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Abstract—The location of mobile terminals in cellular networks is an important problem with applications in resource allocation,

location sensitive browsing, and emergency communications. Finding cost effective location estimation techniques that are robust to

Non-Line of Sight (NLOS) propagation, quantization, and measurement noise is a key problem in this area. Quantized time difference

of arrival (TDoA) and received signal strength (RSS) measurements can be made simultaneously by CDMA cellular networks at low

cost. The different sources of errors for each measurement type cause RSS and TDoA measurements to contain independent

information about mobile terminal location. This paper applies data fusion to combine the information of RSS and TDoA measurements

to calculate a superior location estimate. Nonparametric estimation methods, that are robust to variations of measurement noise and

quantization, are employed to calculate the location estimates. It is shown how the data fusion location estimators are robust, provide

lower error than the estimators based on the individual measurements, and have low implementation cost.

Index Terms—Nonparametric statistics, wireless sensor networks, location-dependent and sensitive mobile applications, location

estimation.
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1 INTRODUCTION

MOBILE terminal location is an important problem for
modern cellular networks. The knowledge of mobile

terminal location can be used to enhance resource allocation
in the cellular network, enable location sensitive informa-
tion browsing, as well as helping users making emergency
communications [1], [2].

The characteristics of the radio channel between the

mobile terminal and fixed location base stations are depen-

dent on the locationof themobile terminal. This allows for the

location of the mobile terminal to be estimated from

measurements made of the radio propagation channels. The

most popular proposed measurements are Received Signal

Strength (RSS), Angle of Arrival (AoA), Time of Arrival

(ToA), and Time Difference of Arrival (TDoA)[3].
AoA measurements with the desired accuracy require

special antennae, which are not presently used in any

currently deployed cellular network standard. To obtain

ToA measurements, the receivers must have knowledge of

the transmission times of the radio signals. To give them this

knowledge with the accuracy required is very expensive [3].

RSS andTDoAmeasurements, however, canbe implemented

in third generation cellular networks at low cost. Location of

mobile terminals using only RSS measurements or only

TDoAmeasurements has been discussed in the radiolocation

literature [4], [5], [6]. The use of the GPS navigation system
has also been proposed for location of mobile terminals [7].
However, the GPS system was not designed for operation in
the urban environments of greatest interest to cellular
network providers and its performance can be degraded in
these cases [8].

It is not certain if the use of TDoA, RSS, or GPS
measurements alone can achieve the desired location
accuracies. This paper discusses methods to use RSS and
TDoA measurements simultaneously to create location
estimates with lower location errors than the estimators
using either measurement type alone. The data fusion
methods introduced in this paper increase the accuracy of
mobile terminal locationwithout expensive systemmodifica-
tions such as requiring more base station measurements or
increasing the measurements’ resolutions. GPS, which
requires the addition of a GPS receiver in each mobile
terminal, is not considered explicitly in this paper. However,
GPS systems are based on ToA and TDoA measurements so
the results contained within this paper for TDoA measure-
ments give information relevant for a location system that
combines GPS and RSS measurements together to increase
location accuracy in urban streets or other areas where GPS
alone might not be sufficiently accurate.

These new estimators are designed to be robust to
difficult radio propagation conditions. Accurate mobile
terminal location estimation is trivial for Line of Sight
(LOS) radio propagation (defined by the shortest distance
straight line paths between the mobile terminal and base
stations being unobstructed) when the measurement noise
is negligible and the measurements have high resolution
[3]. In actual location estimation applications, Non-Line of
Sight (NLOS) propagation, when obstructions block the
shortest distance propagation paths from mobile terminal
to the base stations, is common, particularly in urban
areas. As well, RSS and TDoA measurements made in
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cellular networks contain additive noise created by radio
interference and receiver noise as well as nonlinear noise
created by multipath propagation. High resolution of path
loss measurements can be made with expensive hardware
in the receivers and high resolution time delay measure-
ment are possible with computationally expensive super-
resolution signal processing algorithms [9], [10], [11]. The
resolution of measurements in actual cellular networks is
determined by the resources that the system designers are
willing to assign to the location system. The robustness of
a location algorithm with respect to low resolution
measurements is a key factor to its ultimate success in
real networks.

The authors have previously demonstrated location
estimation algorithms using RSS, ToA, or TDoA measure-
ments that are robust to additive measurement noise and
NLOS propagation [12], [13]. These algorithms are based on
the use of nonparametric estimation techniques which use
survey data taken from the propagation environment to
construct approximate joint probability density functions
(pdfs) of the measurements and mobile terminal location.
With these approximate pdfs, Bayesian estimation is used to
calculate mobile terminal location estimates. The applica-
tion of similar nonparametric estimation techniques has
been shown to provide excellent results during field tests in
complex indoor environments [14], [15]. Accurate nonpara-
metric location estimation based on high-resolution mea-
surements of the multipath delay profiles has also been
demonstrated for a simulated complex outdoor urban
environment [16].

The measurement noise for TDoA and RSS measure-
ments come from fundamentally different sources which
suggest that the errors in the mobile terminal location
estimates for each measurement type are at least partially
independent. Data fusion techniques exploit the indepen-
dence between different measurements to create estimators
that have higher accuracy than the estimators based on
single measurement types [17].

Previous work has explored the data fusion of ToA/
AoA, TDoA/AoA, or ToA/TDoA/AoA measurements [18],
[19], [20], [21], [22]. The disadvantage of these methods is
that AoA measurements require specialized antennae
which makes these methods inapplicable to currently
deployed cellular networks. This paper explores the data
fusion of RSS and TDoA measurements, measurement that
can be made simultaneously without requiring additional
hardware in the existing digital CDMA terminals. Data
fusion at both the estimate and measurement level are
compared to find the optimal fusion technique in terms of
computational cost and estimator accuracy. For data fusion
at the estimate level, location estimates are calculated for
RSS and TDoA measurements individually. Weights are
calculated for the estimate of each measurement type based
on the estimate’s error covariance. These weights are used
to linearly combine the individual estimates together into
an estimate with superior accuracy. Data fusion at the
measurement level uses a single measurement vector that
has both the RSS and TDoA measurements. A single
estimation calculation using the combined measurement
vector computes the estimated location. The advantages
and disadvantages of each of these data fusion techniques
are listed.

