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Abstract—We introduce a rate-adaptive system in which the
receiver demodulates only those bits that have a high probability
of being correct, treating nondemodulated bits as erasures. Several
sets of decision regions, derived using composite hypothesis testing,
are proposed for 16-QAM and 16-phase-shift keying, which allow
for the simple implementation of this demodulation strategy. We
demonstrate that pre-encoding the data with a Raptor code allows
for simple reconstruction of the message, regardless of the erasure
pattern introduced from the nondemodulated bits. We prove the
optimality of the proposed decision regions in selecting the most
likely subset of bits from any received symbol in moderate-to-high
signal-to-noise ratios, and we analyze the performance of demodu-
lating with these decision regions over an additive white Gaussian
noise channel. Also demonstrated is the strong performance of
16-QAM for this application, compared with other power-efficient
constellations and the near-optimality of using Gray mapping,
even under the proposed alternate sets of decision regions.

Index Terms—Adaptive modulation, decision regions, demodu-
lation, Gray mapping, hierarchical modulation, phase-shift keying
(PSK) constellations, quadrature amplitude modulation (QAM)
constellations, Raptor code.

1. INTRODUCTION

ATE-ADAPTIVE systems provide an elegant solution
Rto the problem of transmitting data over a time-varying
channel. Two popular rate-adaptive systems are adaptive modu-
lation and incremental redundancy (IR). In an adaptive modula-
tion system, the transmitter dynamically adjusts the modulation
level used according to the (presumably) slow variations in
the channel, as in [1] and [2]. The modulation scheme used
at any instant is chosen such that a target bit-error rate (BER)
is maintained for the duration of the transmission—clearly,
over poor channel instants, a low order of modulation would
be selected, while a higher order of modulation would be used
during favorable channel instants. In contrast to adaptive mod-
ulation systems, IR schemes (first introduced in [3]) achieve
rate adaptation by encoding data packets using a low-rate
“mother code” and transmitting subpackets one by one using
an automatic repeat request (ARQ) algorithm, until the receiver
successfully decodes the original packet.

These systems are in contrast to typical nonrate-adaptive sys-
tems where the modulation, coding, and power level are fixed
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ahead of time to achieve a desired level of performance; in the
case of a time-varying channel, these systems are designed for
the worst-case channel conditions with a fixed power margin or
coding gain applied in order to ensure acceptable average per-
formance over the entire channel range.

Despite the obvious advantages of adaptive modulation and
IR, both schemes present some difficulties, as well. Most current
adaptive modulation schemes work with the assumption that
the transmitter has relatively accurate knowledge of the channel
[i.e., to make a modulation choice, the transmitter needs to know
the received signal-to-noise ratio (SNR)]. Typically, the trans-
mitter obtains knowledge of the channel state from the receiver
by means of a feedback path, which may consume a signifi-
cant amount of overhead, especially if the channel information
changes rapidly relative to the symbol rate. Furthermore, inac-
curacies in the estimate of the channel state at the transmitter
can lead to degradation in performance (e.g., [4]). IR schemes
(specifically type-II hybrid ARQ schemes) avoid the require-
ment for channel feedback to the transmitter, but require instead
a second-layer ARQ protocol scheme to operate. An additional
complication of IR is that the decoding procedure is repeated
after each subpacket is received to check for successful trans-
mission (essentially wasting resources each time the decoding
scheme fails). A final concern is the potentially large buffer in
such a scheme, which must be designed for the worst-case sce-
nario and may be severely under-utilized under typical channel
conditions.

Here, we present a novel adaptive demodulation (ADM)
scheme, which preserves the advantageous properties of tra-
ditional rate-adaptive schemes, while avoiding some of their
pitfalls. Essentially, in the proposed ADM scheme, the trans-
mitter would send a fixed modulated and coded data stream, and
the receiver would demodulate the symbols at a nonfixed rate,
where the demodulation rate at any instant would be determined
by the observed channel state at the receiver. Thus, the receiver
would demodulate only those bits which have a high degree of
certainty, and would treat as erasures any bits which have an
increased chance of being in error. For certain two-dimensional
(2-D) signal constellations and symbol mappings, this selective
demodulation can be accomplished very easily using a remark-
ably simple set of decision regions. To send a k-bit message
using such a system, a particularly straightforward way to do
so is to first encode the message using a rateless erasure code,
such as a Raptor code [5]. If such a code is used, then to decode,
the receiver must simply accumulate (1 + €)k bits (where € is
small and depends on the design of the code), all of which are
highly reliable due to our ADM scheme.

During a favorable channel instant, the ADM scheme would
introduce no erasures, and full-rate communication would be
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preserved (note that the rate would be slightly reduced by 1/(1+
€) due to the outer code). Under poor channel conditions, the
appropriate decision regions would be chosen such that only
those bits most likely to be correct would be collected, thus de-
creasing the error rate (at the cost of a reduced data rate). This
effectively achieves the results of a regular adaptive modulation
scheme without requiring any channel-state information feed-
back to the transmitter. The scheme also overcomes the limita-
tions of IR schemes: a traditional ARQ protocol is not needed,
the buffer size is limited to (1 + €)%, and the receiver needs to
decode only once.

The fact that particular bits in a signal constellation have a
higher degree of certainty than others has been used previously
in the study of codes with unequal error protection [6], [7]. Also
of interest are nonuniform phase-shift keying (PSK) and quadra-
ture amplitude modulation (QAM) constellations (sometimes
called hierarchical modulation) discussed in, for example, [8]
and [9] for the broadcast channel in which certain “base bits”
are transmitted with a high probability of being correct, while
additional “refinement bits” can be observed only by users in
high-SNR regions. These systems focus on ensuring a base bit
stream is available to all users (with refinements available when
possible); in contrast, our system does not specify any base bits
or refinement bits a priori in a symbol, but focuses on demod-
ulating whichever bits are more likely at the receiver. In the
system we consider, we do not classify certain bits as more im-
portant or higher priority, since under the rateless code construc-
tion, all bits are of equal importance. Our system focuses on a
rate-adaptive method for complete packet delivery, as opposed
to a constant low-rate bit stream with enhancements available
for certain users.

