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Abstract

This paper presents a new adaptive filtering approach capable of detecting and removing impulsive noise in multichan-
nel images. The proposed methodology constitutes a powerful unified framework for multichannel signal processing.
Robust order-statistic concepts and statistical measure of vectors� deviation are used in conjunction with different distance
measures among multichannel inputs to determine an efficient switching rule between filter output and no filtering (identity
operation). The special case of color image filtering is studied as an important example of multichannel signal processing.
Simulation studies reported in this paper indicate that the proposed filter class is computationally attractive, has excellent
performance, and is able to preserve fine details while suppressing impulsive noise.
� 2005 Elsevier Inc. All rights reserved.
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1. Introduction

The perception of color is of paramount importance to humans and automatic vision systems, since they
use color information to sense the environment and recognize the objects on the scene [1]. Because the acqui-
sition or transmission of digital images through sensors or communication channels is often inferred by impul-
sive noise [1–4] (e.g., bit errors [5] or mixed impulsive and Gaussian noise [2,5]), the aim of pre-processing
techniques is the noise filtering [1,2,5,6,7] which enables communication in noisy environments [5] and process-
ing of different kinds of multichannel images (e.g., enhancement of cDNA microarray images [8,9], digitized
artwork images [10,11], old movies [12–14], and images acquired by sensors [15,16]).
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The goal of the image filtering is the removal of unprofitable information such as various signal distortions in
order to obtain the image which corresponds as closely as possible to the output of an ideal imaging system [1]. In
many applications, it is indispensable to remove the corrupted pixels to facilitate subsequent image processing
operations such as edge detection, image segmentation, and pattern recognition. To convey the desired informa-
tion correctly, the noisy signal should be processed by a filtering algorithm which removes the noise component,
but retains the image structure.

Manyof the techniques used for color noise reduction such as componentwise (marginal)median filters [17,18]
are direct extensions of the methods used for gray-scale imaging. The independent processing of color image
channels is, however, inappropriate and leads to strong color artifacts (sub-optimal estimates in sense of color
information), which are caused by scalar ordering of the multichannel samples in the input of the filter. To over-
come this problem and avoid the color artifacts produced bymarginal approaches, the vector processing of color
image data as vector fields is desirable due to the strong correlation that exists among the image channels [1,2,19–
22]. Therefore, the standard techniques developed for monochrome images have to be extended in a way which
exploits the correlation among the image channels and processes the input multichannel samples as the set of
image vectors.

If the noise corrupted image is of impulsive nature (e.g., bit errors and outliers2), filtering approaches based
on the order-statistics theory are often employed [5,7,23,24]. These nonlinear filters: (i) operate by ordering the
image samples inside a processing window, (ii) are able to match the underlying statistical model, and (iii) they
are computationally simple. In gray-scale images, the ordering of the samples inside the filter window moves
the atypical image samples, often corrupted by noise, to the borders of the ordered set. Therefore, the middle-
positioned samples in the ordered sequence represent the robust estimates in the environments corrupted by
outliers.

It has beenwidely recognized [1,2,19–22] that the nonlinear vector processing of color images is themost effec-
tiveway to filter out outliers. For that reason, anumber of filtering approaches, such as those presented in [25–27],
have been developed to extend the filtering efficiency of the standard filtering approaches. Vector median filter
[19] is a typical example of such an extension, when the median defined over the gray-scale samples has been
replacedwith the lowest rankedmultichannel sample achieved by vector ordering [1]. This filter is very often used
for the removal of impulsive noise in color images. On the other hand, the standard median filter [23] or its mul-
tichannel extensions, i.e., the vector median filter [19] and the basic vector directional filter [21], are unable to
adapt their behavior to varying noise and signal statistics related to the local image information of the samples
inside a sliding filtering window. These filters perform the fixed amount of smoothing that results in blurring of
fine image details.

The restriction of the filtering to noisy samples only, whereas the desired information is invariant to the filter
action, is the subject of this paper. It is focused on an adaptive switching between robust smoothing expressed by
the lowest ranked multichannel sample and no filtering (identity operation). The filtering framework developed
in the paper is controlled by a comparison of the statistics related to the central input sample and approximation
of the variance related to the input set of vectors in the processing window. The proposed methods are simpler
than recently developed approaches which extend the design framework of standard filtering schemes by consid-
ering weighting coefficients [25–27], sub-window structures [28,29], and similarities of the samples along digital
paths [30]. In addition to other approaches [31–35] based on the switching concept, the proposed framework is
designed to perform simple, fast, and pure vector operations respecting the nature of color images and compu-
tational requirements.

The rest of this paper is organized as follows. In Section 2, a brief overview of the vector ordering and
robust order-statistics applied to color images is presented. This section also reviews multichannel filtering
schemes widely used to enhance color images. In Section 3, we propose multichannel sigma filter class con-
trolled by the tuning parameter, as well as their fully adaptive multichannel modifications. Motivation and
design characteristics of the proposed framework are discussed in detail and modifications of the proposed
structure are introduced and analyzed with respect to their properties and used parameters. In Section 4,
the proposed method is tested using a wide range of test images and impulsive noise intensities. Finally, this
paper concludes in Section 5.
2 Isolated image samples with a significantly different intensity from the local image neighborhood.



Fig. 1. Algorithm of the vector filters outputting the lowest ranked vector according to a specific ordering technique.
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2. Order-statistics in color images

Let x : Zl ! Zm represent a multichannel image, where l is an image dimension andm denotes the number of
channels.3 Since natural images are nonstationary, filtering schemes operate on the premise that an image can be
subdivided into small regions, each of which can be treated as stationary [1]. Using the sliding filter window
W = {xi = (xi1,xi2, . . . ,xim) 2 Zl; i = 1,2, . . . ,N}, with xik for k = 1,2, . . . ,m denoting the kth element of the
vectorial sample xi, the procedure replaces the central sample x(N+1)/2 determining the position of the window
with the output y = / (W) of a filter function /(Æ) operating over noise corrupted samples listed in W. Thus,
the value of the estimated pixel depends on the values of image samples xi in its neighborhood.

