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Abstract — A new demosaicking framework for single-
sensor imaging devices operating on a Bayer color filter array 
(CFA) is introduced and analyzed. An efficient data adaptive 
filtering concept in conjunction with the refined spectral 
models constitute the base for the proposed framework. Using 
a different form of the function mapping the aggregated 
absolute differences among the CFA inputs to the edge-
sensing weighting coefficients, the framework allows to design 
fully automated demosaicking solutions suitable for common 
digital imaging apparatus, and alternatively, the proposed 
solutions can also be used to support PC-based demosaicking 
of the raw CFA images. Thus, the framework can be seen as 
an universal tool satisfying the needs of the end-users for i) 
the instant access and visualization of the captured images, 
and ii) the interactive processing of the raw sensor data. 
Moreover, the proposed framework is relatively easy to 
implement in either software or hardware. Experimental 
results indicate that the proposed framework exhibits excellent 
performance in terms of the commonly used objective criteria 
and at the same time it produces demosaicked images with 
impressive visual quality. 1 

Index Terms — Single-sensor imaging, digital camera, camera 
image processing, Bayer pattern, color filter array interpolation, 
demosaicking, data adaptive filters. 

I. INTRODUCTION 

 In the last few years, digital imaging devices have become 
popular over the traditional film cameras and been widely 
embedded in consumer electronics ranging from the 
conventional digital cameras, to pocket devices, to mobile 
phones, and imaging devices for automotive and surveillance 
applications. It is therefore not a surprise that digital capturing 
capabilities are required today also in a wide range of 
applications, such as computer vision, medical imaging, 
astronomy, etc. 

To capture the image scene, digital cameras use image 
sensors, usually charge coupled devices (CCD) or 
complementary metal oxide semiconductor (CMOS) sensors. 
Following the trichromatic theory of color vision, an arbitrary 
color is matched by superimposing appropriate amounts of 
three-primary colors [1],[2]. Since sensor is a monochromatic 
device, professional digital cameras acquire color information 
using three sensors (Fig. 1) with Red (R), Green (G) and Blue 
(B) color filters having different spectral transmittances [3]. 
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It is known that the sensor is usually the most expensive 
component of the digital camera taking from 10% to 25% of 
the total cost of the device. Therefore, digital camera 
manufacturers reduce cost and complexity using a single CCD 
or CMOS sensor with a color filter array (CFA). Using this 
hardware solution (Fig. 2), each pixel of the raw, CFA image 
has its own spectrally selective filter. The specific 
arrangements of color filters in the CFA [4],[5] vary between 
the camera manufacturers which use not only RGB CFAs, 
however, the patterns with complementary Cyan (C), Magenta 
(M), Yellow (Y) colors, or four-color CFAs formed through 
mixed primary (RGB) and complementary (CMY) colors or 
the color primaries and the fourth – spectrally shifted color are 
in the use today as well. Among these, the Bayer pattern 
(Fig. 3) [6] is commonly used due to simplicity of the 
subsequent processing steps. This pattern contains twice as 
many G components compared to R or B components 
reflecting the fact that the spectral response of G filters is close 
to the luminance response of human visual system [7],[8],[9]. 
Since each color pixel of the RGB Bayer CFA image contains 
only a single measurement, the two missing color components 
must be estimated from the adjacent pixels. This process is 
called CFA interpolation [9],[10], or demosaicking [11],[12], 
and is an integral element in single-sensor imaging. Depending 
on the demosaicking algorithm employed, the cost of the 
device as well as the quality of the output can vary 
significantly. 

To develop the cost-effective and powerful approach for 
color interpolation in digital still cameras, the data-adaptive 
demosaicking framework is introduced. The structural content 
of the CFA image is tracked based on the aggregation concept 
defined over the absolute differences between the CFA inputs 
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Fig. 3. Bayer CFA pattern with the GRGR phase in the first row. 
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Fig. 4. Aggregation concept defined here over the four-
neighborhoods: (a) rectangular lattice, (b) quincunx lattice. 

[13]. The aggregated statistics are further mapped into the 
weighting coefficients used to direct the interpolation process. 
To avoid color shifts, the spectral characteristics of the image 
input are utilized during processing through the use of the 
spectral model. Based on the actual form of the mapping and 
spectral model employed, thy numerous solutions 
differentiating in terms of functionality as well as performance 
are designed within the proposed framework.  

The rest of this paper is organized as follows. In Section II, 
data-adaptive filtering concept used in numerous digital image 
processing tasks is described. The proposed demosaicking 
framework is introduced in Section III. Motivation and design 
characteristics are discussed in detail. In Section IV, the Bayer 
pattern demosaicking solutions designed within the proposed 
framework are tested using a variety of color images. Finally, 
conclusions are drawn in Section V. 

