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1.1 Introduction

The perception of color is of paramount importance to humans since they routinely use color features to

sense the environment, recognize objects and convey information. That is why, it is necessary to use color
information for computer vision, because in many practical cases location of scene objects can be obtained
only when color information is considered, [137].

Noise filtering is one of the most important tasks in many image analysis and computer vision appli-
cations. Its goal is the removal of unprofitable information that may corrupt any of the following image
processing steps.

The reduction of noise in digital images without degradation of the underlying image structures has
attracted much interest in the last yealrs, [70, 73/ 83, 69, 93138, 101]. Recently, increasing attention has
been given to the nonlinear processing of vector valued signals. Many of the techniques used for color
noise reduction are direct implementations of the methods used for gray-scale imaging. The independent
processing of color image channels is however inappropriate and leads to strong artifacts. To overcome this
problem, the standard techniques developed for monochrome images have to be extended in a way which
exploits the correlation among the image channels.

The acquisition or transmission of digital images through sensors or communication channels is often
inferred by mixed impulsive and Gaussian noise. In many applications it is indispensable to remove the
corrupted pixels to facilitate subsequent image processing operations such as edge detection, image seg-
mentation and pattern recognition.

Numerous filtering techniques have been proposed to date for color image processing. Nonlinear filters
applied to color images are required to preserve edges and details and to remove different kinds of noise. Es-
pecially, edge information is very important for human perception. Therefore, its preservation and possibly

enhancement, are very important subjective features of the performance of nonlinear image filters.

1.1.1 Noise in Color Images

Noise introduces random variations into sensor readings, making them different from the real values, and
thus introducing errors and undesirable side effects in subsequent stages of the image processing. Faulty sen-
sors, optic imperfectness, electronics interference, data transmission errors or aging of the storage material
may introduce noise to digital images. In considering the signal-to-noise ratio over practical communication
media, such as microwave or satellite links, there can be degradation in quality, due to low power of the re-
ceived signal. Image quality degradation can be also a result of processing techniques, such as demosaicking
or aperture correction, which introduce various noise-like artifacts.

The noise encountered in digital image processing applications cannot always be described by the com-
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monly assumed Gaussian model. Very often it has to be characterized in terms of impulsive sequences,
which occur in the form of short duration, high energy spikes attaining large amplitudes with probability
higher than predicted by the Gaussian density model. Thus image filters should be robust to impulsive or
generally heavy-tailed noise. In addition, when color images are processed, care must be taken to preserve

image chromaticity, edges and fine image structures.

Impulsive Noise Models

In many practical applications, images are corrupted by noise caused either by faulty image sensors or by
transmission corruption resulting from man-made phenomena such as ignition transients in the vicinity of
the receivers or even natural phenomena such as lightning in the atmosphere.

Transmission noise, also known salt & peppernoise in gray-scale imaging, is modelled by an im-
pulsive distribution. However, one of the problems encountered in the research on noise effects on image
quality is the lack of commonly accepted multivariate impulsive noise model.

A number of simplified models has been introduced to assist the performance evaluation of the different

color image filters. The impulsive noise model considered in this chapter is as follows, [83, 130, 128]

Fy, F>, F3) with probability (1 — p)

F;=

(

(d, F», F3)  with probability p; - p

(F1,d, F3)  with probability ps - p , (1.1
(

Fy, Fy, d) with probability p3 - p

| (d.d,d)"  with probability ps - p

whereF; denotes the noisy signdl, = (F}, F», F3) is the noise-free color vector, arbis the impulse
value,p1 + p2 + p3 + ps = 1. Impulsed can have either positive or negative values and we assume that
when an impulse is introduced, forcing the pixel value outsidéth#h5] range, clipping is applied to push

the corrupted noise value into the integer range specified by the 8-bit arithmetic.

Mixed Noise

In many practical situations, an image is often corrupted by both additive Gaussian noise due to sensors
(thermal-noise), and impulsive transmission noise introduced by environmental interference or faulty com-
munication channels. An image can therefore be thought of as being corrupted by mixed noise according to

the following model
F +Fs with probability (1 — p),
Py, = G p y(1—p) (1.2)
F; otherwise

whereF is the noise-free color signal, the additive ndige is modelled as zero meawhite Gaussian noise

andF'; is the transmission noise modelled as multivariate impulsive noise, [83].
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This chapter is organized as follows. In the second section a short introduction to the adaptive techniques
of noise removal in gray-scale images is presented. In the next section the anisotropic diffusion approach
is described and its relation to the adaptive smoothing presented in Section 2 is discussed. In Section 4 a
brief survey of the noise attenuation techniques applied in color image processing is presented. Section 5
is devoted to the new technique of noise reduction based on the concept of digital paths. In the last section
the effectiveness of the new filtering framework is evaluated, a comparison between the new filter class and
some of the filters presented in Section 4 is provided and the relation of the new filter class to the anisotropic

diffusion presented in Section 3 is shown.