The remainder of the paper is organized as follows. Section II
contains an overview of rateless erasure codes, along with a de-
scription of the system model. The question of how to determine
the optimal decision regions (for the reduced rates) for a given
signal constellation is addressed in detail in Section III, which
includes a derivation of the optimal set of adaptive decision
regions for Gray-coded 16-QAM and 16-PSK using estimates
of the log-likelihood ratio (LLR) of each bit in the modulated
symbol. The section also includes an analysis of the BER perfor-
mance of these decision regions. In Section IV, we discuss the
optimality of using the Gray mapping for 16-QAM and 16-PSK
in the ADM scheme; we also discuss other signal constellations
and their respective performance in the ADM scheme. Results
of simulations of the ADM scheme using Gray-coded 16-QAM
and precoded with a Raptor code are given in Section V. Finally,
Section VI provides a brief summary of the paper and comments
on future directions.

II. BACKGROUND AND SYSTEM MODEL

A. Rateless Erasure Codes

Though the focus of this paper is on the decision regions,
signal constellations, and symbol mappings involved in imple-
menting an ADM scheme, a brief discussion of the outer code
is provided here to facilitate an overall appreciation for the
system; further details of rateless erasure codes are provided in
Appendix I as well as [5], [10], and [11].
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The Luby Transform (LT) code, proposed by Luby [10],
is an important erasure-correcting code which implements
the so-called “digital fountain” concept of erasure correction
introduced in [12]. Such a code allows the encoder to produce
a potentially limitless number of code symbols from a source
packet of k£ symbols. Ideally, a receiver would be able to decode
the source packet as soon as it has received any set of &k (or
slightly more than k) code symbols, assuming all received code
symbols are correct (as they would be in an erasure-channel
setting). These codes can be considered “rateless,” since regard-
less of the loss pattern of the erasure channel, the transmitter
stops generating and sending code symbols as soon as the
receiver receives any (1 + €)k symbols, and the number of
code symbols to be generated is not constrained ahead of time.
The Raptor code extends these ideas to reduce encoding and
decoding complexity.

Although LT and Raptor codes were originally designed for
use with erasure channels, their performance over other chan-
nels, specifically the binary symmetric channel (BSC) and the
additive white Gaussian noise (AWGN) channel, has been con-
sidered in [13]. There, it is found that the Raptor code can, in
fact, correct errors (with an increase in € required as the noise
increases), while the LT code exhibits an error floor. The perfor-
mance of Raptor codes on symmetric channels is further inves-
tigated in [14], where it is shown that the degree distributions
of the code can be tailored to suit the given channel in order to
achieve optimal performance. Of particular interest is that on the
erasure channel, there are known to exist so-called universal de-
gree distributions, which provide optimal (capacity-achieving)
performance for any loss probability p. On the BSC, however,
no such universal distributions exist; thus, as the bit-flip proba-
bility changes, so too does the optimal degree distribution.

B. System Model

Our system is described as follows. To transmit a k-bit mes-
sage m, we first encode it using a Raptor code, which produces a
continuous bit stream of unspecified length (the code terminates
when a single acknowledgment is received). The bit stream is
modulated using a standard modulation method (with symbol
alphabet .A) to produce a symbol stream which is sent over the
channel. For the moment, we consider a simple AWGN channel
where the noise process has a two-sided power spectral density
(PSD) of N, /2. At the receiver, the observed signal representing
a train of L symbols is given by

L-1
r(t) = an - h(t —nT) +n(t) (1)
n=0

where a,, € Ais the (n+1)th symbol (and a,, is complex), h(t)
is the received pulse shape, T is the symbol period, and n(t) is
the white noise process.

At the receiver, r(t) is passed through a filter matched to
the received pulse shape, h*(—t), and is sampled at the symbol
rate to produce the vector r = (rg,71,...,7_1), where r,, =
an +nq,, assuming the energy of the received pulse shape is nor-
malized to one, and n,, is a complex noise sample with variance
o2 =N, /2 in each dimension. At the same time, an estimator
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Fig. 1. Standard 16-QAM constellation with symbols mapped using Gray code.
The distance between nearest neighbors is 2c.

is used to determine the received SNR over each symbol (or
each block of symbols). Of course, in a true AWGN channel,
the noise variance would be fixed, and continuously performing
estimates would be redundant; the estimator truly belongs in a
time-varying channel implementation.

Based on the estimate of the received SNR and the desired
maximum allowable BER, the receiver chooses which set of
decision regions it will use to determine the constituent bits in
each symbol (and which bit positions, if any, will be ignored).
Using the appropriate decision regions, bits are accumulated in
a buffer until we have (1 + €)k bits. Once the buffer is full,
the packet is decoded (using belief propagation (BP) here) to
produce the original k bits, m

III. ADAPTIVE DECISION REGIONS FOR 16-QAM
AND 16-PSK WITH GRAY MAPPING

A. Gray-Mapped 16-QAM

We consider first an ADM system that uses a 16-QAM signal
constellation where the bits are mapped to the symbols using
Gray mapping, as in Fig. 1. We would like to modify the stan-
dard decision regions to provide alternate sets of regions which
specify, for a given 7, a subset of the four bits in the symbol
that excludes the least reliable bit(s). The construction of such
decision regions is not necessarily intuitively obvious. For in-
stance, initially, one might be tempted to recover two bits per
symbol by simply drawing decision region boundaries along the
real and imaginary axes and decoding the two bits in common in
each quadrant (e.g., a received vector in the upper right quadrant
would be decoded as 0717). This method works well in nonuni-
form QAM constellations, but not so well here, as we will see.
Immediately, we notice that the error rate we would experience
on the two recovered bits will not be dramatically smaller than
the regular 16-QAM error rate, since the signal points next to
the axes are still a distance of ¢ (in at least one direction) from a
boundary, where nearest neighbors are separated by a distance
of 2¢. Thus, a systematic method to construct decision regions
is required.
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We require decision regions that select the most reliable
subset of bits in a symbol (or, equivalently, ignore the least
reliable subset). Let a [-decision region set (3-DRS) be a
set of decision regions that recover 3 bits per symbol. Thus,
a (-DRS must determine the (3 most reliable bits for any
received r,. The decision for the value of a particular bit
b; of r, (where ie{0,1,2,3}), can be formulated as a bi-
nary composite hypothesis test, similar to the method used
in [15]. Let A} = {oj,,...,af yy,} represent the set of
constellation points for which bit iis 1, where there are N1;
constellation points with a 1 in bit position ; similarly, let
A} = {a ..., af yo,} be the set of points where bit i is 0,
and where there are N0; constellation points with a 0 in bit
position ¢. Thus, our hypothesis testing problem for b; is to
decide between

Hbizl :
0
Hbizo Ty =Q; + Ny,

1 1
; 6./47:

0 0
o, EA,L' .

