 146.7 0.0389

VMF 5.049 115.8 0.0557 5.104 137.0 0.0723 4.132 125.6 0.0215

BVDF 5.903 185.7 0.0576 6.743 304.6 0.0768 4.851 190.7 0.0212

DDF 5.002 114.2 0.0545 5.178 146.2 0.0707 3.991 120.8 0.0199

GVDF 4.758 110.5 0.0533 5.050 155.8 0.0658 3.701 112.7 0.0202

SMF 4.921 106.9 0.0548 5.017 125.3 0.0680 3.895 108.4 0.0215

HVF1 5.383 117.4 0.0577 5.492 145.9 0.0761 4.351 128.9 0.0215

HVF2 5.391 115.4 0.0576 5.485 141.9 0.0761 4.375 126.8 0.0215

SF 3.161 110.3 0.0418 3.417 139.2 0.0536 3.024 138.6 0.0237

LCP 3.727 126.0 0.0481 3.839 149.7 0.0616 3.240 142.8 0.0254

SCWVDF 3.279 194.3 0.0279 4.217 321.1 0.0443 2.944 203.1 0.0136

AVMF 2.803 132.9 0.0310 3.030 169.9 0.0402 2.548 144.7 0.0184

MAVMF 2.676 100.4 0.0287 2.882 130.4 0.0390 2.516 120.4 0.0157

(a) (b)

Figure 7. Results obtained by filtering the image shown in Figure 3(e): (a) VMF output,
(b) proposed AVMF output.

output (filtered) images. Figures 8(c) and 10(c) show that the VMF scheme excel-
lently suppresses impulses present in the image, however some edges and image
details are heavily blurred, especially at transitions between image regions. As it
can be seen in Figures 8(d) and 10(d) the use of the proposed adaptive principle
improves signal-detail preserving capability of the VMF.

Figure 11 demonstrates robustness of the selected schemes. The proposed meth-
ods are compared against the filtering schemes such as MF, VMF, BVDF and LCP.
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(a) (b)

(c) (d)

Figure 8. Zoomed parts of test images and achieved results related to the test image Lena:
(a) original image Lena, (b) test image Lena corrupted by impulsive noise pv = 0.10, (c) VMF,
(d) proposed AVMF.

Note that the degree of impulsive noise corruption pv ranged from no corruption
(pv = 0) to 20% impulsive noise (pv = 0.20) with the stepsize pv = 0.01.
It can be seen that the proposed method achieves the best trade-off among ob-
jective criteria (MAE, MSE and NCD). Moreover, the proposed schemes hold
excellent performance for a wide range of impulsive noise corruption pv. These
results demonstrate the unique capability of the proposed method to remove image
noise and simultaneously preserve color information and structural content of the
image.

5.2. APPLICATION OF THE PROPOSED METHOD IN VIRTUAL RESTORATION OF

ARTWORKS

Supported by the growth of multimedia technology and by the availability of ef-
fective electronic imaging tools, image-processing techniques have recently been
applied to the analysis, preservation, and restoration of artworks [4, 15, 35]. Color
image techniques can be used as a guide to the actual restoration of the artwork
(computer-guided restoration). Or, they can produce a digitally restored version of
the work, which itself is valuable although the restoration is only virtual and cannot
be reproduced on the real piece of work (virtual restoration). In the case of virtual
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(a) (b)

(c)

Figure 9. Results corresponding to Figure 3(c): (a) noisy image with pv = 0.05, (b) VMF
output, (c) proposed AVMF output.

restoration and digital artwork libraries, the digital processing systems are designed
to remove cracks and granulation artifacts (outliers in nature) from the artworks
such as old paintings, frescos and roll documents. These artifacts decrease the ef-
fect of digital visualization Figures 12(a), (d) because they severely deteriorate the
aspect of paintings and thus, the color digital restoration, color filtering and color
image enhancement techniques are of key importance and, even if the removal is
only virtual. Thus, the quality of the virtual restoration depends on some factors
such as determining the original pigment and true color information.

Visual inspection of the results depicted in Figures 12 and 13 suggests that the
adaptive vector techniques providing excellent trade-off between the noise attenu-
ation and signal-detail preserving characteristics have a great potential to be used
in virtual restoration of artworks. As it is shown in Figures 13(b), (e), the excessive
smoothing capability of the VMF scheme results in blurred edges and fine details.
However, the use of the proposed method preserves textures excellently while still
exhibiting the sufficient noise attenuation capability Figures 13(c), (f).
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(a) (b)

(c) (d)

Figure 10. Zoomed parts of test images and achieved results related to the test image Parrots:
(a) original image Parrots, (b) test image Parrots corrupted by impulsive noise pv = 0.05,
(c) VMF, (d) proposed AVMF.