1.2 Adaptive Noise Reduction Filtering

In this section we examine some adaptive techniques used for the reduction of noise in gray-scale images.
Some of the presented concepts can be redefined, so that they can be used to suppress noise in the multidi-

mensional case.

1 2 3
Fy | F> | F3 ¢
Fg FO F4 8 < —- 4
F F F ¢
7 6 5 7 6 5
a) b)

Figure 1.1: The filtering mask of siz&x 3 with the pixel Fy in the center) and the directions between

the central pixel and its neighbdo3.

The most frequently used noise reduction transformations are the linear filters, which are based on the
convolution of the image with the filter kernel of constant coefficients. This kind of filtering replaces the
central pixel valueF; from the set of pixeld, F1, ..., F,, (Fig. [1.1), belonging to the filter masi’,
with the weighted average of the gray-scale values of the central pixehd itsn neighborsFi, .. ., F,,

[38,162]. The result of the convolutiaR; of the kernell with the pixels inlW is

. 1 n n
FOZZkZOHka, Z:kZOHk. (1.3)

Linear filters are simple and fast, especially when they are separable, but their major drawback is that they
cause blurring of the edges. This effect can be diminished choosing an appropriate adaptive nonlinear filter
kernel, which performs the averaging in a selected neighborhood. Theatlaptivemeans([41, 33], that

the filter kernel coefficients change their values according to the image structure, which is to be smoothed.
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Adaptive smoothing can be seen as a nonliner process, in which noise is removed, while important image
features are being preserved.
Different kinds of edge and structure preserving filter kernels have been proposed in the literature [47,

138,38]. One of the simplest nonlinear schemes works with a filter kernel of theHgra 1 — | Fy — F}|,

. 1 n n
Fy=_ Y MR -Fll-F, Z=) [1-|R-Fl, Fel]. (1.4)
k=0 k=0
This filter takes with greater weighting coefficients those pixels of the neighborhood, whose intensity are
close to the intensity of the central pixg}), and does not take into consideration the valué¢gfwhen

defined as[96, 132, 52, 131,161]

L1
Fy=o ) =R - Fll- Fe, Z=)1-|F-Fl, (1.5)
k=1 k=1

which leads to a more robust filter performance. Similar structure has the gradient inverse weighted operator,
which forms a weighted mean of the pixels belonging to a filter window. Again, the weighting coefficients

depend on the difference of the gray-scale values between the central pixel and its neighbdrs, [132, 131],

n n

£ 1
Ff= = . Z= . (in [I33 v =0.5). 16
=2l s L 2T X mn w0 =09 08

The Lee’s local statistics filter [52, 51, 50], estimates the local mean and variance of the intensities of
pixels belonging to a specified filter winddw and assigns to the pixé the valueF; = Fy + (1 — a)F,
where F is the arithmetic mean of the image pixels belonging to the filter windowcarslestimated as
o =max {0, (6§ — 0?) /03 }, whereo? is the local variance calculated for the samples in the filter window
ando? is the variance calculated over the whole image.cdf> o thena ~ 1 and no changes are
introduced. Whemry < o thena ~ 0 and the central pixel is replaced with the local mean. In this way, the
filter smooths with a local mean when the noise is not very intensive and leaves the pixel value unchanged
when a strong signal activity is detected.

In [92,/91] a powerful adaptive smoothing technique related to the anisotropic diffusion, which will be
discussed in the next section, was proposed. In this approach, the centrdijgxe¢placed by a weighted

sum of all the pixel contained in the filtering mask

Fr = lzn: o ith _ _IGEY zn: 1.7)
0= 7 wg Fy, wi WE = exp 3 ) = Wk :
k=0 k=0

where|G| is the magnitude of the gradient calculated in the local neighborhood of theRiaeidj is a
smoothing parameter.
In [102] another efficient adaptive technique was proposed

L, 1 0> F, — Fy)?
Iy :ZZexp{—ﬁllg}exp{—| kﬁQ ol }'Fk, (1.8)

2
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wherep;, denotes the topological distance between the central pixahd the pixeldy, (k = 1,2,..., N)

of the filtering mask3,, 5, and N (number of neighbors o in W) are filter parameters. The concept of
combining the topological distance between pixels with their intensity similarities has been further devel-
oped in the so called bilateral filtering [119,/27] 10], which can be seen as a generalization of the adaptive
smoothing proposed in [6[7, 82,191, 102, 1112, 39].