Tn = ozil + Ny,
2

If we assume that it is equally likely that a O or 1 was trans-
mitted in position ¢ (so that P[H},=1] = P[Hp,=o]), then the op-
timal detector for b; simply evaluates the sign of the LLR given
by

THb_OrnHiZO
In(Ap,(ry)) = In Zretezo (el ;

ProlHy, - (Tn|Hp,=1

NO 0 0 2
@(ra,a® ) =lla? 1)
exp 2 )
= @(raal ) —llal, [12) ®
E_l exp ( NO )

where to obtain the second line requires the additional assump-
tion that all symbols are equally likely.

To obtain the 3 most reliable bits in r,,, we then must choose
the (3 strongest hypotheses among all ¢, or equivalently, we must
identify the 5 LLRs with the largest magnitudes. The magni-
tudes of the LLRs indicate the most reliable bit positions for
a given r,,, and the signs of the LLRs indicate the most likely
values of the bits in those positions.

Analytically comparing the magnitudes of In(Ay, (7)) for
1€{0,1,2,3} is not an easy task. Instead, we develop a good
approximation for (3) to simplify our analysis. For high SNR,
the sum of exponentials in the numerator and denominator of
(3) are well represented by a single dominant exponential term.
Now the o ,,, e A? that maximizes (2(rn, o ,,,) — [l ,,11*)/No
is the one that minimizes the Euclidean distance d(rn, a? ).
Similarly, the o} ,,, €A} closestto 7, (in Euclidean distance) pro-
duces the dominant exponential term in the denominator. Thus,
letting Y and v} represent the closest symbol points to 7, from
AY and A}, respectively, we can write

1
(A, (ra)) & 5 (2(rn, af) = Bao = 2(rn, ;) + Eq1) 4)
where E,0 and E,,: represent the energy of symbol points o)

and a.
Careful evaluation of (4) over r,, results in the following ap-
proximations for the magnitude of the LLRs (assuming once
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again that the energy of the shaping pulse is normalized to 1
and that 2c¢ is the distance between nearest neighbors in Fig. 1):

8

R E R
LIRS bt MEAC
(R B S
Gl § 20 T2 e )

o

where 7, ,, represents the real part of r,,, and r, , represents its
imaginary part.

These approximations are very close to the true LLRs for
high-to-moderate SNR values. In fact, for E;, /N, as low as 3 dB
(where E}, is the average energy per bit), we find that the approx-
imation is very good when we compare (5)—(8) to a numerical
evaluation of (3) over a wide range of r,,.!

Using the approximations for the magnitudes of the LLRs
of each bit, it is a relatively simple (although somewhat labo-
rious) task to rank the magnitudes from largest to smallest for
all possible values of r,. Using these rankings, one can then
create decision regions to choose the 3 most probable bits for
any received r,,, with the boundaries of the decision regions
given by simple analytical linear equations. It turns out that
the 5-DRSs we obtain for Gray-mapped 16-QAM using this
method (based on the approximate LLRs) are independent of
E,/N, (assuming it is at least moderate to large), and are re-
markably simple to implement. In Fig. 2, we show the 3-DRS
and 2-DRS for Gray-mapped 16-QAM; the symmetry and sim-
plicity of both DRSs is immediately apparent. For the 2-DRS,
the dotted lines in Fig. 2 indicate the decision regions obtained
using the approximate LLRs, while the solid lines indicate a
simplification that produces a checkerboard pattern for the deci-
sion regions. The simplification proves to be an attractive alter-
native, since its performance is nearly identical to the set of de-
cision regions specified by the dotted lines, but is simpler to im-
plement. The near-equivalent performance results from the fact
that the sloped boundaries of the 2-DRS do not play a major role
in calculations for the dominant term of the BER expression.

As the decision regions shown in Fig. 2 were derived using
approximate LLRs, we would expect them to be valid for mod-
erate-to-large SNR. To verify that this is indeed true, we eval-
uated the exact LLRs of (3) for each bit (using MATLAB?2) for
a 2-D array of r,, values and generated contour plots of the ap-
propriate DRSs over a range of SNR values. We found that

I Also of interest are some approximations of the LLRs of each bitin 16-QAM
proposed in [16] for use in decoding turbo codes; they achieve similar results
for In(Ay, (r,,)) and In(A,, (r,,)), but their approximations for In(Ay, (+,.))
and ln(Ab2 (rn)) are less accurate for larger 7,, , and r,, ,. Additionally, in a
recent paper [17], Simon and Annavajjala developed a set of exact expressions
for the LLRs; these, however, are complicated nonlinear expressions not suited
for the analysis we propose below.

2The MathWorks Inc., 2002.
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Fig. 2. 16-QAM DRSs to recover 3 and 2 bits per symbol. For the 2-DRS,
the solid lines indicate a modified (simpler) DRS to recover 2 bits, with nearly
identical performance to the optimum DRS specified by the dotted lines.

the decision regions derived using the approximation corre-
spond precisely to the ones produced by our simulation for
Ey/N, as low as 0 dB. Thus, for practical SNR values, the
approximate decision regions are certainly valid (and are much
simpler to implement than numerically evaluating (3) for every
given received 7,,).

B. Gray-Mapped 16-PSK

We choose Gray-mapped 16-PSK (Fig. 3) as another candi-
date on which we apply our analysis to determine its reduced
DRSs. Though not as popular as 16-QAM, the symmetry of
16-PSK makes it conducive to analysis, and provides a good
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Fig. 3. Gray-mapped 16-PSK constellation with radius c.

first step in comparing constellations and their behavior under
ADM.