The most popular color image filters are those based on the concept of robust vector order-statistics (Fig. 1)
[1,2,36]. In vector ordering each multichannel sample or vector xi, for i = 1,2, . . . ,N, is reduced to a scalar rep-
resentative ni obtained through the aggregated distances or the aggregated similarities as follows [1,2]:
3 Co
(RGB)
niðxiÞ ¼
XN
j¼1

f ðxi; xjÞ; ð1Þ
where f (Æ) denotes the used distance or dissimilarity function.
To order the color vectors xi located inside the supporting windowW, the scalar quantities n1,n2, . . . , nN are

ranked in the order of their value and the associated vectors are correspondingly ordered as follows:
nð1Þ 6 nð2Þ 6 � � � 6 nðNÞ; ð2Þ
xð1Þðnð1ÞÞ 6 xð2Þðnð2ÞÞ 6 � � � 6 xðNÞðnðNÞÞ; ð3Þ
where n(i) 2 {n1,n2, . . . ,nN} and x(i) 2 {x1,x2, . . . , xN}, for i = 1,2, . . . ,N. Thus, all the components are given
equal importance and the ordered vectors x(i) have a one-to-one correspondence with the original samples in-
side W.
lor images are typical examples of multichannel signals. A color image represented by the three primaries in the red–green–blue
color space is a two-dimensional, three-channel signal with parameters l and m equal to 2 and 3, respectively.
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The output of the ranking procedure depends on the type of data from which the computation is to be
made, and the function f (xi,xj) selected to evaluate the dissimilarity or distance between two vectors xi and
xj. According to the used feature, it is possible to differentiate the techniques operating on the magnitude
domain [19,20,37,38], angular (directional) domain [21,22,39,40], or their combination [41,42,43].
2.1. Vector median filter

Let us consider that each input multichannel sample xi, for i = 1,2, . . . ,N, is associated with the aggregated
distance
Li ¼
XN
j¼1

kxi � xjkc ¼
XN
j¼1

Xm
k¼1

jxik � xjkjc
 !1

c

; ð4Þ
where kxi � xjkc quantifies the distance among two m-channel samples xi = (xi1,xi2, . . . ,xim) and
xj = (xj1,xj2, . . . ,xjm) using the generalized Minkowski metric [1,44] with the used norm c. Note that the Min-
kowski metric includes [2] the city-block distance (c = 1), Euclidean distance (c = 2), and chess-board distance
(c = 1) as the special cases. Sample x(1) 2 W associated with the minimum vector distance
L(1) 2 {L1,L2, . . . ,LN} constitutes the output of the vector median filter (VMF) [19,45] minimizing the dis-
tance to other samples inside the sliding filtering window W.

2.2. Basic vector directional filter

In the directional processing of color images [21,22,25,39,40,46], each input color vector xi, for
i = 1,2, . . . ,N, is associated with the aggregated angular distance
ai ¼
XN
j¼1

Aðxi; xjÞ ¼
XN
j¼1

arccos

Pm
k¼1xikxjkffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiPm

k¼1x
2
ik

p ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiPm
k¼1x

2
jk

q
0
B@

1
CA; ð5Þ
where A (xi,xj) represents the angle between two m-dimensional vectors xi and xj.
The sample x(1) 2 W associated with the minimum angular distance a(1) 2 {a1,a2, . . . ,aN}, i.e., the sam-

ple minimizing the sum of angles with other vectors, represents the output of the basic vector directional
filter (BVDF) [21]. The set of the r first terms of (3) associated with the smallest aggregated angular dis-
tances (5) constitutes an output of the generalized vector directional filter (GVDF) [21], which is often
accompanied with an additional filter processing the samples x(1),x(2), . . . ,x(r) according to their magni-
tude. Thus, the GVDF splits the color image processing into the directional processing and the magnitude
processing [1]. The drawback of such an approach is that it increases the computational complexity of the
VDFs.

2.3. Directional distance filter

Combining both ordering criteria (4) and (5) is followed by directional distance filter (DDF) [43] and hybrid
vector filters (HVFs) [42], however, both approaches are rather computationally demanding. HVFs require the
evaluation of both the VMF and BVDF outputs and thus, the two independent ordering schemes are applied
to the input samples to produce a unique final output.

In the case of DDF associated with the power parameter p ranged from 0 to 1, hybrid ordering criterion
expressed through a product of aggregated magnitude (4) and angular (5) distances is given by
Xi ¼ L1�p

i � api , for i = 1,2, . . . ,N. The above criterion can be expressed equivalently as follows:
Xi ¼
XN
j¼1

kxi � xjkc

 !1�p

�
XN
j¼1

Aðxi; xjÞ
 !p

for i ¼ 1; 2; . . . ;N . ð6Þ
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The DDF output is the sample x(1) 2 W minimizing (6), i.e., the sample associated with the smallest value
X(1) 2 {X1,X2, . . . ,XN}. If p = 0, then the DDF operates as the VMF, whereas for p = 1 the DDF is equiva-
lent to the BVDF.
3. Proposed framework

Standard vector filtering schemes such as VMF, BVDF, and DDF operating on a fixed supporting window
introduce excessive smoothing, blur image details, and eliminate fine image structures. This undesired prop-
erty is caused by the excessive smoothing capability of a low-pass filtering affecting the textured regions.
To avoid excessive smoothing and preserve image details, the noise reduction filters should be designed so that
noise-free samples remain unchanged during the filtering operation. There are at least three possible ways to
accomplish this task using a filter that operates on a fixed supporting window:

(1) To increase the degree of freedom in the design by introducing parameters into the filter structure. Usu-
ally, the increased number of filter coefficients under the training procedure improves the possibility to
enhance the desired signal. The two extremes represented by simple weighted filtering framework [25–
27] (mostly derived from scalar weighted medians [23,5] and stack filters [5,7,23,24]) and the permutation
filtering classes [5,47] follow this directions. The drawback of such filters lies in the relatively complex opti-
mization approaches, their computational complexity (especially in permutation theory-based approach-
es) and the training of a high number of filter parameters, which can lead to decreased filter robustness.

(2) To incorporate structural information to the filter design. This way follows weighted median optimiza-
tion-based structural approaches. Some recent designs [28,29] propose to use adaptively changed direc-
tion of the filter operating sub-window as a tool to control and decrease the excessive smoothing. Other
previously published approaches [30,48] deal with nontraditional window shapes along the image sam-
ples of similar intensities which form the digital paths [30] on the image domain.

(3) To introduce a switching rule [20,33–35,39,37] allowing the filter to switch between the robust nonlinear
filter (such as VMF) and the identity operation. Thus, in the case of noise-free samples, the filter retains
the samples unchanged (identity operation). Noisy samples are replaced by the output of the nonlinear
smoothing filter. Such an adaptive filter belongs to the switching filtering classes.

In this paper, we focus on the multichannel switching filtering. This filtering approach is useful for detection
and removal of the noise in a wide range of applications, where the preservation of the desired structures and
color information is of a paramount importance. Such applications include television [17], video [12], HDTV
and also new emerging fields such as DNA microarrays processing [8,9], reconstruction of digitized fine arts
[10], automatic systems of visual inspection in transportation [15] or quality control, etc. We will show the
efficiency of the proposed framework in Section 4 and will compare its efficiency with the performance of stan-
dard filtering schemes as well as some relevant adaptive extensions.