Good results of noise reduction can usually be obtained by performingfittering [50,[54/138]. This
procedure computes a weighted average over the filter window, but only those pixels, whose gray values
do not deviate too much from the value of the center pixel are permitted into the averaging process. This
procedure computes a weighted mean over the filter window, but only those pixels whose values lie within
r - o of the central pixel value are taken into the average. This filter attempts to estimate a new pixel value

with only those neighbors, whose values do not deviate too much from the valyge of
. 1
Fy = Z;Hka, {k:|Fp - Fy| < kol (1.9)

where Z is the normalizing factors is a parameter, (typically = 2), o is the standard deviation of all
pixels belonging tdV or the value of the standard deviation estimated from the whole imag& grdlues
are filter parameters.

Another adaptive scheme, callkehearest neighbor filtersuggested ir [30], replaces the gray level of
the central pixeFy by the average of its neighbors whose intensities are closest to thdip{k = 6 and a
window of size3 x 3 was recommended in [61]). The image noise can be also reduced by applying a filter,
which substitutes the gray-scale value of the central pixel, by a gray tone from the neighborhood, which is
closest to the average of all points in the filter winddw (nearest neighbor filtgr In this way Fiy = F,
whereq = arg {min{ |F}, — |} }.

Another class of filters divides the filter masks into a set of regions, in which the variance of the pixel
intensities is calculated. The aim of these filters is to find clusters of pixels which are similar to the central
pixel of the filtering mask. Their output is defined as a mean value of the pixel values belonging to the sub-
window in which the variance reaches the minimum. The Kuwahara filtér [49] 120, 88], dividgs<tihe
filtering mask into four sub-windows as depicted in 1.2 a). In each of the sub-windows, the mean and
the variance is calculated and the output of the filter is the mean value of the pixels from that sub-window,
whose pixels have the smallest variance. This filtering scheme, based on searching for pixel clusters with
similar intensities was further extended by introducing new regions in which the variance was measured
(64,163 111], (Figl T2 b, ¢) and [111], d).

This approach is in some way similar to the technique we propose in Sgctjon 1.5, in which the filters
based on digital path are introduced. In the new approach, instead of looking for sub-windows with similar

pixels, we investigate digital paths linking the central pixel with pixels belonging to the filter window.
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Another class of adaptive algorithms is based on the rank transformations, defined using an ordering
operator, which goal is the transformation of the set of pixels lying in a given filtering wirléfoimto a
monotonically increasing sequentey, F1, . .., )} — {Floy, F(1); - - - F(n) }, With the property:F;) <
Fig41),k = 0,...,n — 1. In this way the rank operator is defined on the ordered values from the set
{F0),- - - F{n)} and has the form

Fy = : Y owFuw, Z=_ ow, (1.10)

A
k=0 k=0

whereg;, are nonzero weighting (ranking) coefficients. Taking appropriate ranking coefficients allows the
definition of a variety of useful operators. The sequence

e {1,1,...,1} corresponds to the moving average operator,

¢ {0,...,0,0,, =1,0,...,0}, m = (1 +n)/2, generates the median, (for even number of neighbprs
¢{0,...,0,0m-0a=1=...=0m=... = 0mta = 1,0,...,0}, 0 < a < m defines thex-trimmed
mean, which is a compromise between the medias: (0) and the moving average:(= m),

e {00 =1,0,...,0, 0,} determines the so called mid-range filter.

The standard median exploits the rank-order information (order statistics) to eliminate impulsive noise.
This filter substitutes the corrupted pixel with the middle-position element (median) of the ordered input
samples. Since its introduction, it has been extensively studied and extended to the weighted median and its
special case center weighted median filter.

The median filter is one of the most commonly used nonlinear filters. It has the ability of attenuating
strong impulse noise, while preserving image edges. Its major drawback however, is that it wipes out
structures, which are of the size of the filter window and this effect causes that the texture of a filtered image
is strongly distorted. Another drawback of the standard median, is that it inevitably alters the details of the
image not distorted by the noise process, since the standard median cannot distinguish between the corrupted
and original pixels, and whether a pixel is corrupted or not, it is replaced by the local median within a filtering
window. Therefore a trade-off between the suppression of noise and preservation of fine image details and
edges has to be found. This can be accomplished in different ways, their goals is however always to diminish

the filtering effect in image regions not affected by the noise process, [7, 6,8,/11[28, 2, 1,148, 98, 4, 22].
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Figure 1.2: Different subwindow structures used Rf the column 25 and 325 of th&s0 x 350 color

the filtering framework proposed in [49,164), [64, LENAimage distorted by mixed impulsive and Gaus-