Determining the (3-DRSs for Gray-mapped 16-PSK once
again requires evaluating (3) for each bit over all r,,, and then
choosing the 3 largest LLRs. Of course, the sets A} and A?
are modified appropriately to reflect the 16-PSK constellation
points. As before, it is possible to approximate the LLRs of the
bits in 16-PSK at high SNR by choosing the dominant term in
the sum of exponentials. Since the energy of all constellation
points is constant for 16-PSK, the approximation resembles (4)
without the energy terms

In(Ap, (1)) ~ Ni(g(rn,a:?) — 2 al))

o

€))

where, once again, o and «} represent the closest symbol
points to r,, from A? and A}, respectively.

It turns out that (9) is a little more complicated to evaluate
than (4). Writing 7, in polar form as |r,,|e’? and making use of
some trigonometric identities, we can show that

_ 2c|ry]

In(Ayp, (1)) =~ (cos( — 0?) — cos(6 — 0}))  (10)

where 6? is the angle of the symbol closest to 7, (i.e., 67 is the
angle of o, and 6} is the angle of «}) and c is the distance of
each symbol point from the origin.

Armed with (10), it is now possible (although computation-
ally tedious) to analytically determine the 3-DRSs for 16-PSK.
By examining (10), it is obvious that our decision regions will
not be dependent upon SNR, since all LLRs share a common
factor of 2¢|r,|/N,. In fact, it turns out that the boundaries be-
tween decision regions will comprise pie-shaped sections, ex-
actly as in regular 16-PSK. Additionally, due to the symmetry
of the constellation, the boundaries for 3-DRS and 2-DRS al-
ways appear on or exactly in between two signal points. The
complete 3-DRS and 2-DRS for 16-PSK are shown in Fig. 4.

Similar to the 16-QAM case, these DRSs are robust across a
large range of SNRs. Indeed, when the exact LLRs of (3) are
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Fig. 4. 16-PSK DRSs to recover 3 and 2 bits per symbol.

used to numerically compute the DRSs over a 2-D array of 7,
we find that our approximation is valid, at least down to F} /N,
as low as 0 dB.

C. Bit-Error Probability

To complete our analysis of the DRSs for Gray-mapped
16-QAM and 16-PSK, we would like to compute the BER
for 3-DRS and 2-DRS. The computation is similar to the
method followed in [18, pp. 187-194] for computing the BER
of M-QAM and M -PSK using standard decision regions. The
BER curves we generate indicate the probability of error of the
demodulated bits, not of the erasures (note that the erasures do
not result in errors, as their positions are known).

We begin by computing the probability of symbol error for the
3-DRS of 16-QAM (decision regions shown in Fig. 2). We say
that a “symbol error” occurs if any of the three bits on which we
make a decision are incorrect. This is unlike standard demodu-
lation, in that we are not making a decision on precisely which
symbol was transmitted; instead, we are choosing the three most
likely bits (which, in this case, amounts to making a decision
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that the transmitted symbol was a member of a set of the two
most likely symbols).

To compute the symbol error, we begin by considering the
four inner points of the constellation (located at ¢ + jc, ¢ — jc,
—c + jc, —c — jc); by symmetry, all of these points have the
same symbol error, and we need consider only one of them, e.g.,
a7 (see Fig. 1), as having been transmitted. Inspection of the
3-DRS in Fig. 2 shows that if an inner point is transmitted, the
decision on three bits will be correct if 7, lands in any of the four
decision regions surrounding that point. As the noise is assumed
to be circularly symmetric, we define n; and ny as independent
Gaussian random variables with variance o2 = N, /2, where nq
is the noise along the 7 /4 rad component, and ns is the noise
along the — /4 rad component. Thus, we can write

P(correct|ar) = P ((|n1| < V2¢) ﬂ(|n2| < \/50)) )

It is then straightforward to show that

P(error|ar) =4Q <\/§C) —4Q? (ﬂc)

(o (o

:4Q< 6(%)) —4@2( 6(%)

where Fj is the energy per bit, and Q(z) is the area
under the tail of the Gaussian distribution; specifically,
Q(z) = [ exp(—s?/2)/V/2rds. It is interesting to note
here that for an error to occur, the noise must have a value
larger than v/2¢, in contrast to regular 16-QAM demodulation,
where the noise must only exceed c; thus, we indeed observe
an improvement in the distance properties of these decision
regions. In computing the above, we must be careful to re-
member that since each symbol now only conveys three bits,
then £, = E,/3 where E, = 10c¢? (as opposed to regular
16-QAM, where Fj, = E/4).

The symbol error for the eight points on the sides and the four
points in the corners of the 16-QAM constellation can be com-
puted using a similar technique to the above. As some of the
boundaries for these points are not rectangular, a simple esti-
mation technique in [18, p. 190] is used for these cases. Putting
all this together, we find that the symbol error for the 3-DRS is
given by

Psg 3prs ® %Q < g <%>>
5 6 [ E 12 [ E,
29 ( 3(m>)+Q(' E(ﬁ))' .

This analysis is repeated for the simplified (i.e., solid-line
boundaries) 2-DRS case of Fig. 2. Here we find that the noise
must exceed 2¢ in order to cause an error, thus further improving
our distance properties; this time, however, we must use £ =
E,/2 in our calculations. Since all decision boundaries in this
case are rectangular, our calculation is exact, and we find

Pspanms = 20 ( : <%>> —Q < : <%>) (12)
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Fig. 5. BER performance for 16-QAM, 3-DRS, 2-DRS, and 16-PSK, 3-DRS,
2-DRS.

It turns out that for this constellation and mapping (for both
3-DRS and 2-DRS) when symbol errors do occur, the most
likely symbol errors are ones which result in only one bit error
(since the nearest surrounding decision regions differ by only
one bit, and possibly one erasure position). Thus, we can ap-
proximate the bit error for 3-DRS and 2-DRS using P, 3sprs =
(1/3)PSE,3DRS and Pb,2DRS = (1/2)PSE,2DRS' These esti-
mates for BER are very tight, as can be seen in Fig. 5, where
the estimates are plotted alongside simulated results for 3-DRS
and 2-DRS. The error rate for regular 16-QAM shown in the

figure is
08E,\ (9 Q2 0.8F
N, 16 N,

Py 16qaM = <§> Q <
4
as per [18, p. 193].