Although a number of switching approaches [31–35,37,39,46] have been proposed to date, a majority of
them focuses on outliers detection in gray-scale images. Another problem related to switching filters can be
often observed with respect to their inefficient robustness [31], high computational complexity [35,39], complex
optimization [33,46], high number of switching levels [34], and low flexibility to accommodate the algorithm
for a variety of window shapes [33,35].

In this paper, we provide a new multichannel filtering framework based on order-statistic theory and sta-
tistical switching using standard deviation or approximation of the variance both computed using the input
samples spawned by a filtering window. The paper extends the preliminary results presented in our previous
works [49–52]. Incorporating the statistical operators evaluated over the multichannel samples is a unique and
distinguishing element in the presented work. Furthermore, the proposed framework is flexible, it can be
designed to use advantages of basic filtering operators such as the sample mean and the lowest ranked vector,
provides more degree of freedom than the standard multichannel filtering schemes, and generalizes the VMF-
based switching filter in [52]. Moreover, the proposed method can be easily adapted for a large window size
without any additional effort.
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Fig. 2 shows the concept of the approximation of multivariate variance. The radius of the circles denotes
the approximation of the variance or rather product of variance and a control parameter. If the central pixel is
inside the circle then it is noise-free, otherwise the central sample is an outlier. Note that two ways are possible:
radius of the circles with centers in the lowest ranked vector (robust estimate in impulsive environments) and
in the sample mean. Similar procedure was used by Lee [32], who applied the concept for the gray-scale images
computing a weighted average over the filter window. This procedure computes a weighted mean over the filter
window, but only those pixels whose values lie within the variance of the central pixel value (or rather the var-
iance multiplied by the tuning parameter k) are taken into the average. Note that k is a control element in such
a design and Lee suggested that k should be around two. This filter attempts to estimate a new pixel value with
only those neighbors, whose values do not deviate too much from the value of the central sample.

Such a simple control can be also considered as the base for the decision stated multichannel filtering. In
order to provide the adaptive trade-off between the identity filter (no smoothing) and the robust multichannel
filtering techniques, e.g., VMF or its derivatives, we present first a filtering scheme called vector sigma filter
which makes use of the distances between the vector samples contained in the filtering window. Note that in
terms of VMF, BVDF, and DDF definitions, we describe sigma VMF (SVMF) filters [52] and extend this con-
cept in order to introduce sigma BVDF (SBVDF) and sigma DDF (SDDF) filters. These filtering schemes are
controlled by a tuning parameter k and take advantages of the standard sigma-filter concept (Fig. 2) and the
approximation of the variance in the multivariate case [52]. Although the adaptation of the tuning parameter
can be easily performed and the methods are sufficiently robust, in order to follow the fully adaptive filtering
schemes (optimization and parameter free) we also provide the adaptive vector sigma filters [49–51], called
adaptive sigma VMF (ASVMF), adaptive sigma BVDF (ASBVDF), and adaptive sigma DDF (ASDDF) based
on the standard deviation of the input set.

The measure of the multivariate samples is very often defined by the variance–covariance matrix R of the
samples x = {x1,x2, . . . ,xN} defined as
Fig. 2.
multip
R ¼ E½ðx� �xÞ � ðx� �xÞ�

¼
varðRÞ covðR;GÞ covðR;BÞ
covðG;RÞ varðGÞ covðG;BÞ
covðB;RÞ covðB;GÞ varðBÞ

0
B@

1
CA;

ð7Þ
where R, G, and B denote the red, green, and blue color pixel channels, E is the expected value operator, and �x
denotes the arithmetic mean of the vector samples. In this way
R ¼
rRR rRG rRB

rGR rGG rGB

rBR rBG rBB

0
B@

1
CA; ð8Þ
where rk,k is the standard deviation of the values of the channel k. The dispersion matrix R is square, symmet-
ric and usually of full rank.
The concept of the sigma filtering in the two-dimensional case, where we indicate that the radius is the variance or rather variance
lied by the tuning parameter k.
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In many applications, it is very useful to use a scalar value capturing the multivariate data dispersion. One
of the ways of introducing such a scalar measure is the so-called generalized variance jRj defined as the deter-
minant of the R matrix, which can be calculated as the product of the eigenvalues of R [53]. The idea is to
measure the volume occupied by the multivariate variables in jRj. The multivariate dispersion can also be giv-
en as a sum of the eigenvalues of the variance–covariance matrix, (total variance) [54].

The former plays an important role in maximum likelihood estimation and model selection and the latter is
used as a measure of variation in principal components analysis [55–57].

These dispersion measures well describe the samples� variability, but their drawback is that these methods
are computationally very expensive and thus inappropriate for image processing. That is why we make use of
simple but effective dispersion measures based on the sample mean and vector median: multivariate variance
measured from the sample mean and variance measured from the sample vector median.

3.1. Vector sigma filters

In this subsection, determining the range for the detection of noisy samples will depend on approximation
of the variance of the input multichannel sample. Thus, we avoid the computational difficulties connected
with calculation of variance–covariance matrices and provide a simple way to follow the concept shown
in Fig. 2.

3.1.1. Design based on the lowest ranked vector
Let wc be the approximation of the multivariate variance of the vectors contained in a supporting window

W of sufficiently large window size N (number of pixels in the filter window W), given by
wc ¼
Lð1Þ

N � 1
; ð9Þ
where Lð1Þ ¼
PN

j¼1kxð1Þ � xjkc is the aggregated distance calculated by (4) and associated with the vector
median x(1). This approximation represents the mean distance between the vector median and all other
color pixels contained in W. The division of smallest aggregated distance L(1) by N � 1 (number of distanc-
es from x(1) to all samples from W) ensures that the dispersion measure is nondependent on the filtering
window size.

Following the switching concept in [52], the SVMF uses the threshold Tol defined as follows:
Tol ¼ Lð1Þ þ kwc ¼
N � 1þ k
N � 1

Lð1Þ; ð10Þ
where L(1) is the smallest aggregated Minkowski metric, wc is the approximated variance, and k is the tuning
parameter used to adjust the smoothing properties of the SVMF.

If the threshold Tol is compared with the distance measure L(N+1)/2 of the center pixel x(N+1)/2, it is possible
to derive a simple switching rule for the replacement of noisy pixels [52]:
ySVMF ¼
xð1Þ for LðNþ1Þ=2 P Tol;

xðNþ1Þ=2 otherwise,

�
ð11Þ
where ySVMF is the SVMF output, L(N+1)/2 denotes the distance measure of the center pixel x(N+1)/2 as
explained in (4), and x(1) is the VMF output.