II. DATA-ADAPTIVE FILTERING CONCEPT 

Let us consider the population of the RGB vectors 

( , ) ( , )1 ( , )2 ( , )3[ , , ]i j i j i j i jx x x=x  with ( , )i j kx  indicating the R ( 1)k = , 
G ( 2)k =  and B ( 3)k =  component. Using the data-adaptive 
vector filtering concept [2],[14],[15], the set of ( , )i jx , for 
( , )i j ς∈  denoting the spatial location inside the filtering 
window centered in ( , )r s , is used to estimate the sample ( , )r sx  
as follows: 
 

( , ) ( , ) ( , )
( , )

r s i j i j
i j

f w
ς∈

′=x x  (1) 

 
where (.)f  is a nonlinear function that operates over the 
weighted average of the input set. To ensure that the filter 
output is an unbiased estimator and produces the samples 
within the desired intensity range, the weights ( , )i jw  associated 
with the vectorial inputs ( , )i jx  are normalized using 
 

( , )
( , )

( , )
( , )

i j
i j

g h
g h

w
w

w
ς∈

′ =  (2) 

 
In this design the weights provide the degree to which an 

input vector contributes to the output of the filter [2],[14]. The 
relationship between the sample under consideration and each 

sample positioned at the window locations ς  is reflected in 
the decision for the weighting coefficients ( , ) .i jw  The weights 
of the filter are adaptively determined using functions of 
a distance (or similarity) criterion between the vectorial inputs 
[14]. Due to the robust performance under a wide range of 
circumstances, it is common to use the aggregated statistics 
(Fig. 4) defined as follows: 
 

( )( , ) ( , ) ( , )
( , )

,i j DS i j g h
g h

d f
ς∈

= x x  (3) 

 
where (.,.)DSf  measures the distance or similarity between the 
vectorial inputs ( , )i jx  and ( , ) .g hx  

It has been shown in [15] that the distance/similarity 
aggregation concept defined over the input vectors is suitable 
for many color image processing applications, such as noise 
filtering, edge detection, microarray image processing, spectral 
interpolation, spatial interpolation, television and digitized 
artwork image enhancement, etc. Note that the vectorial nature 
of the color inputs provides a high degree of freedom in 
designing the distance/similarity measures suitable for the 
aforementioned tasks. Numerous designs including Euclidean 
distance, Minkowski metric, and sophisticated similarity 
measures are discussed in detail in [2],[14],[15]. 

It is not difficult to see that the application of data-adaptive 
filtering concept to the scalar signals such as the gray-scale 
images reduces (3) to the aggregated absolute differences 
between the scalar inputs. Assuming for the simplicity (.)f  
equivalent to the identity function keeping the input 
unchanged, the direct implication of the scalar data-adaptive 
filtering concept to color images results in the so-called 
component-wise processing [16]: 

 

( , ) ( , ) ( , )
( , )

r s k i j i j k
i j

x w x
ς∈

′=  (4) 

 
where the k -th component ( , )r s kx  of the color vector ( , )r sx  is 
estimated using the k -th components ( , )i j kx  of the spatially 
neighbored color vectors ( , )i jx , for ( , )i j ς∈  and 1,2,3.k =  
Analogously, the weighting coefficients ( , )i jw  are determined 
using the function of the aggregated absolute differences ( , )i jd  
between the color components (Fig. 4): 
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Fig. 5. Demosaicking input: (a) raw sensor data, (b) CFA data arranged as a color image, (c-e) R,G,B channels separated from the image shown in (b). 

( , ) ( , ) ( , )
( , )

i j i j k g h k
g h

d x x
ς∈

= −  (5) 

 
However, it is widely observed that the application of scalar 

filters, such as the one defined in (4), on each color channel 
separately disrupts the correlation that exists between the color 
components of natural images represented in a correlated color 
space. Since each processing step is usually accompanied by a 
certain inaccuracy, the formation of the output color vector 
from the separately processed color components usually 
produces color artifacts [15]. Therefore, vector filtering 
techniques that treat the color image as a vector field are more 
appropriate for most, if not all, color image processing tasks. 

Unfortunately, the fact that the CFA image contains only 
a single measurement in each spatial location limits the 
applicability of the vectorial processing. To overcome this 
limitation, the proposed demosaicking framework, described 
in the sequence, employs any color model of [17],[18],[19], 
[20] to utilize the spectral characteristics of the CFA inputs 
and decrease the level of artifacts present in the demosaicked 
image [8],[21],[22]. To restore the camera output in a sharp 
manner, the framework utilizes the aggregated statistics of (5) 
as the base for the edge-sensing mechanism. Since these 
statistics can be mapped into the weighting coefficients in 
many ways and similarly the design characteristics of the 
solution are further directed by the use of any color model, 
numerous demosaicking solutions can be designed within the 
proposed framework. Thus, the framework has a great 
potential to fully satisfy various needs of the end-user. 