For 3-DRS, we see a gain of 1.76 dB over 16-QAM, and for
2-DRS, we see a gain of 3 dB. In fact, these gains are slightly
misleading. If the intent of our ADM system is for the trans-
mitter to always maintain the same format, then the transmitter
would keep its power fixed, hence Fs would be constant. In this
case, were our receiver to switch from demodulating 16-QAM
to demodulating using 3-DRS, our BER would be determined
using the 3-DRS curve, and using an Ej, value of E/3 instead
of E /4. Thus, when we plot our BER versus E /N, as in Fig. 6,
we find that the curves are spaced further apart than in Fig. 5,
indicating a wider range of operation.

Finally, we examine the BER for the reduced DRSs for
16-PSK. These results are derived following similar steps to
the derivation of the BER for regular 16-PSK as in [18, p. 190],
and are stated below

1 E . T

Pyaorsi  5Q ( Vstmz (E)> (13)
2 Eb .9 2

Pb:,DRS ~ gQ ( E(S Sin <E)) (14)
1 E i 3T

Py aprs ~ 5Q ( V"4sm2 <E>) (15)
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Fig. 6. BER performance for 16-QAM, 3-DRS, 2-DRS as a function of
E,/N,.

These curves are plotted in Fig. 5. We see that, as one might
expect, the performance of 16-PSK is inferior to 16-QAM in
the reduced-decision-region case. We note that for the 16-PSK
system, the spacing between the curves is larger (with a gain of
4.7 dB for the 3-DRS and a gain of 6.1 dB for the 2-DRS) than
for 16-QAM.

IV. ADAPTIVE DECISION REGIONS FOR ALTERNATE
MAPPINGS AND CONSTELLATIONS

The shape of adaptive decision regions and their BER per-
formance are determined by two factors: the mapping of bits to
symbols and the choice of constellation. In this section, we will
examine the choice of constellation and mapping and how this
affects both the shape and BER performance of a set of decision
regions.

A. Mapping Choice

In Section III, we derived the BER of the adaptive decision re-
gions for Gray-mapped 16-QAM and 16-PSK. Here we present
some heuristic arguments, indicating that Gray mapping is in-
deed an optimal or near-optimal choice for these constellations
in the ADM scheme. The arguments presented assume we are
operating at moderate-to-high SNR.

We consider first an arbitrary mapping for 16-QAM; we wish
to determine an approximation for the best achievable BER
when we recover three bits per symbol. Let us consider point a;,
one of the four inner points in the 16-QAM constellation with
a labeling of bob1babs. There are exactly four symbols which
are a Hamming distance of one from a;, specifically, bob1babs,
bob1babs, bob1babs, and bobibabs, where b; represents the
binary opposite of b;. Now, a; has four nearest neighbors of dis-
tance 2¢ and four diagonal neighbors of distance 2v/2¢. Thus,
at least four of the neighbors of a; (either nearest neighbors
or diagonal neighbors) must be labeled with symbols having
Hamming distance greater than one. Now, if any neighbor of
a; is labeled with a symbol having Hamming distance greater
than one, then a boundary would be required between a; and
this neighbor, since the two symbol points would not share
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three bits in common (and thus, could not mutually agree on
three bits). To minimize our BER (for a;), we need to ensure
that the boundaries are as far as possible from a;; thus, we
assign to the nearest neighbors the symbols with Hamming
distance of one. The diagonal neighbors will cause a; to be
surrounded by four boundaries, each V2¢ away. An error
occurs if the noise exceeds v/2c in either of two dimensions,
resulting in a symbol-error probability (SEP) of approximately
P(best SE,3DRS|inner point) = 4Q(v/2¢/a).

We consider next the four corner points. These each have two
nearest neighbors and one diagonal neighbor. For the reasons
discussed above, we let the nearest neighbors be labeled with
symbols of Hamming distance one from the corner point. For
the diagonal neighbor, we could label it with a symbol having
Hamming distance one (since there are four of these available);
however, when we do this, we find that the diagonal neighbor
and the two nearest neighbors are now separated by a Hamming
distance of two, which will significantly reduce the overall per-
formance of the constellation. A better result is obtained if we
allow the diagonal neighbor to be a distance of two from the
corner point and one from the nearest neighbors. This results in
a single boundary a distance of v/2c away and gives a SEP of
approximately P(best SE,3DRS|corner point) =~ Q(v/2¢/0).

Similar arguments can be used to show that
under optimal mapping, the side points have SEP of
P(best SE,3DRSside point) ~ 2Q(v/2¢/o). Using this result
and the results above, we can say that for an arbitrary mapping
(for recovering three bits per symbol), the best achievable SEP
is approximately P(best SE 3DRS) (9/4)Q(v/2¢/0). Using
(11) and /(6/5) Eb/N V2¢/o (for 3-DRS), we can
write the SEP for the 3-DRS of Gray coded 16-QAM as

s ()o(2)-()o( ) f2)

Comparing this with the approximation for best achievable
symbol error, we conclude that Gray mapping provides one
possible configuration of near-optimal mapping for recovering
three bits per symbol in 16-QAM at moderate-to-high SNR.

An argument similar to the one above can also be used to
show that Gray mapping is a near-optimal mapping to re-
cover three bits per symbol in 16-PSK. Appendix II contains
additional arguments regarding the best symbol mapping for
16-QAM and 16-PSK when recovering two bits per symbol; it
turns out that Gray mapping is once again near-optimal.

B. Constellation Choice

In examining constellation choice, we study several popular
constellations. We do not prove that any one constellation
s “optimum,” but instead evaluate the relative simplicity (or
complexity) of the reduced decision regions, as compared with
QAM and PSK, and compare the respective BER performance.
We choose to examine three additional 16-ary constellations:
(1,5,10) ring, (5,11) ring, and optimum hexagonal. These
constellations, shown in Fig. 7, are chosen since they (along
with 16-QAM) are among the most power-efficient in AWGN,
as indicated in [19]. The ring ratios are chosen to be 5 = 1.902
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Fig. 7. Alternate power-efficient constellations. (a) (1,5,10) ring. (b) (5,11)
ring. (c¢) Optimum hexagonal. (d) (8,8) ring.
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Fig. 8. BER performance for (1,5,10) ring and (5,11) ring for recovering four,
three, and two bits.

for (1,5,10) and 8 = 2.175 for (5,11) to achieve optimal BER
performance, as shown in [20].