63] b, ¢) and in [111],d). sian noise ) isotropic diffusion process (1.[12h)
PMAD with ¢, (1.14),¢) regularized AD of Ca#
[24,125],d) new filter DPAF introduced ip 1]5.
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1.3 Anisotropic Diffusion

A powerful filtering technique, called anistropic diffusion (AD), has been introduced by Perona and Ma-
lik, (P-M), [68,67] in order to selectively enhance image contrast and reduce noise using a modified heat
diffusion equation and the concepts of scale space] [136].

The main concept adnisotropic diffusions based on the modification of the isotropic diffusion equation
(1.12), with the aim to inhibit the smoothing across image edges. This modification is done by introducing
a conductivity function that encourages intra-region smoothing over inter-region smoothing.

Since the introduction of the P-M method, a wide variety of techniques have been elaborated including
multi-scale approaches, extensions to vector valued imagin@ [95, 37], multigrid methods [3], mathematical
morphology inspired techniques and many otheérs,[[17, 60, 37 121, 139, 34] 43| 44, 99].

Diffusion is a transport process that tends to level out concentration differences and in this way it leads
to equalization of the spatial concentration differences. The elementary law of diffusion states that flux
density<y is directed against the gradient of concentratioim a given mediunty = —cV F, wherec is the

diffusion coefficient. If we use the continuity equation

oF o~ . OF
e +V3=0, we obtain Frie VI[eVEF]. (1.12)

If F(x,y,t)denotes areal valued function representing the digital image, the equation of linear and isotropic

diffusion is
OF (z,y,t)  [0*F(x,y,t) , 0°F(x,y,t)
T B e : (1.12)

wherex, y are the image coordinatesgenotes timeg is the conductivity coefficient.
Perona and Malik suggested that conductivity coefficiestiould be dependent on the image structure
and therefore they proposed the following partial derivative equation (PDE)

OF (x,y,t)

5t =V [e(x,y,t)VF(x,y,t)] . (1.13)

The conductivity coefficient(x,y,t) is @ monotonically decreasing function of the image gradient mag-
nitude and usually contains a free paramdterwhich determines the amount of smoothing introduced
by the nonlinear diffusion process. Different functionscof, y,t) have been suggested in the literature

[18,[3,89/ 94| 5, 26, 90]. The most popular are those introducedin [67]

—1
VF(zx, ,t2 VF(zx, ,t2
¢1 = exp (-’ (ng ) > co — <1+ ;Kg ”) . (1.14)

The conductivity function:(z,y,t) is time and space-varying, it is chosen to be large in homogeneous

regions to encourage smoothing and small at edges to preserve image structures.
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The discrete version of Ed. (1]13) is
t+1 _ ot . t t t HR _ 1
F =R+ Akzock [Fi — Fg], forstabilty X <o =, (1.15)
wheret denotes discrete time, (iteration numbef)are the diffusion coefficients in directions, (Figl
b), ¢, denotes the central pixel of the filtering window at time-} are its neighbors and is the largest
value of \, which guarantees the stability of the diffusion process.
It is quite easy to notice_[10], that this equation is quite similar to the adaptive smoothing scheme

proposed in[[92, 91] and [87]. The E. (IL.7) formulated in an iterative way

n n
Fitt = " weF /Z w (1.16)
k=0 k=0

can be written as

n n n
> wiFy — F§ 37 wy, > wi(Ff — Ff) n
k=0 k=0 k=0 *
Ff = R+ _ = F + _ =Fi+> wi(F - F), (1.17)
> Wk > Wk k=0
k=0 k=0

wherew; are the normalized weighting coefficients. In this way, every adaptive smoothing scheme based
on the averaging with weighting coefficients can be seen as a special realization of the general nonlinear
diffusion scheme.