III. PROPOSED DEMOSAICKING FRAMEWORK 

The CCD/CMOS sensor is a monochromatic device and thus, 
the raw CFA sensor values should be arranged as a 1 2K K×  
gray-scale image 2:z Z Z→  representing a two-dimensional 
matrix of integer samples ( , )r sz  with 11, 2,...,r K=  denoting 
the image row and 21,2,...,s K=  indicating the image column. 
Since the arrangement of the color filters in the CFA is known 
from the camera manufacturers, these raw sensor data can be 
re-arranged to a 1 2K K×  color (RGB) image 2 3: Z Z→x  
representing a two-dimensional matrix of three-component 
samples [19]. Assuming the commonly accepted Bayer pattern 
with a GRGR phase in the first row (Fig. 3), the gray-scale 
pixels ( , )r sz  (Fig. 5a) can be transformed into the RGB vectors 

( , ) ( , )1 ( , )2 ( , )3[ , , ]r s r s r s r sx x x=x  with ( , )r s kx  indicating the R ( 1)k = , 
G ( 2)k =  and B ( 3)k =  component, as follows [19],[20]: 

( , )

( , ) ( , )

( , )

[ ,0,0] for  odd and  even,

[0,0, ] for  even and  odd,

[0, ,0] otherwise.

r s

r s r s

r s

z r s

z r s

z

=x  (6) 

 
Since only a single measurement ( , )r s kx  varying in k  is 
available in each spatial location ( , ),r s  color vectors ( , )r sx  of 
the image x  (Fig. 5b) are completed using two zero 
components (Fig. 5c-e). The missing components are 
interpolated taking advantages of an edge-sensing mechanism 
and a spectral model employed in the demosaicking procedure. 
These key elements used to construct the proposed framework 
are described in the sequence.  

 

A. Edge-sensing mechanism 

Through the use of the weighting coefficients the edge-
sensing mechanism is employed to direct the interpolation 
process along the edges [11],[21],[23]. It is common to track 
the changes in the structural content of the image using some 
form of inverse gradients [8],[24]. The rationale behind this 
choice is rather simple: the small gradients reflect the inputs 
localized along the edge, whereas the large gradients 
correspond to the directions defined across the edge. 
Assuming the weighted averaging operator, such as the one 
used in (1) or (4), the weighting coefficients equivalent to 
inversely proportional values of the gradients are thus used to 
proportionally represent the contribution of each input. The 
inputs associated with the large gradients are appropriately 
penalized through the corresponding small weights and the 
inputs corresponding to the small gradients (large weights) 
contribute mostly to the output.  

Employing the aggregated statistics ( , )i jd  obtained in (5), 
the weighting coefficients can be expressed as follows [14]: 
 

( , ) ( , )( )i j i jw f d=  (7) 

 
where (.)f  is the function mapping the aggregated absolute 
differences between the inputs to the weighting coefficients. 
The actual shape of the function (.)f  determines the 
properties of the weights, [14].  

Taking advantages of inversely proportional gradients, 
probably the simplest form of (.)f  is defined as follows [14]: 
 

( , )
( , )

1

1i j
i j

w
d

=
+

 (8)
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Fig. 6. Demosaicking performed: (a) in the fully automated manner 

required in most digital cameras, (b) using the PC-based interface. In the 
application scenario the end-user controls: (a) storing/deleting of the 
restored images, (b) storing/deleting of both raw CFA images and the 
images restored using the PC, and also controls the interpolation process 
by setting the parameters of the demosaicking algorithm. 

where the constant is added in the denominator to avoid the 
singularities in calculations. Due to the simplicity of (8), this 
implementation is suitable to be embedded in the conventional 
digital cameras (Fig. 6a) requiring: i) the real-time 
performance and high processing rate, and ii) no user control 
of the interpolation process. 

However, many digital cameras store the captured images in 
the raw (CFA) format. In this case it is expected that: i) the 
demosaicking is guided using the personal computer, ii) the 
end-user has the possibility to control the interpolation process 
by setting the parameters, and iii) based on the quality of the 
restored output the end-user has an option to eventually re-run 
the demosaicking with other setting of the parameters. 
Following this application scenario (Fig. 6b), more 
sophisticated forms of (.)f  are necessary. 

It is known [14] that the relationship between distances 
measured in physical units and perception is generally 
exponential. Therefore, high visual quality of the reconstructed 
images can be obtained using the generalized form of a 
sigmoidal function [14]: 
 

( )( , )

( , )1 exp( )
i j

i j

w
d

τ
λ=

+
 (9) 

 
where τ  is a parameter adjusting the weighting effect of the 
membership function and λ  is a normalizing constant.  

Both (8) and (9) are used here to demonstrate the potential 
of the proposed framework, which can be designed to perform 
fully automated demosaicking as well as the interactive 
processing of the raw sensor data. It is not difficult to see that 
various forms of (.)f  can be used instead (8) and (9) which 
makes the proposed framework very flexible. 