The location algorithms are evaluated using a simulated
urban microcell radio propagation environment. The
regions of greatest interest to cellular network providers
are urban regions. These regions generate the most revenue
and also have complicated radio propagation environments
with high probabilities of NLOS radio propagation.

Section 2 describes the signal model assumed by the
estimation procedure. The simulated signal model used to
evaluate the proposed location methods is also fully
described. Section 3 describes the proposed estimation
procedures. Section 4 describes the results of simulations
used to evaluate the location procedures. The robustness of
the new location methods to changes in the location
environment and measurement noise are demonstrated.
Section 5 gives the conclusions of the paper and lists some
possible avenues for future research in this area.

2 SIGNAL MODEL

The true location of the mobile terminal is denoted
�� ¼ ðx; yÞ, where ðx; yÞ is the location of the mobile terminal
in two-dimensional space. This paper will only consider a
two-dimensional location, but the methods are easily
extended to three dimensions. An index vector bb contains
the indices of the base stations making measurements to
locate the mobile terminal. Two types of measurements are
used in this paper: RSS path loss measurements, denoted pp
and TDoA measurements, denoted tt.

If there is sufficient diversity in the bearing directions to
the measuring base stations from the mobile terminal, the
measurement noises for each base station are independent.
Without this diversity, there will be some dependence in the
measurement noise of different base stations. However, It
has been shown that, without this bearing angle diversity,
there is a degradation in location accuracy, named in the
literature as Geometric Dilution of Precision (GDOP), even
if the measurement noises for each base station are
independent in this case [23]. This can be avoided with a
proper measuring base station selection algorithm. The
hand off algorithm, which determines which base station is
communicating with the mobile terminal, provides the
network with probabilistic knowledge of the area in which
the mobile terminal resides. Using this knowledge, the base
station selection algorithm ensures that the measuring base
stations are likely to have good bearing angle diversity with
respect to the mobile terminal [12].

The RSS path loss measurements are given in decibels.
Time measurements are converted to distance measurement
by multiplication by the speed of light. For a given selection
of measuring base stations bb, the general form of the
measurement equations is given in Table 1. The raw
measurement equation is the preliminary form of path loss
or time measurements that would be available if the
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Measurement Equations



measurement device had infinite precision and had knowl-
edge of the exact transmission times. For the path loss
measurements, pð��; bbÞ is a vector function which gives the
deterministic path loss values from the base stations
indicated in bb to the mobile terminal location ��, and "p is
a random vector containing the random portion of the path
loss and RSS measurement noise. The form of the pð�Þ
function is highly dependent on the propagation environ-
ment. The vector function dð��; bbÞ returns the lengths of the
shortest unobstructed propagation paths from the mobile
terminal location �� to the measuring base stations, bb. ""� is
the time measurement error vector which includes the
effects of synchronization error in the receivers, scatterers,
and multipath propagation. The effects of NLOS propaga-
tion are split into two categories. The effects of NLOS
propagation caused by large nonmoving objects such as
buildings or geographic features blocking propagation
paths will be included in dð��; bbÞ as they are deterministic
given mobile terminal location. The effects of NLOS
propagation caused by small moving obstacles such as
vehicles and pedestrians are included in ""� since they are
nondeterministic given mobile terminal location.

The true measurement equations in Table 1 reflect the
RSS path loss and TDoA measurements that are available
to a real-world measurement device without knowledge
of transmission times and only finite precision. Quantiza-
tion is modeled using the vector function defined as
yy ¼ rndðxxÞ, where the kth entry of yy is the closest integer
value to the kth entry of xx. The constants qp and qt
specify the quantization levels. A single TDoA measure-
ment for two base stations consists of the difference of
the time measurements for the base stations. The
difference matrix GG is used to denote the difference used
to calculate each entry of the TDoA measurement vector
tt. Each row of GG contains a single one and a single minus
one with all other entries being zero. The measurement
equations for TDoA from Table 1 can also be use to
specify a hybrid ToA/TDoA measurement scheme. If GG is
full rank or, equivalently, all ToA measurements are used
to create the maximum number of linearly independent
TDoA measurements and the number of measuring base
stations is m, then tt is of length m� 1.

Of primary consideration for the application of data
fusion of RSS path loss and TDoA measurements is the
relationship between and ""p and ""� . If these vectors were
perfectly dependent, i.e., knowledge of ""p gives complete
knowledge of ""� , then data fusion of RSS and TDoA would
result in no improvement in estimator accuracy as, ignoring
quantization effects, both measurement types give identical
information about the mobile terminal location. The radio
propagation literature suggests that there is a relationship
between the measurement noise of the two measurement
types but this relationship has not been fully characterized
[24]. Propagation surveys indicate that there is a partial
correlation between path loss measurement noise variance
and the median value of excess propagation delay in urban
environments [25]. Radio propagation path loss is deter-
mined by the sum of the received signal power over all
propagation paths between the base station and the mobile
terminal. A TDoA measurement is determined only by the
propagation delays of the shortest propagation paths from

the involved base stations to the mobile terminal. The
discrepancy between the aspects of propagation engaged in
each measurement type ensures that there is some
independence between the measurement noise for each
measurement type.

The new location method is evaluated using a simulated
radio propagation environment. An urban environment is
simulated since these are the regions of greatest interest to
cellular network designers. The simulated radio propaga-
tion model is described in the next section.