Because the three additional constellations under considera-
tion do not possess the same degree of symmetry as 16-QAM
and 16-PSK, analytically determining the DRSs is not feasible.
Instead, to determine the shape of the reduced decision regions
for these constellations, we numerically evaluated (3) over a
2-D array of possible r,, values using MATLAB. Our simula-
tion showed that neither the 3-DRS nor the 2-DRS is particu-
larly simple or easy to implement, as both contain amorphous,
nonsymmetrical, nonlinear boundaries (figures not shown).

The BER performance of these constellations under the re-
duced decision regions is shown in Figs. 8 and 9. The perfor-
mance curves for all three constellations reveal an initially sur-
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Fig. 9. BER performance for optimum hexagonal and (8,8) ring for recovering
four, three, and two bits.

prising result: at high SNR, we find that the BER for every con-
stellation using the 3-DRS is actually worse than the BER of the
equivalent system when demodulating all four bits. In fact, for
the (1,5,10) ring and optimum hexagonal constellations, even
the 2-DRS performs worse than the standard system at high
SNR.

To explain the poor performance of the 3-DRS for all three
constellations, we observe that for each of these constellations,
we can identify pairs of nearest neighbors with Hamming dis-
tance of two or greater (e.g., for the (1,5,10) ring, we have 0100
neighboring 1001, for optimum hexagonal, we have 1110 neigh-
boring 1011, and for the (5,11) ring, we have 1111 neighboring
1100). Since these neighboring points do not share three bits in
common, any implementation of a 3-DRS (recovering the three
most likely bits) must have a boundary between these nearest
neighbors. Consequently, the distance properties of the constel-
lation (for those particular points) are not improved by using
the 3-DRS, and this effect will tend to dominate the error at
high SNR. This suggests that at high SNR, the 3-DRS symbol
error expressed as a function of E;/N, will share a dominant
term (up to a scaling factor) with the symbol error of the stan-
dard demodulator, since both will have decision boundaries be-
tween some nearest-neighbor pairs. When we consider bit error
as a function of F}/N,, we use 5 = 3E for 3-DRS (instead
of £, = 4F;, when demodulating four bits), which results in
3-DRS actually performing worse than the standard demodula-
tion case (as a function of F}/N,). Since the gain experienced
by neglecting the least probable bit is minimal (due to the de-
ficient 3-DRS distance properties), this gain is outweighed by
the effective additional power allocated to each bit when we de-
modulate fewer than four bits per symbol. If we were to plot
the BER versus E;/N,, we would observe that 3-DRS does in-
deed offer an improvement in performance for a fixed carrier
strength, although only a slight one.

For the (1,5,10) ring and optimum hexagonal constellations,
the poor performance of the 2-DRS is explained in a similar
fashion. For these constellations, we note that there exist certain
pairs of neighboring points that have a Hamming distance of
three (e.g., 0100 and 1001 for the (1,5,10) ring, and 1111 and
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0100 for optimum hexagonal). As explained above for 3-DRS,
this will result in deficient distance properties for the 2-DRS,
since the 2-DRS will require a boundary between these nearest
neighbors. We note that the (5,11) ring constellation does not
have any nearest-neighbor pairs having a Hamming distance of
three; this results in a marked improvement of the 2-DRS for
the (5,11) ring.

As a final note, we observe that none of the three additional
constellations considered performs nearly as well as 16-QAM
in the reduced-decision-region case.

Motivated by some of the deficiencies observed in the ring
and optimum hexagonal constellations, we now propose two
properties of “good” constellations to use with reduced decision

regions.
Property 1: No symbol point in an M-ary constel-
lation should have more than log, M minimum-dis-

tance-nearest-neighbors (so in our 16-ary constellations,
no symbol point should have more than four nearest neighbors).

Proof: For any M-ary symbol, b = bobs ... bgog, ar)—1,
there exists at most log, M other M -ary symbols of Hamming
distance one from b (since to achieve a Hamming distance
of one, we can flip at most one bit at a time in b, and b has
logy, M bits). Thus, any symbol with more than log, M min-
imum-distance-nearest-neighbors must have a nearest neighbor
with Hamming distance two or greater. The logy M — 1-DRS
recovers the log, M — 1 most likely bits in a symbol; if there
exists a symbol with a nearest neighbor having Hamming
distance of two or more, then the logo M — 1-DRS must have
a boundary between these neighbors, since they do not share
logy, M — 1 bits in common. To avoid errors on such a symbol
point, the noise on that received symbol point (in at least one
dimension) would need to be smaller than d,;, /2 (Where dppin
is the distance between nearest neighbors); at high SNR, this
degenerate case will dominate the error of the log, M — 1-DRS,
resulting in no significant gains in performance over the stan-
dard case. ]

Property 2: No three points in an M -ary constellation should
be mutual-minimum-distance-nearest-neighbors3 (i.e., the con-
stellation should not contain equilateral triangles).

Proof: Any set of three mutual-minimum-distance-
nearest-neighbors will contain at least one point which is a
Hamming distance of two or greater from at least one other
point. This can be seen by considering the M-ary symbol
b = bob1...baog, rry—1; a second symbol b has Hamming
distance of one from b if and only if a single bit of b is flipped
(call this bit b;). A third symbol & of Hamming distance one
from b can be constructed by flipping b; of b (where 7 # j). The
Hamming distance between b” and b’ cannot be one, since they
differ in both b; and b;. For the same reasons discussed in the
proof of Property 1, if we have nearest neighbors differing by
a Hamming distance of two (or greater), the logo M — 1-DRS
will have a boundary between these neighbors, resulting in no
significant gain in distance properties and log, M — 1-DRS
performance. ]

3For three points to be mutual-minimum-distance-nearest-neighbors, we

mean that these points are configured such that the distance between each point
and the other two points is dpin -
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When we consider the (1,5,10) ring, the (5,11) ring, and the
optimum hexagonal constellations in light of these properties,
we observe that each one of them violates one or both of the
properties above. In fact, these properties allow us to eliminate
other candidate constellations by inspection. The dense packing
of the power-efficient constellations results in no significant ad-
ditional distance properties when we consider reduced decision
regions. Thus, we see that 16-QAM outperforms these constel-
lations in the 3-DRS and 2-DRS cases (and note that 16-QAM
does not violate either property).