 

B. Spectral modeling based interpolator 

It is well-known that natural RGB images exhibit a strong 
spectral correlation between the color channels [1],[2]. This is 
the reason that many powerful demosaicking solutions 

developed in the past incorporate the spectral image 
characteristics to the interpolation process and thus reduce the 
amount of the spectral problems (color shifts, artifacts, moire, 
etc.) present in the demosaicked output [7],[8],[11],[21],[23]. 
To the date, four spectral models suitable for this task have 
been introduced. They include the color-ratio model (CRM) 
[17], the color-difference model (CDM) [18], the normalized 
CRM utilizing the linear shifting operations (NRSM) [19],[20] 
and the normalized CRM utilizing both linear scaling and 
shifting operations (NRSSM) [20]. The common base for these 
designs consists in the use of the RG or BG spectral 
characteristics. Since natural color images do not have large 
areas with uniform spectral characteristics, the smoothing 
operations are performed over the spectral inputs available in 
the spatial neighborhood .ς  

Let ⊕  be a relation between the two inputs A  and ,B  and 
⊕  be an inverse operator to .⊕  Assuming that ⊕  and ⊕  
denote the following operations: 

 
/A B A B⊕ =    and   A B AB⊕ =  (10) 

A B A B⊕ = −    and   A B A B⊕ = +  (11) 

( ) /( )A B A Bβ β⊕ = + +   and  ( )A B A Bβ β⊕ = + −  (12) 

( )/( )A B A Bα β α β⊕ = + +  and [( ) ]/A B A Bα β β α⊕ = + −  (13) 

 
the operators ⊕  and ⊕  defined in (10), (11), (12) and (13) 
generalize the operations defined behind the CRM, CDM, 
NRSM and NRSSM, respectively. The parameters β  and α  
denote the linear shifting and scaling operations and allow for 
the end-user to obtain the additional control of the 
interpolation process.  

Combining the generalized spectral model and the data-
adaptive filtering concept of (4), the following two forms of 
the CFA interpolator are obtained:  

 

( )( , ) ( , )2 ( , ) ( , ) ( , )2
( , )

( )r s k r s i j i j k i j
i j

x x w x x
ς∈

′= ⊕ ⊕  (14) 

( )( , )2 ( , ) ( , ) ( , )2 ( , )
( , )

( )r s r s k i j i j i j k
i j

x x w x x
ς∈

′= ⊕ ⊕  (15) 

 
The use of ( , )2r sx  in (14) denotes the available G component 

placed at an interpolated location ( , ).r s  The neighboring 
locations ( , )i j ς∈  correspond to the available G components 

( , )2i jx  and R (for 1k = ) or B (for 3k = ) components ( , )i j kx  
used to interpolate the R or B component ( , )r s kx . Analogously, 
the G component ( , )2r sx  of (15) is obtained using the R ( 1k = ) 
or B ( 3k = ) component ( , )r s kx  located at the interpolation 
location ( , )r s  and the surrounding G components ( , )2i jx  and R 
(or B) components ( , )i j kx  available in spatially neighboring 
positions ( , ) .i j ς∈  

Since the data-adaptive filtering concept is defined here 
over the spectral quantities ( , ) ( , )2i j k i jx x⊕  in (14) or 

( , )2 ( , )i j i j kx x⊕  in (15), both ( , )2r sx  in (14) and ( , )r s kx  in (15) are 
used to normalize the operand from the modeling to the pixel 
domain.
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Fig. 7. The proposed demosaicking framework is designed to operate 
on four-neighbor spatial arrangements: (a,c,d,f) a diamond-shape mask 

{( 1, ),( , 1),( , 1),( 1, )}r s r s r s r sς = − − + + , (b,e) a square-shape mask {( 1, 1),r sς = − −
( 1, 1), ( 1, 1), ( 1, 1)}r s r s r s− + + − + + . The individual processing steps 
correspond to: (a) component-wise G channel interpolation, (b,c) spectral 
model based interpolation, (d-f) spectral model based correction of 
previously interpolated components, (g) the restored image. Symbols •
and + denote the components used in the interpolator’s input and the 
components being interpolated, respectively.  

1 2K K� Bayer CFA image z equivalent to raw sensor (grayscale) data.

Specify the spectral model used in the algorithmic steps (14) and (15).

Specify the function (.)f in (7) used to map the aggregated statistics (5)

into the edge-sensing weights used to control the procedure.

Set the parameters (if any) used to control the edge-sensing mechanism

and/or the spectral model.

1. Re-arrange 1 2K K� image z to 1 2K K� color image x using (6).

2. Let {( 1, ), ( , 1),( , 1),( 1, )}r s r s r s r s� 
 � � � � , Fig. 7a. Calculate the

aggregated statistics of (5) with 2k 
 . Interpolate the missing G

component using (4) with 2k 
 .

2. Let {( 1, 1),( 1, 1),( 1, 1),( 1, 1)}r s r s r s r s� 
 � � � � � � � � , Fig. 7b. Calculate

the aggregated statistics of (5) with 1k 
 for R components.

Interpolate the missing R components using (14) and 1.k 
 Use

3k 
 in (5) and (14) to obtain the missing B components.

3. Let {( 1, ), ( , 1),( , 1),( 1, )}r s r s r s r s� 
 � � � � , Fig. 7c. Calculate the

aggregated statistics of (5) with 1k 
 for R components. Interpolate

the missing R components using (14) and 1.k 
 Use 3k 
 in (5) and

(14) to obtain the missing B components.