2.1 Simulation Signal Model

For a given mobile terminal location ��, the generated signal
vectors are ðpp; tt; bbÞ, where pp is the vector of path loss
measurements, tt is the vector of TDoA measurements, and bb
is a vector of the indices of the base stations that are the
source of measurements.

The radio signal model used to evaluate the estimation
algorithm is based on an urban radio propagation model
used to evaluate other radio location methods [3]. The
simulation model includes a model for simulated radio
propagation into buildings [26]. The layout of the cell for a
single base station’s cell in this urban environment is shown
in Fig. 1, where the shaded areas represent buildings.

From Table 1, it can be seen that to simulate path loss
and TDoA measurements the generation methods for the
deterministic portions of the propagation models, pð��; bbÞ
and dð��; bbÞ, and random portions of the propagation
models, ""p and ""� , need to be specified. The propagation
values for each measuring base station must be calculated
separately. We will denote as ½xx�k the kth entry of the vector
xx. The equations for the deterministic propagation functions
used in the simulations are provided in Table 2. We specify
the distance from the mobile terminal to the base station of
interest as d. For NLOS propagation to mobile locations on
the street, dc is the distance from the base station to the
corner, and dr is the distance from the corner to the mobile
terminal as shown in Fig. 1. In the case of NLOS
propagation into a building, we assume that radio
propagation inside a building for a radio signal originating
outside of the building is mostly perpendicular to the
external walls of the building [26]. The distance S is the
distance of radio propagation outside of the building. The
distance d? is the perpendicular distance from the building
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Fig. 1. Manhattan propagation model (single cell).



external wall the base station. The distance d0? is the

perpendicular distance from the building external wall to
the mobile terminal. The distances S, d?, and d0? are

illustrated in Fig. 2. We is the attenuation factor of the
exterior wall of the building when the signal path is normal

to the wall’s surface. WGe is an attenuation factor associated

when the radio signal penetrating the external walls at
nonperpendicular angles. � is the distance attenuation

factor for radio signals traveling through a building. The

values used for these constants in the simulations described
in this paper are given in Table 3. It is assumed that a base

station cannot provide a high quality radio signal to mobile
terminals located in buildings more than a block away. The

propagation model in Table 2 for this condition return

extremely poor values for path loss and propagation
distance to reflect this.

It has been shown that the random portion of the path
loss for urban radio propagation, "p, can be well modeled as
a Gaussian random variable assuming the mobile is moving
and the effects of multipath fading on the RSS is removed
by averaging over several seconds[27], [28]. This assump-
tion is made in the simulations, with path loss error
simulated as a Gaussian random variable with mean zero

and standard deviation �p varying from 2 to 8 dB, which are
typical values for urban propagation. The simulated path
loss measurement noise for each base station is independent
of the path loss measurement noise for other base stations.
To simulate completely stationary users, the measurement
noise would also have to include a random variable
modeling the effects of multipath propagation on the
received power.

The random portion of the propagation time measure-
ments, ""� , is the sum of two random processes: synchroni-

zation error, and multipath propagation from mobile

scatterers. Synchronization error for CDMA receivers,

which are likely to be used in next generation cellular
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Propagation Models for Simulations

Fig. 2. Building propagation model.

TABLE 3
Propagation Constants



systems, has been shown to be well modeled as a Gaussian
random variable [29]. Synchronization error in our simula-
tions is a Gaussian random variable with zero mean and a
standard deviation, �� , varying from 10 to 20 m. We
simulate the effects of scatters on the time measurements
with an approximation to the “Urban” propagation model
from [24], where the propagation delay for the earliest
arriving multipath at a receiver from a transmitter is the
smallest of 20 independent draws of a uniform random
variable varying from 0 to 720 m and this random variable
is independent of path loss measurement noise. To simplify
simulation, this process is approximated with an exponen-
tial random variable of mean � ¼ 35:0 m.

The time measurement error value is modeled as being
independent between different base stations. The simulated
synchronization noise variance is the same for all base
stations. This is justified by simulations studies that show
the synchronization error variance is nearly constant for a
large range of receiver signal to noise ratios in urban
microcell propagation [3].

The received signal power measurements are rounded to
the nearest decibel, qp ¼ 1:0 dB, to simulate the resolution
that would be seen in true field implementations. The TDoA
time measurements are quantized to the nearest qt ¼ 60 m
interval to reflect quantization effects that would be seen in
actual field implementations. The 60 m quantization
interval was selected to approximately match the one
quarter chip interval period in the IS-95 radio interface
standard, which is a rough approximation of the time
measurement quantization of radio receivers using this
interface without using superresolution algorithms. All
constants for radio propagation are given in Table 3.

The measurement vectors are truncated so that only
those measurements from the three base stations with the
lowest path loss measurements of the set of nine closest
base stations are used to locate the mobile terminal. Since
mobile terminals in actual cellular networks cannot make
measurements for all the base stations in the network and
use power measurements to decide which base stations to
be associated with for their hand off algorithms, this
truncation is a good approximation to actual field
measurement practice. All TDoA measurements are
calculated with respect to the time measurement for the
base station with the lowest path loss measurement. The
difference matrix GG is

GG ¼ 1 �1 0
1 0 �1

� �
;

where the first entry of bb is the base station with the lowest
path loss measurement.

3 ESTIMATION METHODS

The main focus of this paper is on data fusion for mobile
terminal location estimation, the use of more than one
measurement type to calculate the location of the mobile
terminal in a cellular network. Specifically, we concentrate
on the use of path loss and TDoA measurements.