If the distance measure L(N+1)/2 of the central sample x(N+1)/2 is larger or equal to the threshold Tol, then
x(N+1)/2 is most probably noisy and is being replaced with the lowest ranked vector x(1) (see Fig. 2). If the dis-
tance measure L(N+1)/2 of the central sample x(N+1)/2 is smaller than the threshold Tol, then x(N+1)/2 is similar
to other input samples, which indicates that x(N+1)/2 is most probably noise-free and is kept unchanged (no
filtering operation is performed).

From (11) it is not difficult to see that the filtering result depends on the tuning parameter k. If k = 0, then
the filter output is always the VMF. On the other hand, for big values of k the framework will always output
the central pixel x(N+1)/2 according to the following expression:
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y ¼
xð1Þ if k ¼ 0;

xðNþ1Þ=2 if k ! 1.

�
ð12Þ
Since L(N+1)/2 = L(1)+D, it can be easily shown [52] that D/L(1) P k/(N � 1). From this expression it is clear
that the proposed method will perform the identity operation for any value of k, if and only if the lowest
ranked vector x(1) is identical with the central sample x(N+1)/2 and thus D = 0. This property is interesting
in the context of deterministic properties usually expressed through the analysis of root signals. If
x(1) 5 x(N+1)/2 then the SVMF output is a root if and only if the ratio D/L(1) is larger than or equal to the
tuning element k/(N � 1). Note that the second extreme for the identity operation can be expressed by
ðN � 2ÞðN � 1Þ P k ð13Þ

which means that an additional increasing of k, e.g., up to 56 in the case of a 3 · 3 filtering window, makes the
filter idempotent. With respect to this analysis, we provide Fig. 3 which shows the dependency of boundary
values k on window size N to achieve the identity operation. The interested reader should refer to [52] for addi-
tional analysis of the SVMF method.

In the same way as in the SVMF approach defined by (9)–(11), it is possible to derive the proposed SBVDF
and SDDF filters. In the case of the SBVDF technique, Eqs. (9)–(11) should be modified as follows:
wA ¼ að1Þ
N � 1

; ð14Þ

Tol ¼ að1Þ þ kwA; ð15Þ

ySBVDF ¼
xð1Þ for aðNþ1Þ=2 P Tol;

xðNþ1Þ=2 otherwise,

�
ð16Þ
where a(1) is the smallest aggregated angular distance (5), wA is the approximated variance computed using the
angular distance of multichannel samples inside the filtering window, and x(1) is the result of BVDF operation.
The vector ySBVDF is the SBVDF output that depends on the comparison of the aggregated angular distance
a(N+1)/2 related to the central input sample x(N+1)/2 with the threshold value Tol.

If the generalized SDDF filtering structure is considered, the approximated variance wcA is given by
wcA ¼ Xð1Þ

N � 1
ð17Þ
where X(1) is the smallest hybrid measure in (6). Then, the threshold value is expressed as
Tol ¼ Xð1Þ þ kwcA ð18Þ

and the SDDF output ySDDF is defined by
N
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Fig. 3. Dependence of boundary value of k on window size N.
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ySDDF ¼
xð1Þ for XðNþ1Þ=2 P Tol;

xðNþ1Þ=2 otherwise,

�
ð19Þ
where x(1) characterizes the DDF operation related to power parameter p and X(N+1)/2 is the aggregated hybrid
measure (6) associated with the central input sample x(N+1)/2.

It is clear that the SDDF holds the same generalization for SVMF and SBVDF filters as the DDF for VMF
and BVDF techniques. It means that the SDDF can perform the SVMF filtering (for p = 0) and the SBVDF
filtering (for p = 1), whereas for p = 0.5 the filter is equivalent to the standard SDDF filter. Varying the power
parameter p, it is possible to control the influence of magnitude and angular domain in the SDDF switching
stage and also to tune the smoothing properties of the DDF technique in the second filtering stage. In addi-
tion, the smoothing capability of the SDDF technique is also controlled by the tuning parameter k (see Eq.
(12)), which increases the degree of freedom of the SDDF technique in comparison with the standard DDF
approach. From (12) and (19) it can be observed that for k = 0 the SDDF is equivalent to the standard
DDF approach, whereas for k ! 1 the SDDF will perform the identity operation (no filtering) and will keep
all input data unchanged. If the tuning parameter k = 0, the SDDF smoothing capability depends only on the
power parameter p, and the VMF and BVDF filtering can be obtained for p = 0 and p = 1, respectively, as
special cases. For that reason, the introduction of the SDDF structure extends the design possibilities of mul-
tichannel filters and represents the generalization of the above-mentioned filtering techniques as well as our
initial SVMF design in [52]. In addition to this analysis, the SDDF and also SBVDF behavior corresponds
to the analysis shown in Fig. 3 as well as to additional analysis provided in [52].

The proposed sigma vector filters (SVMF, SBVDF, and SDDF) are computationally efficient, since they
perform practically the same number of operations as their nonadaptive special cases such as VMF, BVDF,
and DDF. Comparing the construction of the generalized algorithms shown in Figs. 1 and 4 reflects that both
schemes need to compute the aggregated distances and search for the minimum of them. The switching rule
Fig. 4. Algorithm of the vector sigma filter.
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requires division, multiplication, and addition, however, in the case of noise-free sample (majority of cases), no
additional processing is necessary. If an outlier is detected, the rest of operations is the same as in the case of
standard filtering schemes VMF, BVDF, and DDF. Finally, it should be mentioned that the SVMF is the
most computationally attractive case of the SDDF filtering.

3.1.2. Design based on the sample mean

In order to follow both concepts shown in Fig. 2, we can achieve a new approach which is more compu-
tationally attractive than the discussed previously. Replacing the lowest ranked vector with the sample mean
in the switching stage of the proposed method, we avoid the calculation of aggregated distances of input sam-
ples to other samples of the input set and searching for the minimum distance and the lowest ranked vector.
However, the sample mean is not as robust operator in impulsive environments as the lowest ranked sample,
and thus, we expect that this modification will not be so efficient as the previous ‘‘ranked’’ method, in the case
of heavily corrupted environments.