4. Let {( 1, ), ( , 1),( , 1),( 1, )}r s r s r s r s� 
 � � � � , Fig. 7d. Calculate the

aggregated statistics of (5) using 2.k 
 Correct the interpolated G

components using (15) with 1k 
 for R CFA locations and 3k 
 for

B CFA locations.

5. Let {( 1, 1),( 1, 1),( 1, 1),( 1, 1)}r s r s r s r s� 
 � � � � � � � � , Fig. 7e. Calculate

the aggregated statistics of (5) with 1k 
 for R components. Correct

the interpolated R components using (14) and 1.k 
 Use 3k 
 in (5)

and (14) to correct the interpolated B components.

6. Let {( 1, ), ( , 1),( , 1),( 1, )}r s r s r s r s� 
 � � � � , Fig. 7f. Calculate the

aggregated statistics of (5) with 1k 
 for R components. Correct the

interpolated R components using (14) and 1.k 
 Use 3k 
 in (5)

and (14) to correct the interpolated B components.

Input:

Demosaicking procedure:

1 2K K� restored, full color output image.

Output:

Fig. 8. Algorithm of the proposed demosaicking framework. 

 

C. Demosaicking procedure 

Since the G color plane of the color CFA image x  obtained 
using (6) contains double number of the components than R or 
B color planes (Fig. 7a) and thus also contains a major part of 
spatial information of the image being reconstructed, most, if 
not all, demosaicking algorithms start the demosaicking 
procedure with interpolating the missing G components ( , )2.r sx  
These are located at the center ( , )r s  of four spatially 
surrounding G components ( , )2i jx , for ( , )i j ς∈ , forming 
a diamond shape {( 1, ),( , 1),( , 1),( 1, )}r s r s r s r sς = − − + +  on the 
image lattice (Fig. 7a). The application of the data-adaptive 
concept here is straightforward: the components ( , )2r sx  are 
obtained using (4) with 2k =  and the weights are defined 
through the aggregated statistics of (5) with 2.k =  

The availability of the fully populated G color plane allows 
to utilize more information in interpolating the missing R and 
B components. This is realized using the spectral model based 
data-adaptive filtering concept of (14). As shown in Fig. 7b, 
the available R (for 1k = ) or B (for 3k = ) components ( , )i j kx  
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Fig. 9. Test color images: (a) Train, (b) Rafting, (c) Mask, (d) Lighthouse. 
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(16)
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Fig. 10. Evaluation procedure. 

form a square- shape mask {( 1, 1),( 1, 1),( 1, 1),r s r s r sς = − − − + + −  
( 1, 1)}.r s+ +  The missing R (or B) component ( , )r s kx  located 
at the center of ς  is obtained using these available R (or B) 
components ( , )i j kx  and G components (.,.)2x  located at the 
neighboring positions ( , )i j ς∈  and the interpolated location 
( , ).r s  It is not difficult to see that this interpolation step 
produces the patterns (Fig. 7c) with the missing R (or B) 
components located at the center of the diamond-shape mask. 
Therefore, (14) with {( 1, ),( , 1),( , 1),( 1, )}r s r s r s r sς = − − + +  is 
repeated to produce fully populated R and B color planes. 

Although this step results in the full color output, the use of 
correction [11],[23], or postprocessing steps [19],[24],[25], 
improves the image sharpness and further reduces the amount 
of color artifacts present in the demosaicked output. Since G 
components were previously interpolated without any spectral 
information using (4), the utilization of more information 
coming from both G and R (or G and B) color planes in the 
spectral model-based variant (15) of the data-adaptive filter 
greatly boosts the performance of the proposed framework. If 
the G component ( , )2r sx  being corrected is located at the 
original R CFA locations ( , ),r s  then (15) with 1k =  is used. 
Otherwise, (15) with 3k =  is used to correct the G 
components located at the original B CFA location. In both 
cases a diamond shape mask {( 1, ),( , 1),( , 1),( 1, )}r s r s r s r sς = − − + +  
defines the location of the original G components (Fig. 7d).  

The proposed demosaicking procedure completes with the 
correction of previously interpolated R and B components. At 
this processing stage the corrected G color plane and the 
original R (or B) CFA components described by 

{( 1, 1),( 1, 1),( 1, 1),( 1, 1)}r s r s r s r sς = − − − + + − + +  (Fig. 7e) are used 
to improve the contrast in the R (or B) channel. Similarly to 
the interpolation phase, the repetition of (14) with 

{( 1, ),( , 1),( , 1),( 1, )}r s r s r s r sς = − − + +  is necessary to complete 
the correction tasks (Fig. 7f).  

The algorithmic steps performed by the proposed CFA 
demosaicking framework are summarized, in pseudo-code 
format, in Fig. 8. As it can be seen from this overview, apart 
from the selection of the spectral model and the edge-sensing 
mapping, the end-user can have an additional option to control 
the demosaicking procedure by setting the parameters of these 
two construction elements. Depending on the actual 
application, the proposed framework can be used to perform 
either an automatic demosaicking [26] or the required visual 
quality is obtained by tuning the parameters [27]. 