The goal of this paper is to calculate the estimate of
mobile terminal location, denoted �̂��� with the minimum
Mean Square Error (MSE) for the measurement vector zz, i.e.,
the sum of the diagonal elements of E½ð�̂���� ��Þð�̂���� ��ÞT � has

the minimum value for all valid estimators of �� using zz. It is
well-known that the estimator that has these properties is
the Minimum Mean Square Error (MMSE) estimator which
is given as �̂���z ¼ E½��jzz� [30].

Data fusion of the RSS and TDoA measurements at the
estimation level is described in Section 3.1. Methods for
estimating �� using either path loss or TDoA measurements
are described along with methods of fusing the estimates
together. Both parametric and nonparametric estimation
methods are described with their respective advantages and
disadvantages listed. Data fusion at the measurement level,
estimation using a measurement vector consisting of both pp
and tt in a single calculation, is presented in Section 3.2.

3.1 Separate Estimation of �� for Each Measurement
Type

Estimation methods for calculating estimates of mobile
terminal location using either path loss measurements or
TDoA measurements is a fairly mature field. We consider
MMSE methods that use prior knowledge of mobile
terminal location that is available from the hand off
algorithm or measuring base station selection data. Other
techniques that do not use this data exist but do not provide
comparable performance [12], [13].

If the MMSE estimation expectation of �� given measure-
ment zz is expanded, the equivalent integral estimation
equation is

�̂���z ¼
Z

�� fð��jzzÞd��; ð2Þ

where fð��jzzÞ is the conditional pdf of �� given zz and the
integration is performed over the domain of ��. Using Bayes’
rule and rearranging terms, we obtain:

�̂���z ¼
R
�� fðzzj��Þfð��Þd��R
fðzzj��Þfð��Þd�� ; ð3Þ

where fðzzj��Þ is the conditional pdf of zz given �� and fð��Þ is
the pdf of ��. If the radio propagation environment is known,
then fðzzj��Þ is characterized by the pdf of the measurement
noise for measurement zz and the model for the determinis-
tic portion of zz given by the radio propagation model.
Equation (3) shows that the MMSE estimator requires
knowledge of the conditional density of the measurements
given the location value �� and the prior pdf of ��.

If we use themeasurement protocol defined in Section 2.1,
then themeasurement zz is either pp or tt and the prior pdf fð��Þ is
the conditional pdf of �� given the measuring base station
selection index vector bb, fð��jbbÞ.

Simple closed forms for fðzzj��Þ and fð��jbbÞ for zz ¼ pp or tt
only exist for simple propagation cases such as when all
radio propagation is LOS [28]. Previous work has been
performed on MMSE estimation using parametric estima-
tion for path loss measurement vectors [31]. A parametric
equation for the conditional pdf of pp given �� is used based
on a LOS radio propagation model. The radio propagation
parameters are learned from survey data taken from the
propagation environment using the EM algorithm to handle
data truncation from base station selection and quantization
of the measurements. The advantage of the parametric
method is that, if the parametric model closely matches the
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true environment, the MMSE equation in (3) can then be
directly integrated to obtain high quality location estimates.
The disadvantage is that if the propagation environment
does not closely match the parametric model, the calculated
estimates will have high errors. The regions of greatest
interest to cellular network providers are urban regions
which have plentiful NLOS propagation and do not
conform to simple parametric models.

This paper proposes location based on nonparametric
MMSE estimation. The nonparametric MMSE location
methods are based upon the existence of survey data. The
survey data consists of a set of locations with three
measurement vectors for each location. The location of the
jth survey point is denoted ��j. The measurement vectors of
survey point j are ðbbj; ppj; ttjÞ. bbj is a vector of base station
indices which indicates which base stations made the
measurements at the jth survey point. ppj is the vector of path
loss measurements for the jth survey point. ttj is the TDoA
measurement vector for the jth survey point. The measure-
ment process for the survey points are identical to measure-
ment process used for the location measurement ðbb; pp; ttÞ
described in Section 2.1. In the cell for each base station are
locatedN ¼ 500 survey points. The locations of these survey
points are uniformly distributed over the cell area. Techni-
quesonmethods forbounding thenumberof required survey
points is presented in [12]. Data surveys of path loss
measurements are already performed in cellular networks
for cell coverage confirmation [25], [32]. TDoAmeasurements
of the resolution specified in this paper are not expensive to
obtain, so the extra cost of collecting TDoA measurements
during the measurement surveys would not be large.

The first step of nonparametric location estimation
algorithms is to use the base station index vector, bb, to
identify the general area in which the mobile terminal is
likely to be located. Using the measurement protocol
defined in Section 2.1, ½bb�1 identifies the base station with
the lowest path loss measurement to the mobile terminal.
We assume that the mobile terminal is located either in the
cell associated with base station ½bb�1 or in one of the cells
adjacent to it. Using this prior location assumption, we
collect the survey data for all survey points located in the
cell for base station ½bb�1 and the immediately adjacent cells.

The survey set is then reduced to only the survey points
relevant for location. Only survey points where bbj matches bb
are kept for the location algorithm. Matching is taken as
meaning that the entries of bbj can be reordered to create a
vector equal to bb. For example, if bb ¼ ½1 2 3 �T , indicating
that base stations 1, 2, and 3 are associated with the
measurements in pp and tt, then bbj ¼ ½3 1 2�T would match bb,
while bbk ¼ ½3 4 2�T would not since bbk contains the entry 4
which is not in bb. (The superscript T denotes matrix or
vector transpose.)

To properly use the survey points, for all valid j and k,
½ppj�k and ½pp�k must have measurements made by the same
base stations. The same property is required for ½ttj�k and
½tt�k. The measurement vectors for survey points in which bbj
matches bb but bbj 6¼ bb do not have this property and must be
transformed as described in Appendix B, before they are
used in the estimation process.