Let us consider the generalized DDF filtering scheme and the variance approximated by
wcA ¼ X�x

N
; ð20Þ
where
X�x ¼
XN
j¼1

k�x� xjkc

 !1�p XN
j¼1

Að�x; xjÞ
 !p

ð21Þ
is the aggregated measure between multichannel input samples x1,x2, . . . ,xN and the sample mean �x defined
by
�x ¼ 1

N

XN
i¼1

xi. ð22Þ
Following the definition in (19), the output of the proposed mean-based SDDF filtering scheme is given by
ySDDF ¼
xð1Þ for XðNþ1Þ=2 P Tol�x;

xðNþ1Þ=2 otherwise,

�
ð23Þ
where Tol�x is the threshold value defined like in the ranking-based SDDF approach, which results in
Tol�x ¼
N þ k
N

X�x. ð24Þ
It is clear that mean-based SDDF scheme in (23) holds the same generalization as their ranking-based
equivalent in (19). Since �x is generally closer to multichannel samples than the lowest ranked vector we expect
that the sub-optimal value of k will be larger than that of the ranking-based SDDF approach.

3.2. Adaptive vector sigma filters

The smoothing capability of the SDDF approaches especially depends on the tuning parameter k, whereas the
power parameter p can be considered as the generalization parameter like in theDDFdesign. Although the adap-
tation of the tuning parameter can be performed easily and themethods are sufficiently robust, in order to follow
the fully adaptive filtering paradigm, we also provide the so-called adaptive vector sigma filters (Fig. 5) [49–51],
such as adaptive sigma VMF (ASVMF), adaptive sigma BVDF (ASBVDF), and adaptive sigma DDF
(ASDDF). Besides the fully adaptive structure, another advantage of the proposed scheme is related to the exclu-
sion of the time-consuming ordering operation used in ranking-based vector sigma filters, when the desired sam-
ple is detected by a switching filter stage.

3.2.1. Design based on the sample mean

Let us consider a population of the scalar samples x1,x2, . . . ,xN and their variance r2 given by



Fig. 5. Algorithm of the adaptive vector sigma filter.
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r2 ¼ 1

N

XN
i¼1

ðxi � �xÞ2; ð25Þ
where �x is the mean of the observed data and N is the number of the samples. The square root of the variance,
r, is the standard deviation.

If the variance r2 is generalized for a vector case applied to the input set of multichannel samples
x1,x2, . . . ,xN, then [49]:
r2
c ¼

1

N

XN
i¼1

ðkxi � �xkcÞ
2
; ð26Þ
where N is the window size, c denotes the chosen norm (e.g., Euclidean for c = 2), and �x is the mean of mul-
tichannel data x1,x2, . . . ,xN given by (22).

In this way, the angular definition of the multichannel variance [50] is given by
r2
A ¼ 1

N

XN
i¼1

A2ðxi; �xÞ; ð27Þ
where A (Æ) denotes the angle between multichannel samples.
In terms of the DDF filter structure, the combination of r2

c and r2
A is expressed [51] as follows

r2
cA ¼ ðr2

cÞ
1�pðr2

AÞ
p which can be rewritten as:
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r2
cA ¼ 1

N

XN
i¼1

ðkxi � �xkcÞ
2

 !1�p
1

N

XN
i¼1

A2ðxi; �xÞ
 !p

; ð28Þ
where p is the same power parameter as in the DDF structure.
Calculating the difference 1c between the central sample x(N+1)/2 and the sample mean �x using
1c ¼ kxðNþ1Þ=2 � �xkc ð29Þ
and also the angle 1A between x(N+1)/2 and �x using
1A ¼ AðxðNþ1Þ=2; �xÞ ð30Þ
the difference between x(N+1)/2 and �x can be expressed through the combined measure [51] as 1cA = (1c)
1�p(1A)

p

or as follows:
1cA ¼ xðNþ1Þ=2 � �x
�� ��

c

� �1�p
AðxðNþ1Þ=2; �xÞ
� �p

. ð31Þ
Thus, the corruption of x(N+1)/2 is determined through the comparison of rcA and 1cA which forms the fol-
lowing outlier detection rule [51]: 1cA P rcA. If the combined measure 1cA is greater than or equal to a square
root of the combined variance r2

cA, then the central sample x(N+1)/2 is probably noisy because the correspond-
ing combined measure (6) reflects the significant difference between x(N+1)/2 and its neighborhoods. The high
similarity between x(N+1)/2 and the input set x1,x2, . . . ,xN is reflected by 1cA < rcA.

When the above-mentioned rule is introduced to the DDF filter structure, the output of the proposed
adaptive sigma DDF (ASDDF) method is given by
yASDDF ¼
xð1Þ for 1cA P rcA;

xðNþ1Þ=2 otherwise,

�
ð32Þ
where x(1) characterizes the DDF output minimizing the hybrid measure (6) and x(N+1)/2 is the input central
sample.

It is clear that the standard DDF operation is performed when the condition 1cA P rcA is satisfied, i.e., the
effect of the DDF filtering is restricted only to noisy samples. If 1cA < rcA, then x(N+1)/2 is similar to other
input samples and remains unchanged. For p = 0 the ASDDF method is equivalent to the adaptive sigma
VMF (ASVMF) filter [49], whereas for p = 1 it performs the adaptive sigma BVDF (ASBVDF) filtering
[50], i.e., the angular multichannel generalization of the proposed adaptive filtering.

Concerning the computational complexity, the adaptive vector sigma filters (Fig. 5) are computationally
very efficient and they significantly decrease the number of operations typical for standard filtering schemes
(Fig. 1) and ranking-based vector sigma filters (Fig. 4). In each cycle, adaptive vector sigma filters need to
determine the sample mean like in mean-based vector sigma filters (23), square root of the variance of the
input set, and the distance between the central sample and the sample mean. However, the crucial advantage
of the ASVMF, ASBVDF, and ASDDF is displayed in the case of noise-free samples, when these filtering
schemes allow to omit the operations related to computation of the aggregated distances, searching for the
minimum of them and sample ordering. Note that this set of operations is typical for both schemes shown
in Figs. 1 and 4. Thus, the detection of noise-free samples using the scheme shown in Fig. 5 is also accompa-
nied with excluding of the most time-consuming operations. Similar to the SVMF, also the ASVMF is the
most computationally attractive case of adaptive vector sigma filters.