Bearing in mind the two properties above, we consider a final
constellation: the (8,8) ring (see Fig. 7) with a ring ratio of 1.765
(chosen to make the distance between the inner and outer rings
equal to the distance between points on the inner ring). Though
the (8,8) ring does not perform particularly well when recov-
ering four bits per symbol, we observe the interesting property
that the performance of 3-DRS and 2-DRS are nearly equal to
the performance of 3-DRS and 2-DRS for 16-QAM, as the BER
curves in Fig. 9 show. In addition, the 3-DRS and 2-DRS for
the (8,8) ring (not shown) are symmetrical and simpler to im-
plement than the 3-DRS and 2-DRS for optimum hexagonal,
(5,11) ring, and (1,5,10) ring.

We conclude this section with the comment that Gray-
mapped 16-QAM appears to be a very attractive candidate for
use in an ADM system. The constellation provides reduced
decision regions that are very simple to implement, and which
have significantly improved performance, compared with the
considered alternatives. 16-PSK also provides simple regions
and, although its performance is worse than 16-QAM, its sim-
plicity and constant signal envelope make it attractive, as well.

V. NUMERICAL RESULTS

Finally, we wish to simulate the performance of the entire
system. Based on our results in Sections IIT and IV, we chose
Gray-mapped 16-QAM for our system with the appropriate de-
cision regions as given in Fig. 2. In choosing the code, we used
a Raptor code with degree distribution

Q(z)=0.007969z 4 0.49357022 + 0.1662202> + 0.0726462:*
+ 0.0825582° + 0.0560582% + 0.0372292°
+ 0.055590z" + 0.0250232%° + 0.0031352%¢

k = 10000, and ¢ = 0.16. The degree distribution is one
proposed in [5] (for the erasure channel), which was shown to
correct errors over a BSC in [13]. The outer code used was a
rate-0.95 right regular low-density parity-check (LDPC) code,
as described in [11]. It must be noted that in practice, one can de-
sign a Raptor code degree distribution (using a linear program-
ming technique) optimized for the error pattern one might ex-
pect from the channel, though this is beyond the scope of this
paper. Decoding was accomplished using the standard BP al-
gorithm [21] for sparse-graph codes, which was used in [13]
and [14] to successfully decode Raptor codes containing trans-
mission errors. Demodulated bits (that were not erased by the
reduced decision regions) were each assigned the same likeli-
hood (as if they had emerged from a BSC), in order to provide a
reasonable starting point for the decoder after the hard-decision
demodulation.
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Fig. 10. Simulation results of Gray-mapped 16-QAM encoded with a Raptor
code over an AWGN channel.

The simulation shows the performance of Raptor-encoded
16-QAM using standard decision regions, 16-QAM using
3-DRS, and 16-QAM using 2-DRS. The results of the simula-
tion are shown in Fig. 10.

Initially, the primary reason to use a rateless erasure code
for the system was that it would allow recovery of the message
even when an unspecified number of bits were dropped (due
to our reduced decision regions). As can be seen from Fig. 10,
however, an additional benefit is that it also provides a signifi-
cant coding gain. When examining Fig. 10, one must again re-
member that were we to plot the performance against F/N,,
we would observe an even greater separation between the curves
shown, as discussed in Section III. Additionally, were the code
optimized for our particular application, we would expect to
achieve greater coding gains than the ones shown here.

The simulation results show that using reduced decision re-
gions in concert with a rateless erasure code allows for a fea-
sible implementation of a rate-adaptive system. To implement
an ADM system in practice, we could use a set of BER curves
such as those in Fig. 10 to determine which set of decision re-
gions the receiver should use to achieve a certain level of per-
formance for any given received SNR.

Of interest is the throughput of the ADM system compared
with a fixed-rate system. We provide a simple (nonoptimized)
example to show the power of ADM. We consider a mem-
oryless Rayleigh fading channel where the instantaneous
received SNR of each symbol is given by «?E,/N,, where
a is Rayleigh-distributed with probability density function
(pdf) pa(a) = (2a/Q) exp(—a?/R), with Q = E{a?}. The
instantaneous SNR per symbol is defined as v = a?E,/N,;
it is chi-square distributed with two degrees of freedom (due
to the a?). We define the average received SNR per symbol as
5 = E{a2E,/N,} = QE,/N,.

Consider a fixed-rate binary (B)PSK system (that achieves
a throughput of 1 bit per symbol). The BER of BPSK over a
Rayleigh fading channel is given by P, ~ 1/(4%) as per [18, p.
542]. So to achieve a BER of 1072, we need 7 ~ 24 dB.

Now, consider an ADM system operating over the same
Rayleigh fading channel with ¥ = 24 dB, and at the same
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BER as the BPSK system. A simple (and nonoptimal) way
of choosing the regions of operation for the ADM system
(for operation at a BER of 102 or better) is to determine the
instantaneous received SNR (per bit) required for each DRS
to have BER < 1072, Reading off of Fig. 10, we see that we
need F,/N, > 5.88 dB for 2-DRS, E,/N, > 6.67 dB for
3-DRS, and FE;/N, > 8.42 dB for all four bits. This allows
us to calculate the required instantaneous received SNR per
symbol, leading to v, = 8.02 dB, v3 = 10.57 dB, and 74 =
13.57 dB, where 72, v3, and 4 are the switching thresholds for
2-DRS, 3-DRS, and full 16-QAM, respectively. Using these
(nonoptimal) switching thresholds, the throughput of the ADM
system is calculated to be

099 (14) (2 [ v

Y4 s
+3 / py(7)dy + 4 / pv(v)dw> =3.13
3 Y4
bits per symbol, where p,(y) = (1/7)exp(—~/7), and the
leading term before the integral represents the reduction in rate
due to the outer LDPC code and the Raptor code with e = 0.16.
Clearly, even for this nonoptimal example, the ADM system re-
sults in a large increase in throughput over the fixed-rate scheme.

VI. CONCLUSION

We have introduced a novel rate-adaptive system that uses
adaptive decision regions at the receiver and a rateless erasure
code. The importance of our system is that it avoids some of
the problems inherent in adaptive modulation or IR systems
(channel feedback, large buffers, or multiple decodings).