After the above survey set reduction to obtain valid survey
points, a nonparametric MMSE estimation procedure is
applied to calculate a mobile terminal location estimate. Full
derivation and justification of the nonparametric estimation
equations for use of the path loss and TDoA measurement
vectors individually have been previously presented by the
authors [12], [13]. The theory of nonparametric MMSE
estimators is reviewed in Appendix A.

The location estimate based on path loss measurements
is calculated as

�̂���p ¼
Pn

j¼1 ��jKpðpp� ppjÞPn
j¼1 Kpðpp� ppjÞ

ð4Þ

with the kernel function for path loss measurements
defined as

KpðxxÞ ¼
1

ð2�hp
2�p

2Þ
m
2
exp � xxTxx

2ðhp�pÞ2

 !
; ð5Þ

where m is the number of base stations making measure-
ments. For nonparametric TDoA location estimation, the
calculation is

�̂���t ¼
Pn

j¼1 ��jKtðtt� ttjÞPn
j¼1 Ktðtt� ttjÞ

ð6Þ

with the kernel function for TDoAmeasurements defined as

KtðxxÞ ¼
1

ð2�Þ
m�1
2 jCCtj

1
2

exp � xxTCCt
�1xx

2

� �
ð7Þ

with CCt ¼ ht
2��

2GGGGT . The constants hp and ht are defined
as the kernel width constants. The effects of varying
values of the constants is examined in Section 4 where it
is shown that the estimators are robust to variations of
the constants’ values. It has been shown in the author’s
previous work that the nonparametric technique is also
robust to the number of survey points with a graceful
degradation of performance as the number of survey
points is reduced [12], [13].

Using the kernel functions above and the survey data set,
it is possible to calculate estimates of the covariances for the
estimates using (22) from Appendix A. The covariance
estimate for path loss based location estimates is denoted
RRp and the covariance estimate for TDoA-based location
estimates is denoted RRt. It is possible to calculate estimates
for the mobile terminal locations using path loss and TDoA
measurements in parallel obtaining �̂���p, RRp, �̂���t, and RRt. We
now address the problem of fusing the estimates �̂���p and �̂���t
to obtain a combined estimate �� with superior error
covariance properties.

One standard approach in data fusion is to linearly
combine the estimated values of the parameter of interest,
in our case mobile terminal location, obtained from
different measurements. We call this method estimate
fusion. We define the dual estimate vector as �̂���k ¼
½�̂���pT �̂���t

T �T and the dual location vector as ��k ¼ ½��T ��T �T . The
estimate fusion calculation is given by �̂��� ¼ WW�̂���k, where WW is
a weight matrix. For valid linear combinations, all the rows
ofWW sum to unity andWW is a full rank matrix. The standard
data fusion approach is to calculate WW such that the trace,
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sum of the diagonal elements, for the covariance matrix of
the fused estimate is minimized. The weight for each
individual measurements estimate is based on its covar-
iance. The estimate for a given measurement type will be
given a higher weight if its covariance is low. The optimal
WW , which gives the lowest covariance is given by [33]:

WW ¼ CCk
�1AAT AACC�1

k AAT
� ��1 ð8Þ

with

CCk ¼ E� ��k � �̂���k

h i
��k � �̂���k

h iT ����pp; tt
� 	

¼ RRp RRpt

RRpt
T RRt

� �
ð9Þ

and

AA ¼ 1 0 1 0
0 1 0 1

� �
: ð10Þ

RRpt is the cross covariance of the path loss and TDoA
measurement estimates,

RRpt ¼ E ½��p � �̂���p�T ½��t � �̂���t�jpp; tt
n o

: ð11Þ

his method assumes that covariance is the dominant factor
in the error of the estimators compared to the bias and, thus,
covariance reduction of the fused estimator is the most
productive method of reducing error. The weight computa-
tion in (8) is only optimal if �̂���p and �̂���t are jointly Gaussian.
These requirements make the optimality of the linear
combination estimate fusion method difficult to prove for
a given field application. The method is robust, however, in
that linear combination using WW calculated using (8) with
the true covariance matrices will always result in a fused
estimator with lower covariance than the individual
estimators. It must be noted that if the location estimates
are non-Gaussian, their covariance and means are no longer
sufficient statistics to describe their probability density
functions, i.e., the mean and covariance of the location
estimates no longer provide complete information about the
distribution of the location estimates.

In practice, the covariances RRp, RRt, and RRpt can only be
estimated and the effectiveness of this approach in reducing
the covariance of the final estimate is dependent on the
accuracy of the covariance estimates. If the values in these
matrices are highly inaccurate, it is possible for the fused
estimate to have a covariance that is elevated over one of the
individual estimators covariances. To calculate RRpt, the
estimators for each measurement type cannot be run in
parallel as they must exchange information to calculate the
cross covariance matrix estimate. For the results on estimate
fusion, we explore the possibilities for parallel estimation
using each measurement type and, thus, assume that the
location estimate error for each measurement type is
independent in the data fusion calculation. To this end,
the covariance matrix in the weight calculation (8) is set as

with RRp and RRt being the estimated covariance matrices
from the location estimates for the path loss and TDoA
measurements, respectively, and the off-diagonal blocks of
CCk contain all zeroes. The main advantage of parallel

estimation for each measurement type is the independence
of the data fusion method from the location estimate
calculation for each measurement type. The nonparametric
MMSE estimation calculations in (4) and (6) can be replaced
with another location estimate calculation with an associated
error covariance estimate and the data fusion technique can
still be applied. For example, the nonparametric estimation
using the path loss measurement vector could be replaced
with the parametric estimator described in [31].

In the next part of this paper, we will present a location
calculation that uses both measurement vectors simulta-
neously. This calculation does not have the optimality
requirements for the calculations described in this section.
By comparing the results of both methods in Section 4, we
will see what the impact of the bias and independence
assumptions is on the final location accuracy.