3.2.2. Design based on the lowest ranked vector

The adaptive vector sigma filters can be also designed in terms of ranking-based filtering scheme. In such a
design the output of the ASDDF filter is given by (32), where the multichannel variance r2

cA and the hybrid
difference measure 1cA are defined as follows:
r2
cA ¼ 1

N � 1

XN
i¼1

xi � xð1Þ
�� ��

c

� �2 !1�p
1

N � 1

XN
i¼1

A2 xi; xð1Þ
� � !p

; ð33Þ
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1cA ¼ xðNþ1Þ=2 � xð1Þ
�� ��

c

� �1�p
AðxðNþ1Þ=2; xð1ÞÞ
� �p

. ð34Þ
Then, the ranking-based ASDDF scheme with power parameter p covers the ranking-based ASVMF (p = 0)
and ASBVDF (p = 1) schemes as special cases. On the other hand, the introduction of the lowest ranked vec-
tor into the switching stage decreases the computational efficiency of such a design.
Experimental results: (A) original image Lena, (B) original image Peppers, (C) original image Parrots, and (D–F) image Lena
ted by impulsive noise with the probability: (D) pv = 0.05, (E) pv = 0.10, and (F) pv = 0.20.

Filtering results (A–C) and estimation error (D–F) of the SVMF achieved using the test image Lena corrupted by impulsive noise
10 (Fig. 6E) in dependence on the tuning parameter k (A and D) k = 0.1, (B and E) k = 1, and (C and F) k = 10.
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Finally, it should be noted that the mean-based ASDDF scheme represents a powerful tool, especially for
small p, for the noise detection in removal in color images. In the case of p < 0.55, its performance is sufficient-
ly robust [51]. With respect to the general concept with weighted approximated variance used in the SDDF
design, ASDDF scheme (32) can be modified as follows:
Fig. 8.
corrup
yASDDF ¼
xð1Þ for 1cA P krcA;

xðNþ1Þ=2 otherwise.

�
ð35Þ
Using this structure we extend the design possibilities of the ASDDF and allow to control the switching stage.

4. Experimental results

The primary purpose of all filtering schemes presented in this paper is to remove impulses and outliers from the
image. This type of noise corruption is often introduced through bit errors [5], especially during the scanning or
transmission over the noisy information channel. Operating on bit-levels of noise-free (original) and noisy (cor-
rupted) components:
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oik ¼ oB�1
ik 2B�1 þ oB�2

ik 2B�2 þ � � � þ o1ik2þ o0ik; ð36Þ
xik ¼ xB�1

ik 2B�1 þ xB�2
ik 2B�2 þ � � � þ x1ik2þ x0ik; ð37Þ
respectively, bit-errors like corruption are modeled as follows:
xbik ¼
obik with probability 1� pv;

1� obik with probability pv;

(
ð38Þ
where k denotes the color channel, pv is the bit-corruption probability, and b = 0,1,2, . . . ,B � 1 denotes the
bit-levels of the original and noisy color vectors oi = (oik,oi2, . . . ,oim) and xi = (xik,xi2, . . . ,xim), respectively.
The quantities obik and xbik denote the bth bit ({0,1}) of oik and xik in B-bit per color component representation.

It is not difficult to see that the model in (38) can be simplified to the impulsive noise model defined as fol-
lows [41]:
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xi ¼
vi with probability pv;

oi with probability 1� pv;

�
ð39Þ
where oi is the original sample, xi represents the sample from the noisy image, and pv is a corruption proba-
bility. The impulse vi = (vi1,vi2, . . . ,vim) is usually considered independent from pixel to pixel and has generally
much larger (or smaller) amplitude compared to that of neighboring samples at least in one of the spectral
components. In this paper, we used the model of impulsive noise in (39) and considered the impulse noise cor-
ruption pv ranging from 0 to 0.20, with fixed step-size 0.01.

The achieved results were evaluated by the commonly used objective criteria [39,41], such as the mean abso-
lute error (MAE), the mean square error (MSE), and the normalized color difference (NCD). In designing the
new filter class, we want to achieve the best balance between the noise suppression and color and edge infor-
mation preservation and this balance will be documented using a variety of filtering results in forms of esti-
mation errors and zoomed parts of the output images. Note that all tests were performed with the
commonly used Euclidean norm (c = 2) and a 3 · 3 filtering window.

The methods were tested using three test images Lena (Fig. 6A), Peppers (Fig. 6B), and Parrots (Fig. 6C)
corrupted by a wide range of impulsive noise (Figs. 6D–F). Fig. 7 shows the output images and corresponding
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estimation errors achieved by applying the SVMF technique to the test image Lena corrupted by impulsive
noise with pv = 0.10 (Fig. 6E) for the tuning parameter k = 0.1 (Figs. 7A and D), k = 1 (Figs. 7B and E),
and k = 10 (Figs. 7C and F). It can be seen easily that the SVMF preserves the details with the increased
parameter k. On the other hand, the excellent smoothing capability is achieved for smaller values of k. Note
that the SVMF filter provides the maximum amount of the smoothing for k = 0, i.e., under the equivalence
with the robust VMF. The smoothing capability of the SVMF filter gets worsen with the parameter k, and
for k > 10 the proposed method practically preserves all data appearing in the filter input including outliers.

Figs. 8–11 evaluate the performance of the SDDFfilter using objectivemeasuresMAE,MSE, andNCD in the
dependence on the generalization parameter p and the tuning parameter k. In this experiment, the test imageLena
corrupted by impulsive noise pv = 0.10 (Fig. 6E) and pv = 0.20 (Fig. 6F) was used as the training set. As it can be
seen, the sub-optimal value of k decreases with the degree of the noise corruption. To perform another series of
experiments presented in the sequence, accordingly to the results shown in Figs. 8–11 we selected the tuning
parameter k = 4 for the rank SDDFs, k = 12 for the mean SDDFs, and also k = 1 (i.e., no parameter) for both
ASDDF schemes as the compromise for the considered degree of the impulsive noise corruption.
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Figs. 12–14 compare the performance of the ranking-based vector sigma filters (SDDF covering the SVMF
and SBVDF as the special cases) and the mean-based adaptive vector sigma filters (ASDDF covering the
ASVMF and ASBVDF as the special cases). In these experiments, we used all test images (Figs. 6A–C)
and the results are achieved for the generalization parameter p ranging from 0 to 1 with step-size 0.1 and
the impulsive noise intensity pv ranging from 0 to 0.20 with step-size 0.01. These results show that the perfor-
mance of the SDDF filter is similar for the whole range of the parameter p, although this technique achieves
the best results for the power parameter p ranging from 0 to 0.5. In the case of ASDDF technique, the results
are being changed more dramatically, especially for p > 0.6 when the filter fails to detect noisy pixels. The
worst performance is visible for the noise intensities pv > 0.10, especially in terms of the MSE criteria (Figs.
12D, 13D, and 14D). This shows that the noise suppression capability of the ASDDF filter is not sufficient
Fig. 12. Performance of rank SDDF (A, C, and E) and mean ASDDF (B, D, and F) methods expressed through MAE criteria
in dependence on impulsive noise probability pv and power parameter p: (A and B) test image Lena, (C and D) test image Peppers, and
(E and F) test image Parrots.
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for larger value of p, and the filter cannot be used for the noise suppression in highly corrupted images. For
that reason it is not surprising that the best performance of the ASDDF filter is related to the smallest value of
the power parameter p, which corresponds to the ASVMF technique. In addition to these results, the ASVMF
represents the most computationally attractive case of the ASDDF method.