IV. EXPERIMENTAL RESULTS 

To examine performance of the proposed framework, 
a number of color images have been used. The examples such 
as the 512 512×  images Train, Rafting, and Mask, and the 
768 512×  image Lighthouse are depicted in Fig. 9. These test 
images have been captured using three-sensor devices and 
normalized to 8-bit per channel RGB representation.  

Fig. 10 shows the evaluation procedure commonly used in 
the research community [9],[11],[20],[21],[28],[29]. The set of 
the test images, such as those shown in Fig. 9, is constituted. 
Mosaic versions of the 1 2K K×  original images o  are created 
by discarding color information in a GRGR phased Bayer CFA 
filter (Fig. 3) resulting in the raw, sensor (grayscale) CFA 
image z  with the pixels ( , )r sz  defined as follows [11]: 

 

( , )1

( , ) ( , )3

( , )2

for  odd and  even,

for  even and  odd,

otherwise.

r s

r s r s

r s

o r s

z o r s

o

=  (16) 

 
where ( , )r s ko  denote the R ( 1k = ), G ( 2k = ) and B ( 3k = ) 
component of the original color vector ( , ) ( , )1 ( , )2 ( , )3[ , , ]r s r s r s r so o o=o  
with 11, 2,...,r K=  and 21,2,...,s K= . The color version x  of 
the CFA image z  is generated through (6) and the restored 
(demosaicked, output) images are obtained from x  applying 
any CFA interpolation method such as the numerous solutions 
designed within the proposed framework. The efficiency of the 
interpolation methods is measured, in terms of both objective 
and subjective criteria, by comparing the quality of the output, 
restored image against the original image. 
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In this paper, the mean absolute error (MAE), the mean 
square error (MSE) and the normalized color difference 
(NCD) criterion are used to objectively measure the 
performance of the demosaicking algorithms. Assuming that 

( , ) ( , )1 ( , )2 ( , )3[ , , ]r s r s r s r so o o=o  denotes the pixel in a 1 2K K×  original 
RGB image o  and ( , ) ( , )1 ( , )2 ( , )3[ , , ]r s r s r s r sx x x=x  is the pixel in 
a 1 2K K×  restored output ,x  the MAE and MSE are defined 
as follows: 

 
1 23

( , ) ( , )
1 1 11 2

1
MAE

3

K K

r s k r s k
k r s

o x
K K = = =

= −  (17) 

( )
1 23 2

( , ) ( , )
1 1 11 2

1
MSE

3

K K

r s k r s k
k r s

o x
K K = = =

= −  (18) 

 
Since the MAE and MSE criteria do not measure the 

difference between the two images in the units corresponding 
to human perception, some other measures, such as the NCD 
criterion, defined in perceptually uniform color spaces, are 
necessary. The NCD values are obtained as follows [14]: 

 

( )

( )

1 2

1 2

3 2

( , ) ( , )
1 1 1

3 2

( , )
1 1 1

NCD

K K

r s k r s k
r s k

K K

r s k
r s k

o x

o

= = =

= = =

′ ′−
=

′
 (19) 

 

where ( , ) ( , )1 ( , )2 ( , )3[ , , ]r s r s r s r so o o′ ′ ′ ′=o  and ( , ) ( , )1 ( , )2 ( , )3[ , , ]r s r s r s r sx x x′ ′ ′ ′=x  
are the vectors representing the RGB vectors ( , )r so  and ( , )r sx , 
respectively, in the CIE LUV color space [3] with the white 
point D65. To obtain the LUV representation of ( , )r so  and 

( , )r sx , the procedure requires to transform the RGB values to 
their XYZ equivalents, which are further transformed to the 
LUV values. After these operations, the color difference can 
be quantified using (19). 

The solutions designed within the proposed framework are 
compared, in terms of performance, against the well-known 
Bayer pattern based demosaicking schemes. The prior-art 
methods used here for the comparisons are the alternative 
projection (AP) scheme [9], the adaptive color plane 
interpolation (API) scheme [30], the bilinear interpolation 
scheme [28], the bilinear difference (BD) interpolation scheme 
[29], the color correlation-directional derivatives (C2D2) 
scheme [21], the edge map interpolation (EMI) scheme [31], 
the Kimmel’s algorithm (KA) [23], the median filter 
interpolation (MFI) scheme [32], the principle vector method 
(PVM) [33], the saturation based adaptive interpolation (SAI) 
scheme [34] and the smooth hue transition (SHT) scheme [17]. 

To boost efficiency of the proposed framework, 256β =  
and 0.05α =  for NRSSM, and 256β =  for NRSM, are used 
as the default setting of the normalized spectral models 
[19],[20]. Following the findings listed in [27], 1λ =  and 

0.005τ =  are used as the default setting of (9). Note that using 
the generalized form of the spectral interpolator (14) and (15), 
the framework unifies our previous developments based on (8) 
and (11) [26], and (9) and (11) [27]. 