3.2 Estimation of �� In a Single Calculation

This section describes the calculation of �̂��� using both path
loss and TDoA measurement vectors in a single computa-
tion. To compute the location estimate using the combined
measurement vector, zz ¼ ½ppT ttT �T , using (3) requires knowl-
edge of the joint conditional pdf fðpp; ttj��Þ. Parametric models
for this conditional joint pdf are difficult to obtain, as was
explained in the previous section.

The solution proposed in this paper is to use the survey
data to calculate an approximation to the joint condition pdf.
Using the calculated joint conditional pdf, a nonparametric
MMSE estimation technique is used to calculate a location
estimate using both the path lossmeasurement vector, pp, and
TDoA measurement vector, tt, simultaneously.

The same survey set is used for the calculation
described in this section as the calculation in Section 3.1.
Following the derivation of the nonparametric MMSE
estimator in Appendix A, the joint pdf of ��, pp, and tt is
approximated as [34]

fð��; pp; ttÞ � 1

n

Xn
j¼1

K�;p;t ��� ��j; pp� ppj; tt� ttj
� �

; ð13Þ

where n is the number survey points with ppj matching pp.
The generalized joint kernel function is a general form
multivariate pdf. The advantage of the use of the general-
ized joint kernel functions is that the joint pdf of the
measurement and location vectors is well-approximated
with a sum containing fewer terms. In a real-world
application, this corresponds to the need for fewer survey
points. The trivial ideal case being the approximation of the
joint pdf with only one kernel function, the true joint pdf,
and no survey data being needed. To use generalized kernel
functions requires knowledge of the dependence between
the ��, pp, and tt vectors prior to the application of the pdf
approximation technique. Since we do not have this
knowledge, we use the special kernel function, which is a
pdf with ��, pp, and tt as independent, and the dependence in
the true joint pdf is “learned” from the survey data. We
decompose the joint kernel function into a product of kernel
functions for each vector using a different kernel function
and kernel width constant for each vector type. This method
has been shown to be capable of approximating multi-
dimensional pdfs with complex dependencies between the
vectors being measured [35]. This makes the nonparametric
approximate joint pdf:

148 IEEE TRANSACTIONS ON MOBILE COMPUTING, VOL. 4, NO. 2, MARCH/APRIL 2005



fð��; pp; ttÞ � 1

n

Xn
j¼1

K�
��� ��j
h�

� �
Kp

pp� ppj
hp

� ��

�Kt
tt� ttj
ht

� ��
:

ð14Þ

K�ð�Þ,Kpð�Þ, andKtð�Þ are the kernel functions. The constants
h�, hp, and ht are the constants defining the kernel widths.

If we proceed using the approximate joint pdf defined in

(14), the estimator for �� using both available measurement

vectors is

�̂��� ¼
Xn
j¼1

��jwjðpp; ttÞ; ð15Þ

where

wjðpp; ttÞ ¼
Kp

pp�ppj
hp


 �
Kt

tt�ttj
ht


 �
Pn

i¼1 Kp
pp�ppj
hp


 �
Kt

tt�ttj
ht


 � : ð16Þ

The estimated covariance of a location estimate can be

calculated using

RR ¼ Covð�̂���Þ �
Xn
j¼1

��j��j
TwjðzzÞ

" #
� �̂����̂���T : ð17Þ

In the next section, it will be shown that this estimator is

robust to variation of the kernel width constants, hp and ht.
The single calculation estimator has the advantage that it

does not require estimation of the error covariances. It also
does not make any assumptions on the form of the pdf of
the estimators. This estimator does not require more
calculations than the estimator described in Section 3.1,
with both estimators requiring the kernel functions to be
evaluated the same number of times and adding up the
same number of terms.

4 RESULTS

The estimators are evaluated in a simulated urban

environment with the propagation measurement model

described in Section 2.1 using the propagation model

parameter values provided in Table 3. For each single set

of parameter values, we simulate 10,000 Monte Carlo trials.
In each trial, the true mobile terminal position is sampled
from a uniform distribution over a single cell, simulated
measurement vectors generated, and location estimates
calculated from the simulated measurement vectors. The
figure of merit used to evaluate the location estimators is
the Root Mean Square Error, which is the square root of the
sample mean of the square error of the location error,
calculated using:

RMSE ¼

ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiXN
k¼1

1

N

�
ðx̂xk � xkÞ2 þ ðŷyk � ykÞ2

vuut �
; ð18Þ

where N is the total number of trials, ðxk; ykÞ is the mobile
terminal location in the kth simulated trial and ðx̂xk; ŷykÞ is the
estimated mobile terminal location for the kth trial. The
simulation software can be obtained from the authors upon
request.

The first set of simulation were performed to calculate
the optimal values of the kernel width constants ht and hp

and to test the robustness of the estimators if suboptimal
values are used for these constants. The results are shown
as contour plots of the RMSE of the fused estimators as the
kernel width constants are varied. The plot for estimate
fusion of separate estimator results using the method
described in Section 3.1 is shown in Fig. 3. The plot for
measurement fusion using the method from Section 3.2 is
shown in Fig. 4. The measurement noise values for the
simulations generating these plots are set to �p ¼ 6:0 dB and
�� ¼ 15 dB, which match midrange values for typical urban
propagation conditions. These plots show that both types of
data fusion methods are robust to variations of the kernel
width parameters with large regions in both plots having
RMSE values almost as low as the to the optimal value. The
measurement fusion calculation is more robust with less
increase in the RMSE as the kernel width values vary from
the optimal values. The optimal kernel width values for
estimate fusion are hp ¼ 1:2 and ht ¼ 1:0. The optimal
kernel width values for the measurement fusion calculation
are hp ¼ 2:3 and ht ¼ 1:0.