Finally, Figs. 15–17 show the zoomed parts of selected filtering techniques and Tables 1–3 summarize the
achieved objective results. The performance of the proposed vector sigma filters (SVMF, SBVDF, and SDDF)
and adaptive vector sigma filters (ASVMF, ASBVDF, and ASDDF) is compared with a variety of standard
and adaptive filtering techniques such as componentwise median filter (MF) [18], adaptive switching medians
based on local contrast probability (LCP) [31], and standard deviation-based scalar sigma filter (SF) [32].
These componentwise methods were compared with traditional vector filtering schemes such as previously
described VMF [19], BVDF [21], DDF [43], GVDF [21], and vector hybrid filter (VHF) [42] and also recently
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Fig. 14. Performance of rank SDDF (A, C, and E) and mean ASDDF (B, D, and F) methods expressed through NCD criteria in
dependence on impulsive noise probability pv and power parameter p: (A and B) test image Lena, (C and D) test image Peppers, and (E
and F) test image Parrots.
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introduced switching-based vector filters such as adaptive BVDF (ABVDF) [46], modified vector median
(MVM) [58], and fuzzy adaptive vector directional filter (AVDF) [40]. Visual inspection of the zoomed images
in Figs. 15–17 reveals that the standard filters excellently suppress impulses present in the image, however,
some edges and image details are heavily blurred, especially at transitions between image regions. The use
of adaptive methods significantly improves their signal-detail preserving capability and blurring can be signif-
icantly reduced. Since the color image denoising is a multi-criteria task, achieving the balance between noise
smoothing and color/structural information preservation is of great importance in filter design.

If the proposed methods are compared with the adaptive algorithms such as componentwise LCP and SF
or efficient multichannel techniques such as ABVDF, MVM, and AVDF, then these comparisons also show
that the proposed method is clearly superior and outperforms the presented standard and adaptive filtering
techniques in terms of objective quality measures (Tables 1–3). The proposed method is more robust in com-
parison with ABVDF technique, which provides excellent results for lowly corrupted images whereas its
smoothing capability fails with increased impulsive noise corruption. Moreover, the proposed method is char-



Fig. 15. Zoomed parts of test images and achieved results related to the test image Lena. (A) original image Lena, (B) test image Lena
corrupted by impulsive noise pv = 0.10, (C) VMF, (D) LCP approach, (E) proposed rank SVMF, and (F) proposed mean ASVMF.
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acterized by significantly improved preservation capability in comparison with the MVMmethod. In addition,
the proposed SVMF and ASVMF filters are able to remove the noise sufficiently, although there can be
observed some situations when the local statistical properties of the corrupted image prevent removing all
the outliers. Therefore, it can be claimed that the filters designed within the proposed framework achieve
the best balance between the noise suppression and the signal-detail preservation among the tested methods.



Fig. 16. Zoomed parts of test images and achieved results related to the test image Peppers. (A) Original image Peppers, (B) test image
Peppers corrupted by impulsive noise pv = 0.10, (C) VMF, (D) LCP approach, (E) proposed rank SVMF, and (F) proposed mean
ASVMF.
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5. Conclusion

In this paper, a new color image filtering framework has been proposed. The framework is based on order-sta-
tistic theory and statistical switching using standard deviation or approximation of the variance both computed



Fig. 17. Zoomed parts of test images and achieved results related to the test image Parrots. (A) Original image Parrots, (B) test image
Parrots corrupted by impulsive noise pv = 0.05, (C) VMF, (D) LCP approach, (E) proposed rank SVMF, and (F) proposed mean
ASVMF.
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using the input samples spawned by a filtering window. The achieved results show excellent detection and signal-
detail preservation capabilities of the new approach, while still holding the impulsive noise attenuation charac-
teristics of standard vector filters. The new filters clearly outperform the standard vector filtering schemes as well
as their adaptive modifications. In our experiments, the best results were achieved by sigma VMF and adaptive
sigma VMF schemes that are the most computationally attractive cases of the proposed filter class.



Table 1
Comparison of the presented algorithms using impulsive noise corruption pv = 0.05

Image Lena Peppers Parrots

Method/criterion MAE MSE NCD MAE MSE NCD MAE MSE NCD

Noisy 3.762 427.3 0.0445 3.988 486.1 0.0441 3.805 443.6 0.0432
MF 3.394 49.7 0.0442 3.248 43.1 0.0484 2.718 63.1 0.0170
VMF 3.430 50.8 0.0403 3.169 43.9 0.0452 2.669 64.2 0.0132
BVDF 3.818 58.6 0.0407 3.740 60.7 0.0438 3.460 109.0 0.0116
DDF 3.509 52.3 0.0402 3.182 44.6 0.0431 2.645 65.3 0.0117
AVDF 4.301 54.3 0.0483 4.068 51.4 0.0552 3.802 94.5 0.0147
GVDF 3.587 55.3 0.0420 3.433 57.9 0.0453 3.036 93.6 0.0126
HVF 3.857 56.9 0.0434 3.282 42.9 0.0441 2.786 65.7 0.0122
SF 1.764 33.3 0.0204 1.614 27.7 0.0217 1.416 45.5 0.0067
LCP 2.214 38.8 0.0263 2.046 33.1 0.0279 1.747 51.4 0.0086
MVM 1.312 30.1 0.0158 1.205 23.9 0.0144 1.185 41.1 0.0059
ABVDF 0.506 20.7 0.0044 0.610 26.1 0.0065 0.521 32.2 0.0017