6. Computational Complexity Analysis

Apart from the numerical behavior (actual performance) of any algorithm, its com-
putational complexity is a realistic measure of its practicality and usefulness. There-
fore, the most special vector processing solutions are analyzed here in terms of
normalized operations, such as additions (ADDs), multiplications (MULTs), divi-
sions (DIVs), square roots (SQRTs), comparisons (COMPs) and arc cosines (AR-
CCOSs).

Table IX summarizes the total number of operations for the well-known vector
processing solutions (VMF, BVDF, DDF), the SCWVDF scheme and the proposed
adaptive filters (AVMF, MAVMF). The proposed adaptive vector filters are com-
putationally efficient, since they perform practically the same set of operations as
their non-adaptive special case VMF [2, 5]. The implementation of the AVMF and
the VMF techniques shows that both schemes need to compute the aggregated
distances and search for the minimum of them. The switching rule in the AVMF
scheme requires an extra addition, multiplication, division and comparison oper-
ation. If the MAVMF scheme is used to process the images, the computational
complexity is further decreased. In the case of noise-free samples the MAVMF
filter performs the identity operation and excludes the time consuming calculations
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(a)

Figure 11. Performance of the methods expressed through MAE, MSE and NCD criteria in
the dependence on the degree of the impulsive noise corruption pv: (a) test image Lena, (b) test
image peppers.
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(b)

Figure 11. (Continued.)
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(a) (b)

(c) (d)

(e) (f)

Figure 12. Real images represented by digitized images of fine arts: (a), (d) original images;
(b), (e) images enhanced using the VMF scheme; (c), (f) images enhanced using the proposed
AVMF scheme.

of the aggregated distances Li related to each input xi , for i = 1, 2, . . . , N , which
are always required in all above-listed schemes. This comparison suggests that:
(i) the computational complexity of both proposed adaptive solutions is signifi-
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(a) (b)

(c) (d)

(e) (f)

Figure 13. Zoomed parts of digitized fine arts and achieved results related to Figure 12:
(a), (d) original images; (b), (e) images enhanced using the VMF scheme; (c), (f) images
enhanced using the proposed AVMF scheme.

cantly lower than that of the SCWVDF scheme, and (ii) the proposed solutions and
the VMF scheme are the most computationally efficient vector filters.

Finally, the efficiency of the zooming schemes is measured, in terms of the
execution time, using a conventional PC equipped with a commonly used operating
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Table IX. Number of elementary operations for a complete processing cycle corresponding to
a 3 × 3 supporting window. The calculations for the switching schemes are provided for both
non-smoothing (identity) and smoothing processing modes.

Filter/Operation ADDs MULTs DIVs SQRTs COMPs ARCCOSs

VMF 186 63 − 21 8 –

BVDF 375 210 21 21 8 21

DDF 540 282 21 42 8 21

SCWVDF (identity) 1143 684 66 69 25 66

SCWVDF (smoothing) 1518 894 87 90 33 87

Proposed AVMF (identity) 187 64 1 21 9 –

Proposed AVMF (smoothing) 187 64 1 21 9 –

Proposed MAVMF (identity) 78 28 4 9 1 –

Proposed MAVMF (smoothing) 264 91 4 30 9 –

system and a standard programming environment. When implemented in software,
the execution of the proposed zooming tool on a PC with an Intel Pentium IV
2.40 GHz CPU, 512 MB RAM, Windows XP operating system and MS Visual C++
5.0 programming environment, took (on average) 0.602 and 0.473 s per 256 × 256
color image with pv = 0.10 to be processed by AVMF and MAVMF schemes,
respectively. The use of the VMF, BVDF, DDF and SCWVDF took 0.594, 1.672,
2.361, and 6.350 s, respectively. The recorded values suggest that the proposed
adaptive filters constitute an efficient color image processing solution, which can
be used in practical applications with the real-time processing constraints.

7. Conclusion

In this paper, a new multichannel approach viewed as the VMF adaptive modifi-
cation for impulsive noise removal was proposed. The analysis performed as well
as the results presented in the paper indicate that the proposed solutions exhibit an
excellent balance between detail-preserving and noise-attenuating characteristics,
while they are computationally efficient and can be relatively easily implemented
either in hardware or software. Holding these properties, the new filters outperform
well-known filtering schemes as well as their adaptive modifications. To boost
further performance of the adaptive vector filters, future work will focus on the
automatic setting of the adjusting parameter used in the proposed design.
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