The next set of simulations were performed to find the
performance of location estimators using only one
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Fig. 3. Kernel widths for estimate fusion (�p ¼ 6 dB, �� ¼ 15:0 m). Fig. 4. Kernel widths for measurement fusion (�p ¼ 6 dB, �� ¼ 15:0 m).



measurement type. The optimal kernel width values for
the estimate fusion method used. Fig. 5 shows the RMSE
for the path loss-based estimation calculation described
by (4) with hp ¼ 1:2. Note that the estimator gives good
performance even with large magnitude measurement
noise and despite the 1 dB quantization. Fig. 6 shows the
RMSE with the TDoA based estimation calculation
described by (6) with ht ¼ 1:0. The RMSE is a function
of both path loss measurement noise and synchronization
error since the path loss measurement noise influences
the measuring base station selection process. Again, the
estimator is robust to measurement noise variation and
gives good results despite the 60 m quantization.

The improvement of the data fusion estimators over
estimators using only one single measurement type are
demonstrated in the next set of simulation results. For fixed
values of �p and �� , the percentage improvement in the
RMSE from the data fusion method under consideration
over the best RMSE obtained from the estimators using
either path loss or TDoA measurements alone is calculated.
Fig. 7 shows contour plots of the improvement from estimate
fusion described in Section 3.1. Fig. 8 shows the improve-
ment of the measurement fusion method. A comparison of

Fig. 7 and Fig. 8 shows that the measurement fusion method
provides the greatest improvement in RMSE of the two data
fusion methods. The minimum improvements from using
data fusion is a reduction of RMSE by about 9 percent and a
maximum improvement seen of about 26 percent for the
range of measurement noise values tested.

The last set of simulations compares the cumulative
distribution function (cdf) for the error distance for the
location estimators. This function gives the probability that
the error distance, defined as the distance from the
estimated location to the true location, is less than a certain
value. The error distance cdf for each of the estimators is
calculated from 10,000 Monte Carlo trials for each of the
estimators and plotted in Fig. 9. The environment para-
meters are set to midrange values for urban microcell
propagation (�p ¼ 6:0 dB and �� ¼ 15:0 m). The values of
the kernel width constants are set to the optimal values for
each estimator described in the preceding paragraphs. The
FCC requirements for location of mobile terminals for
handset-based location technologies, the FCC’s most strin-
gent requirement, is also plotted [36]. If the cdf for a
location estimator is above the FCC requirements line for all
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Fig. 5. RMSE of RSS estimator (hp ¼ 1:2).

Fig. 6. RMSE of TDoA estimator (ht ¼ 1:0).

Fig. 7. RMSE improvement for estimate fusion (hp ¼ 1:2; ht ¼ 1:0).

Fig. 8. RMSE improvement for measurement fusion (hp ¼ 2:3; ht ¼ 1:0).



distances, the location estimator satisfies the requirement.

These results show that the simulated measurement fusion

location estimator provides the best performance of all

estimators considered in this paper with a better cdf for all

error distances.

5 CONCLUSIONS

These results support two sets of conclusions regarding
choice of data fusion technique depending on the desire of
the network operator and the feasibility of parallel
computation of location estimates for path loss and TDoA
measurements:

. The measurement fusion technique only gives a
small improvement over the estimate fusion
technique. This shows that the violation of the
independence assumption of the location estimate’s
error for different measurement types for the
estimate fusion technique causes only a small loss
of performance. If the location estimates for
different measurement types can be performed in
parallel with the estimate fusion calculation per-
formed afterword, this result shows that perform-
ing these calculation and assuming zero cross
covariance of the location estimates will give good
location accuracy. The parallel implementation
results in a time savings over the measurement
fusion calculation.

. If parallel implementation of location estimates for
different measurement types is not possible and
serial computation is performed, then using a
measurement fusion technique will give superior
accuracy and not require many more calculations.

There are several areas in which this work could be
expanded in the future. The lower bound calculations from
[12] can be expanded to bound location estimation using
these data fusion methods. The use of the data fusion
estimators with dynamic filters can also be explored with
the possibility of different measurement types being
available at different times.

It is our hope to be able to evaluate this method in field
tests. This paper has shown that the nonparametric estima-
tion technique can give good performance for location

estimation in a simulated urban environment with complex
propagation effects. The nonparametric technique described
in this paper does not assume any propagation model and is
robust to changes in the noise variances and selection of
kernel parameters. This suggests the method will give good
performance in other environments. The major factor which
determines the accuracy of location estimates is the pdf of
the measurement noise in that it determines how much
information is available from the measurements about
mobile terminal location. If the dependence of the measure-
ment noise between base stations or between different
measurement types is increased, the accuracy of the location
estimates will be reduced as less information about location
is present in the measurements. In this paper, we used
measurement noise pdfs that are as close as possible to the
true pdfs so accuracy measures close to field implementa-
tions’ accuracy measures are obtained.

APPENDIX A

NONPARAMETRIC MMSE ESTIMATION

It has been shown elsewhere that the estimator of a
parameter �� based on measurements zz with the lowest
Mean Square Error (MSE) is given by �̂���z ¼ E½��jzz�, where
E½AjB� specifies the expected value of A given B [30]. This
estimator is called the Minimum Mean Square Error
(MMSE) estimator. Expansion of the expectation operator
of the MMSE estimator results in

�̂���z ¼
Z

�� fð��jzzÞd��; ð19Þ

where fð��jzzÞ is the conditional pdf of the parameter given the
measurements and the integration is performed over the
domain of ��. A difficulty preventing real-world application
of the MMSE estimator is that in many cases, the conditional
pdf is not known. The solution often employed to avoid this
difficulty is to use an approximate conditional pdf.