Rank SVMF 0.777 18.3 0.0082 0.729 16.5 0.0090 0.699 27.8 0.0027
Mean SVMF 0.980 21.4 0.0103 0.878 18.2 0.0107 0.840 31.1 0.0031
Rank ASVMF 1.540 30.2 0.0174 1.410 27.9 0.0177 1.261 42.3 0.0058
Mean ASVMF 1.192 27.3 0.0127 1.033 23.0 0.0124 1.081 41.8 0.0040
Rank SBVDF 0.805 19.1 0.0089 0.789 22.7 0.0113 0.694 34.3 0.0026
Mean SBVDF 1.054 27.6 0.0115 0.987 34.4 0.0129 0.875 44.8 0.0032
Rank ASBVDF 1.717 40.6 0.0182 1.603 40.1 0.0193 1.464 60.7 0.0054
Mean ASBVDF 1.313 37.6 0.0155 1.391 65.9 0.0219 1.056 57.7 0.0043
Rank SDDF 0.731 16.4 0.0080 0.649 14.6 0.0096 0.545 21.2 0.0024
Mean SDDF 0.948 19.9 0.0105 0.816 17.9 0.0111 0.678 25.9 0.0027
Rank ASDDF 1.537 31.6 0.0171 1.352 28.9 0.0172 1.133 38.8 0.0049
Mean ASDDF 1.153 28.2 0.0131 1.004 31.1 0.0140 0.783 32.2 0.0033

Table 2
Comparison of the presented algorithms using impulsive noise corruption pv = 0.10

Image Lena Peppers Parrots

Method/criterion MAE MSE NCD MAE MSE NCD MAE MSE NCD

Noisy 7.312 832.0 0.0840 7.677 943.3 0.0869 7.526 882.0 0.0857
MF 3.703 56.8 0.0489 3.579 53.9 0.0546 2.960 70.0 0.0198
VMF 3.687 56.5 0.0428 3.503 55.0 0.0494 2.890 69.6 0.0142
BVDF 4.099 67.6 0.0432 4.151 82.7 0.0484 3.630 113.5 0.0127
DDF 3.733 57.3 0.0424 3.512 56.6 0.0475 2.839 69.7 0.0128
AVDF 4.540 59.5 0.0503 4.370 61.6 0.0592 3.984 98.1 0.0155
GVDF 3.925 66.8 0.0448 3.785 73.4 0.0492 3.188 96.2 0.0137
HVF 3.857 56.9 0.0434 3.626 53.6 0.0486 3.002 69.9 0.0132
SF 1.775 37.1 0.0207 1.667 36.2 0.0225 1.507 51.6 0.0078
LCP 2.254 43.1 0.0271 2.101 41.6 0.0288 1.824 57.3 0.0095
MVM 1.453 31.3 0.0152 1.279 28.6 0.0151 1.362 45.2 0.0063
ABVDF 0.936 38.6 0.0080 1.195 56.9 0.0143 1.031 68.2 0.0033

Rank SVMF 0.959 25.9 0.0105 0.941 27.4 0.0117 0.862 35.4 0.0041
Mean SVMF 1.123 28.3 0.0121 1.063 29.0 0.0133 1.016 40.6 0.0047
Rank ASVMF 1.883 38.7 0.0210 1.768 39.8 0.0225 1.589 52.6 0.0075
Mean ASVMF 1.332 36.2 0.0144 1.265 39.9 0.0158 1.252 52.6 0.0060
Rank SBVDF 1.048 33.1 0.0105 1.155 56.7 0.0135 0.941 47.4 0.0035
Mean SBVDF 1.311 48.6 0.0131 1.533 99.1 0.0174 1.129 67.1 0.0045
Rank ASBVDF 2.132 55.6 0.022 2.144 75.7 0.0239 1.929 91.9 0.0072
Mean ASBVDF 1.721 76.3 0.0182 2.239 173.4 0.0305 1.569 105.0 0.0067
Rank SDDF 0.913 23.3 0.0098 0.895 30.2 0.0117 0.703 25.9 0.0030
Mean SDDF 1.094 28.3 0.0118 1.103 44.0 0.0142 0.843 33.5 0.0037
Rank ASDDF 1.886 40.9 0.0207 1.781 48.0 0.0221 1.448 50.9 0.0064
Mean ASDDF 1.378 46.7 0.0147 1.514 84.6 0.0191 1.106 56.6 0.0052
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Table 3
Comparison of the presented algorithms using impulsive noise corruption pv = 0.20

Image Lena Peppers Parrots

Method/criterion MAE MSE NCD MAE MSE NCD MAE MSE NCD

Noisy 14.019 1604.6 0.1625 14.912 1832.0 0.1694 14.213 1663.0 0.1608
MF 4.521 87.9 0.0619 4.487 91.4 0.0726 3.623 97.3 0.0276
VMF 4.335 80.3 0.0492 4.232 85.7 0.0601 3.448 91.9 0.0174
BVDF 4.859 107.8 0.0499 5.111 152.9 0.0602 4.183 140.0 0.0165
DDF 4.321 78.8 0.0483 4.254 90.4 0.0579 3.386 91.2 0.0161
AVDF 5.258 80.4 0.0572 5.226 98.3 0.0739 4.016 118.1 0.0175
GVDF 4.345 83.4 0.0493 4.562 122.4 0.0586 3.450 100.9 0.0174
HVF 4.548 80.4 0.0500 4.411 86.4 0.0599 3.594 92.7 0.0169
SF 2.295 66.5 0.0284 2.267 73.6 0.0326 2.036 83.4 0.0136
LCP 2.739 70.6 0.0345 2.743 79.5 0.0404 2.290 85.0 0.0148
MVM 1.847 52.5 0.0198 1.785 57.2 0.0226 1.537 73.5 0.0102
ABVDF 1.974 90.4 0.0170 2.502 142.7 0.0277 1.952 129.5 0.0072

Rank SVMF 1.816 77.6 0.0212 1.898 97.3 0.0251 1.618 90.0 0.0116
Mean SVMF 1.928 75.4 0.0221 1.995 94.2 0.0266 1.803 96.3 0.0128
Rank ASVMF 2.629 75.2 0.0303 2.550 83.5 0.0340 2.262 89.0 0.0142
Mean ASVMF 2.221 91.7 0.0260 2.333 115.4 0.0310 2.183 117.0 0.0161
Rank SBVDF 2.232 122.9 0.0203 2.676 199.8 0.0275 1.907 126.3 0.0092
Mean SBVDF 2.708 171.0 0.0245 3.638 332.1 0.0385 2.568 196.1 0.0128
Rank ASBVDF 3.300 145.7 0.0316 3.495 190.6 0.0365 3.084 188.7 0.0139
Mean ASBVDF 3.501 245.2 0.0327 5.118 501.5 0.0631 3.253 269.2 0.0177
Rank SDDF 1.803 77.5 0.0192 1.953 109.9 0.0239 1.417 74.9 0.0087
Mean SDDF 2.034 91.3 0.0212 2.389 151.6 0.0289 1.672 91.6 0.0101
Rank ASDDF 2.748 92.6 0.0293 2.748 112.2 0.0329 2.212 99.2 0.0118
Mean ASDDF 2.658 150.0 0.0268 3.499 287.6 0.0415 2.329 156.8 0.0145
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