Tables I-IV summarize the objective results obtained using 
the test images shown in Fig. 9. As it can be observed the 
conventional BI scheme introduces significant inaccuracy into 
the restoration process. Other techniques, such as API, BD, 
EMI, MFI, SAI and SHT, which utilize more advanced 
interpolators compared to the BI scheme, provide better results 
in terms of all objective criteria. Simple inspection of the 
values listed in Tables I-IV suggests that the solutions 
designed within the proposed framework outperform other 
demosaicking schemes including sophisticated C2D2, KA, and 
PVM schemes. The proposed framework and the AP approach 
achieve the best performance in terms of all image quality 
measures. However, if the image contains a number of 

TABLE I 
COMPARISON OF THE METHODS USING THE TRAIN IMAGE  

Method MAE MSE NCD 

AP   3.499   51.6 0.0560 
API   5.037 117.7 0.0776 
BI 10.569 466.4 0.1450 
BD   4.622 85.8 0.0744 

C2D2   4.884 113.0 0.0702 
EMI   5.795 170.6 0.0845 
KA   4.562   91.8 0.0710 
MFI   4.873 109.9 0.0798 
PVM   6.780 214.3 0.0958 
SAI   5.985 166.9 0.0866 
SHT   7.759 257.7 0.1085 

Proposed framework:    
(8) + CRM   4.437   79.7 0.0726 
(8) + CDM   3.392   49.5 0.0536 

(8) + NRSM   3.448   51.5 0.0544 
(8) + NRSSM   3.399   49.6 0.0538 

(9) + CRM   4.448   79.6 0.0728 
(9) + CDM   3.423   49.8 0.0542 

(9) + NRSM   3.477   51.9 0.0550 
(9) + NRSSM   3.429   49.4 0.0544 

 

TABLE II 
COMPARISON OF THE METHODS USING THE RAFTING IMAGE  

Method MAE MSE NCD 

AP 2.014 20.6 0.0358 
API 2.273 21.5 0.0399 
BI 4.796 92.2 0.0753 
BD 2.288 21.0 0.0396 

C2D2 2.303 22.5 0.0375 
EMI 3.002 45.3 0.0492 
KA 3.066 55.7 0.0504 
MFI 2.410 25.0 0.0434 
PVM 3.103 40.7 0.0504 
SAI 3.030 41.5 0.0507 
SHT 3.875 61.1 0.0626 

Proposed framework:    
(8) + CRM 3.193 57.4 0.0547 
(8) + CDM 2.007 19.1 0.0351 

(8) + NRSM 1.993 18.4 0.0344 
(8) + NRSSM 2.003 19.0 0.0350 

(9) + CRM 3.225 57.5 0.0552 
(9) + CDM 2.074 20.1 0.0361 

(9) + NRSM 2.048 19.3 0.0353 
(9) + NRSSM 2.068 20.0 0.0360 
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(a) (e)

(b) (f)

(c) (g)

(d) (h)
 

Fig. 11. Enlarged parts of the original Train image (a) and the images restored using: (b) AP, (c) API, (d) BI, (e) BD, (f) C2D2, (g) KA, 
(h) the proposed framework. 

(a) (e)

(b) (f)

(c) (g)

(d) (h)
 

Fig. 12. Enlarged parts of the original Rafting image (a) and the images restored using: (b) AP, (c) API, (d) BI, (e) BD, (f) MFI, (g) PVM, 
(h) the proposed framework. 
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(a) (e)

(b) (f)

(c) (g)

(d) (h)
 

Fig. 13. Enlarged parts of the original Mask image (a) and the images restored using: (b) AP, (c) API, (d) BI, (e) C2D2, (f) KA, (g) PVM, 
(h) the proposed framework. 

(a) (e)

(b) (f)

(c) (g)

(d) (h)
 

Fig. 14. Enlarged parts of the original Lighthouse image (a) and the images restored using: (b) AP, (c) API, (d) C2D2, (e) EMI, (f) KA, (g) PVM, 
(h) the proposed framework. 
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fine details varying in color, the use of the proposed 
framework can take advantage over the AP scheme and 
decrease the amount of the spatial and spectral artifacts to 
a level corresponding to the lowest error values (Tables I-III). 

Figs. 11-14 facilitate the visual comparison of enlarged 
parts of both the original images and the restored outputs 
obtained using the methods under consideration. The results 
indicate that the BI, EMI and SHT schemes blur image edges 
and delete both structural content and fine details. The API, 
BD, C2D2, MFI, KA and PVM approaches exhibit improved 
detail-preserving characteristics. However, the corresponding 
outputs contain a number of color artifacts as it can be seen by 
simply contrasting these results to the original images. On the 
other hand, the proposed method and AP approach preserve 
the image details and reduce the amount of color artifacts. The 
employed edge-sensing mechanism in conjunction with the 
correction steps and spectral modeling help the proposed 
algorithm to accurately restore the image and to preserve the 
original structural content in most cases. Fig. 14 shows that the 
proposed framework is not capable to eliminate aliasing errors 
in the picket fence area of the image Lighthouse to a level 
obtained using the AP, API, or PVM schemes. However, other 
examples depicted in Figs. 11-14 clearly demonstrate that in 
all other image regions, with various color-appearance and 
complexity of the structural content, the proposed framework 
outperforms other solutions and clearly produces visually 
pleasing, naturally colored images. 