This appendix describes the implementation of the
MMSE estimator using an approximate conditional pdf
calculated based on survey data. This survey data set
consists of a set of parameter values and measurement
values ð��j; zzjÞ for j ¼ 1; 2; . . . ; n, where n is the number of
survey points. zzj is a measurement vector taken when the
parameter vector was set to ��j. It has been shown that an
approximation to the joint pdf of �� and zz, fð��; zzÞ, is

fð��; zzÞ � 1

n

Xn
j¼1

K�ð��� ��jÞKzðzz� zzjÞ; ð20Þ

where K�ð�Þ and Kzð�Þ are suitably selected kernel functions
[37]. A convenient choice for the kernel functions are the
pdfs of zero mean vector functions[34].

If we insert the approximate pdf from (20) into (19), the
following approximation to the MMSE is obtained:

�̂���z �
R
��
Pn

j¼1 K�ð��� ��jÞKzðzz� zzjÞd��R Pn
j¼1 K�ð��� ��jÞKzðzz� zzjÞd��

�
Pn

j¼1 ��jKzðzz� zzjÞPn
j¼1 Kzðzz� zzjÞ

:

ð21Þ

The integrals of �� being solved using the fact that K�ð�Þ is a
zero mean pdf. This is referred to as a nonparametric
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Fig. 9. Cumulative distribution function for error distances (�p ¼ 6:0 dB,

�� ¼ 15 m).



technique since it does not rely on knowledge of any of the
parameters of the joint pdf of �� and zz to calculate the
estimate.

An advantage of this nonparametric estimator is that it is
possible to also calculate an estimate of the covariance of the
estimated parameter:

Covð�̂���zÞ � E ����T jzz

 �

� �̂���z�̂���z
T

�
Pn

j¼1 ��j�j
TKzðzz� zzjÞPn

j¼1 Kzðzz� zzjÞ

" #
� �̂���z�̂���z

T :
ð22Þ

APPENDIX B

TRANSFORMING MEASUREMENT VECTORS

This appendix gives the method of converting ppj and ttj
when bbj matches bb, in that all the entries of bb are found in bbj,

but bbj 6¼ bb. To properly compare tt with ttj, ½tt�k, and ½ttj�k must

be derived from measurements from measurements from

the same base stations for all k 2 f1; 2; . . . ;m� 1g, where m

is the number of base stations making measurements. We

denote the transformed measurement vectors as bb0j, pp
0
j, and

tt0j, respectively. The reorder matrix TT is defined from

bb0j ¼ TTbbj ¼ bb, where each row of TT contains a single one

with all other entries being zero, i.e., TT is obtained by

swapping rows of an appropriately sized identity matrix.

Using TT , pp0j ¼ TTppj.
Unfortunately, the transformation of ttj is not so simple.

Ignoring quantization, we will denote as ��j the ToA

pseudomeasurement vector that is the source of ttj ¼ GG��j.

½��j�k is the raw ToA propagation distance measurement for

the base station indexed by the kth entry of bbj. If ��j were

available, then the transformed TDoA vector could be

obtained using tt0j ¼ GGTT��j. We define FF such that tt0j ¼ FFttj.

This gives us:

FFttj ¼ tt0j

FFGG��j ¼ GGTT��j

FFGG ¼ GGTT

FFGGGGþ ¼ GGTTGGþ

FF ¼ GGTTGGþ;

whereGGþ is the pseudoinverse ofGG[38]. Thus, tt0j ¼ GGTTGGþttj.
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Science and Technology, the National Technical University of Athens,
the Swiss Federal Institute of Technology, the University of Florence,
and the Federal University of Rio de Janeiro, and has also served as
adjunct professor at Concordia University. He has served as lecturer in
138 short courses to industry and continuing education programs and as
consultant to numerous organizations; he is a contributor to 29 books, a
coauthor of Nonlinear Filters in Image Processing: Principles Applica-
tions (ISBN-0-7923-9049-0), and Artificial Neural Networks: Learning
Algorithms, Performance Evaluation and Applications (ISBN-0-7923-
9297-3), Fuzzy Reasoning in Information Decision and Control Systems
(ISBN-0-7293-2643-1), and Color Image Processing and Applications
(ISBN-3-540-66953-1), and has published more than 680 papers in
refereed journals and conference proceedings on digital signal and
image processing and digital communications. Prof. Venetsanopoulos
has served as chair on numerous boards, councils, and technical
conference committees of the Institute of Electrical and Electronic
Engineers (IEEE), such as the Toronto Section (1977-1979) and the
IEEE Central Canada Council (1980-1982); he was president of the
Canadian Society for Electrical Engineering and vice president of the
Engineering Institute of Canada (EIC) (1983-1986). He was a guest
editor or associate editor for several IEEE journals and the editor of the
Canadian Electrical Engineering Journal (1981-1983). He is a member
of the IEEE Communications, Circuits, and Systems, Computer, and
Signal Processing Societies of IEEE, as well as a member of Sigma Xi,
the Technical Chamber of Greece, the European Association of Signal
Processing, the Association of Professional Engineers of Ontario
(APEO) and Greece. He was elected as a fellow of the IEEE “for
contributions to digital signal and image processing,” he is also a fellow
of the EIC, and was awarded an Honorary Doctorate from the National
Technical University of Athens, in October 1994. In October 1996, he
was awarded the “Excellence in Innovation Award” of the Information
Technology Research Centre of Ontario and Royal Bank of Canada, “for
innovative work in color image processing and its industrial applica-
tions.” In November 2000, he became a recipient of the ”Millennium
Medal of IEEE.” In April 2001, he became a fellow of the Canadian
Academy of Engineering. Between July 2001 and June 2006, he will be
the Dean of the Faculty of Applied Science and Engineering of the
University of Toronto. He is a fellow of the IEEE and the IEEE Computer
Society.

. For more information on this or any other computing topic,
please visit our Digital Library at www.computer.org/publications/dlib.
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