By developing simple estimates for the LLR of each bit in
Gray-mapped 16-QAM and 16-PSK, we showed that their op-
timum adaptive decision regions have a simple shape, and are
robust over a large range of SNRs. To demonstrate the gain in
performance offered by the reduced decision regions, we devel-
oped tight estimates of the BER for these regions for 16-QAM
and 16-PSK. We argued as well that Gray mapping is among the
optimal or near-optimal mappings to use to achieve good per-
formance under reduced decision regions for both 16-QAM and
16-PSK. Additionally, we considered three competing power-
efficient constellations, and showed that 16-QAM is preferable
to these for our application. Finally, we presented simulation
results of the performance of the reduced decision regions of
Gray-mapped 16-QAM precoded with a rateless erasure code
to demonstrate the feasibility of the system.

We are currently working to extend the results to encompass
fading channels and to optimize the Raptor code for our appli-
cation.

APPENDIX I
LT AND RAPTOR CODES

An LT code takes a set of k input symbols (z1, z2,...,zx)
and can generate a limitless stream of output symbols
(y1,Y2, - . .) using the following three steps.

1) Randomly choose the degree d of the output symbol ac-

cording to a predetermined distribution.
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2) Select d of the input data symbols at random using a uni-
form distribution.

3) The output symbol is the XOR of the input data symbols

selected in Step 2.

This can be repeated as many times as is necessary to produce
a sufficient number of output symbols.

To decode an LT code, the receiver waits until it has accumu-
lated K = (14 ¢)k code symbols and then constructs a (sparse)
bipartite graph, with the K observed output code symbols on
one side and the k& unknown source symbols on the other. A BP
algorithm is then applied to the graph to recover the unknown
source symbols. In the case of an erasure channel, the BP algo-
rithm simplifies considerably. Of note is that the receiver needs
to know the randomly generated degree sequence in order to
construct the graph; methods to ensure this are discussed in [10].
A single acknowledgment is sent once the required number of
symbols are collected and decoded (for large k, this represents
negligible overhead).

The performance and ultimate success or failure of the code
depends upon the selection of the degree distribution (used in
Step 1 of the code generation). For LT codes, the degree dis-
tribution selected is the robust Soliton distribution, derived in
[10]. The focus of the derivation is to ensure that the code will
decode to completion with high probability, while at the same
time ensuring that the average degree is small and the graph re-
mains sparse.

Raptor codes were introduced in [5] to improve on the en-
coding and decoding complexity of LT codes. A Raptor code can
be implemented using a two-step encoding process, whereby a
message is first precoded using a standard error-correcting code,
and then is further encoded using an LT code (with a poten-
tially modified degree distribution). Shokrollahi shows in [5]
that more flexibility is gained by reducing the requirement of the
LT code to recover all of the source symbols. In fact, from any
received (1 + €)k code symbols, it is possible to recover a fixed
fraction of the source symbols from the LT code using a modi-
fied degree distribution which has fixed average degree (i.e., the
degree is independent of k, unlike an LT code which uses the
robust Soliton distribution). The precode for a Raptor code is
chosen in such a manner as to allow recovery of the fraction of
erasures remaining after the LT code is decoded. Since the de-
gree distribution is independent of k, it allows for linear time
encoding and decoding (assuming judicious choice of the pre-
code). Maymounkov independently proposed the idea of using
a two-step coding process to reduce the coding complexity and
called the resulting codes online codes in [11].

APPENDIX II
DISCUSSION OF OPTIMAL MAPPING FOR 2-DRS

We consider the best mapping to use with 16-QAM when
recovering two bits per symbol. Suppose a point is received
(symbol plus noise) that falls somewhere in the square defined
by the points a1, a2, a5, and ag (see Fig. 1). The transmitted
symbol most likely corresponds to one of the four symbols
nearest the received point, i.e., the corners of the square.
Now, it is possible to show that a maximum of four symbols
can share the same two bit values and positions in common.
Thus, if a mapping were chosen such that a1, as, a5, and ag
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shared two bits in common, it could be considered optimal (or
near-optimal) from the point of view that the four most likely
symbols (for any point received in the square) all agree on two
bits. Thus the square defined by these symbol points would
comprise a decision region for two bits. If the mapping of the
entire constellation were chosen using this method, then each
2c by 2c¢ square would comprise a decision region uniquely
identifying two bits; no two decision regions would identify
the same two bits. This leads to a DRS similar to the simplified
(i.e., solid-line) one proposed for Gray mapping in Fig. 2. In
this case, if the noise exceeds 2c¢ in either of two dimensions,
an error occurs. Though this argument is heuristic, it strongly
suggests that Gray mapping is one possible configuration to
achieve optimal (or near-optimal) mapping to recover two bits
per symbol at moderate-to-high SNR.

Finally, we want to consider the best mapping to use to re-
cover two bits per symbol from 16-PSK. The following lemma
will be useful in our discussion.

Lemma 1: Consider a 16-ary constellation where each
symbol represents four bits, and let us construct decision re-
gions such that each region specifies two bits per symbol (i.e.,
a 2-DRS). Then, a maximum of two symbol points can simul-
taneously satisfy both sides of a boundary between regions.

Proof: Let B be aboundary between two regions. Consider
the case where the region on one side of B is bgb; 7?7, and on the
other side is 77bobs. In this case, clearly only one point can sat-
isfy both regions: bgb1b2b3. Consider a second case, where the
region on one side of B is byb; 7?7, and on the other side is by 7o 7.
Here, only two points can satisfy both regions: byb1bobs and
bob1b2bs. Finally, consider a third case, where we have boby ??
on one side and bob;?? on the other. In this case, no point can
satisfy both regions. All other cases can readily be seen to con-
form to these examples, and our proof is complete. |

Now let us consider a particular boundary B somewhere be-
tween consecutive points a; and a; 1 in the 16-PSK constella-
tion. From Lemma 1, a maximum of two points can satisfy both
sides of the boundary B. To achieve the best distance properties,
let points a; and a,; satisfy both sides of the boundary. Now,
the points on either side of a; and a;41 (i.e., points a;,_; and
a;+2) will not satisfy both sides of B. Thus, an error will occur
if noise causes either one of them to fall on the wrong side of
B. To minimize the probability of error, then, we let B fall in
the middle between a;_1 and a;12. Thus, the “best case” error
boundary is found at an angular distance of 37 /16 rad, which is
precisely the boundaries given by Gray coding.
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