Apart from the numerical behavior (actual performance) of 
any algorithm, its computational complexity is a realistic 
measure of its practicality and usefulness. Therefore, the 
proposed demosaicking framework is analyzed here in terms 
of normalized operations, such as additions (ADs), 
subtractions (SUs), multiplications (MUs), divisions (DIs), 
absolute values (AVs) and exponents (EXs). Table V 
summarizes the total number of operations per interpolated 

location denoted for the individual proposed interpolators. 
Note that the use of (9) instead (8) requires 4 EXs in addition 
to the amounts listed in Table V. The analysis suggests that the 
proposed framework represents an efficient and cost-effective 
demosaicking solution. Moreover, since a number of 
operations can be implemented in parallel and shared forms, 
additional computational saving may occur. 

The execution of the developed demosaicking tool on a PC 
with an Intel Pentium IV 2.40 GHz CPU, 512 MB RAM, 
Windows XP operating system and MS Visual C++ 5.0 
programming environment, took (on average) 0.87 sec per a 
512 × 512 input image processed by the fully automated 
solutions, e.g. those based on (8) and some spectral model. 

Summarizing the results presented above, the following 
conclusions can be drawn: i) the use of a data-filtering concept 
based generalized edge-adaptive spectral interpolator and 
postprocessor constitutes a new, powerful demosaicking 
framework for Bayer CFA based imaging devices, ii) both 
fully automated and user-controlled solutions designed within 
the proposed framework produce visually pleasing restored 
images, iii) the proposed demosaicking framework is robust 
and achieves significant improvement in terms of the image 
quality evaluation compared to the state-of-the-art, and iv) the 
proposed framework is computationally efficient and it can be 
relatively easily implemented either in software or hardware. 

TABLE III 
COMPARISON OF THE METHODS USING THE MASK IMAGE  

Method MAE MSE NCD 

AP 3.434   42.3 0.0754 
API 3.852   57.6 0.0830 
BI 7.376 212.9 0.1328 
BD 3.817   49.2 0.0819 

C2D2 3.753   56.3 0.0750 
EMI 4.424   94.8 0.0825 
KA 3.836   60.2 0.0736 
MFI 3.829   57.3 0.0822 
PVM 5.012 101.1 0.0984 
SAI 4.482   87.4 0.0854 
SHT 5.867 131.7 0.1070 

Proposed framework:    
(8) + CRM 4.194   65.6 0.0815 
(8) + CDM 3.334   40.0 0.0729 

(8) + NRSM 3.372   41.1 0.0711 
(8) + NRSSM 3.336   40.0 0.0728 

(9) + CRM 4.235   66.4 0.0822 
(9) + CDM 3.387   40.9 0.0744 

(9) + NRSM 3.427   42.1 0.0724 
(9) + NRSSM 3.388   40.8 0.0742 

 

TABLE IV 
COMPARISON OF THE METHODS USING THE LIGHTHOUSE IMAGE  

Method MAE MSE NCD 

AP 1.467     7.3 0.0237 
API 1.817   12.7 0.0298 
BI 4.468 108.3 0.0653 
BD 2.149   19.7 0.0321 

C2D2 2.005   16.2 0.0301 
EMI 2.322   23.1 0.0370 
KA 2.241   19.4 0.0365 
MFI 2.341   31.8 0.0380 
PVM 2.364   23.5 0.0366 
SAI 2.570   24.3 0.0403 
SHT 3.619   58.5 0.0522 

Proposed framework:    
(8) + CRM 2.589   25.0 0.0414 
(8) + CDM 1.712   12.0 0.0264 

(8) + NRSM 1.716   12.0 0.0264 
(8) + NRSSM 1.717   12.0 0.0265 

(9) + CRM 2.603   25.3 0.0415 
(9) + CDM 1.741   12.1 0.0281 

(9) + NRSM 1.741   12.5 0.0267 
(9) + NRSSM 1.723   12.4 0.0267 

 
TABLE V 

COMPUTATIONAL COMPLEXITY OF THE PROPOSED FRAMEWORK  
EXPRESSED THROUGH THE NUMBER OF NORMALIZED OPERATIONS 

Interpolator / Criterion ADs SBs MUS DIs AVs 

(4) + (8) 18   6   4   8 6 
(14 or 15) + (8) + CRM  18   6   5 12 6 
(14 or 15) + (8) + CDM 19 10   4   8 6 

(14 or 15) + (8) + NRSM 27   7   5 12 6 
(14 or 15) + (8) + 

NRSSM 
27   7 14 13 6 
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V. CONCLUSION 

A new demosaicking framework operating on Bayer CFA data 
was introduced. The framework utilizes an efficient data-
adaptive filtering concept, a generalized spectral model, and 
a correction step to produce visually pleasing restored color 
images. At the same time it yields excellent results in terms of 
commonly used objective image quality criteria.  
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