The equation of anisotropic diffusiof, (1]15) can be written as

1—)\2713(:}%f

k=0

n
+AD P A<=
k=0

. (1.18)

1
Ft+1 — Ft _
0 0 n

If we set[l — A>")_; ¢i] = 0, then we can switch off to some extent the influence of the central pixel
in the iteration process. This requires however that in each iteration stépvidilaes has to be a variable,
dependent on time and image structure, equalte [> ;_, ct]~!. The effect of diminishing the influence
of the central pixel can be however achieved in a more natural way. Introducing the normalized conductivity

coefficientsC?,

t n
Ci==—, Y ci=1, (1.19)
Yok
k=0
Eqg. (1.18) takes the form
Fgt' = Ff(1=X)+ XY CLF, X=X) d, Xel1], (1.20)
k=0 k=0

which has the nice property, that faf = 0 no filtering takes placngJrl = F} and for X* = 1, the central
pixel is not taken into the weighted average and the anisotropic smoothing scheme reduces to a nonlinear,

weighted average of the neighborsrf

FHM =Y "CLF. (1.21)
k=1
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In this way the central pixel is being replaced by a weighted average of its neighbors and the weights
correspond to the similarity measure of the central pixel and its neighbors.
This scheme is very similar to the iterative approach proposed by Wang [L32], (1.6), who recommended

a gradient-inverse weighted noise smoothing algorithm

maX{’Ya |Fk - F0)|

n
Fith = cF§ + Y cpFf with ¢ =

n
k=0 > max{~, |F — Fo|)}
k=0

, (1.22)

and is also quite similar to the approach of Liee [50] and to the algorithm of Smith [102], Efg. (1.8)

1 © 2 Fy, — Fy|?
FS"'I:Ech-F,ﬁ, ck:exp{—p’;}exp{—mﬁ%o’}, k=1,....n. (1.23)
k=1

which corresponds to the case)df= 1in Eq. (1.20). The robustness of this scheme is achieved by rejecting
the central pixel value of the filter mask when calculating the filter output. This scheme is especially efficient
when the image is corrupted by heavy impulsive noise process.

Setting\* = 1 in (1.2Q) is similar to taking the largest possible value\af (1.1§),\o = 1/n which
ensures the stability of the anisotropic diffusion process, [89]. The good performance of an anisotropic
diffusion scheme with\x = 1 is confirmed by Fig[ 1]4, which depicts the dependence of the efficiency of
the P-M approach using the conductivity function on the< and \ parameters for the gray scdl&NA
image distorted by Gaussian noise of different intensity. In this Figure, it is clearly visible that the best filter
performance in terms of PSNR is achieved faclose tohg = 1/8, (3 x 3 mask), especially in the case of
images distorted by Gaussian noise process of kigBuch a setting oA enables the diminishing of the
influence of the central pixel, which ensures the suppression of the outliers injected by the noise process.

One of the major drawbacks of the anisotropic approach is that the optimal values of the par&meters
and\ are unknown. Althougli can be calculated using some a priori knowledge or can be estimated using
some heuristic rules, the algorithm is very slow and needs many iterations to achieve the desired solution
and also some stopping criterion is needed to finish the iteration process, before the image converges to the
trivial solution, (the average value of the image pixels), [139] 133].

Another disadvantage of the Perona-Malik approach is that this algorithm is not able to cope with im-
pulsive noise and as a result the noisy images goes through the diffusion process without perceptible im-
provement. The only way to force the diffusion to smooth out the impulsive noise is to incredsevttiee
in (I.14), which results however in a higher blurring.

In order to improve the efficiency of the original scheme a regularized version was proposed, in which
the conductance coefficient is a function of the gradient convolved with the Gaussian linear filler] [24, 25]

OF (x,y,t)

5 =div [é(x,y,t)VF(x,y,1)], (1.24)
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whereé(z, y,t) = f(|V GoxF(x,y,t)|), G denotes the Gaussian kernel with standard deviatjerdenotes

the convolution and is a decreasing function. The advantage of this formulation is that it is mathematically
well posed in contrary to the P-M scheme. However, the drawback of this approach is that the image
discontinuities tend to be blurred and the whole scheme leads to a higher computational complexity of the

anisotropic diffusion process.

Another solution to the impulsive noise problem is the introduction of robust conductivity functions.
In [18] robust statistic norms were chosen to design the anisotropic diffusion process. However, these
conductivity functions do not help increase the efficiency of the filtering in case of strong Gaussian or

impulsive noise.

d) e) f)

Figure 1.4: Dependence of the efficiency of the P-M scheme in terms of PSNR usiagdbeductivity
function on thex and K parameters[ (1.14, T]15). The test gray scale indg&A contaminated with
Gaussian noise of) o = 10, b) 0 = 20, ¢) 0 = 30 are shown and below the respective plots of the noise

reduction efficiency in terms of PSNR, after 3 iterations are presented).(
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1.3.1 Anisotropic Diffusion Applied to Color Images

Let F(z,y,t) = [Fr(z,y,t), Fg(z,y,t), Fy(z,y,t)] denote a color image pixel at positi¢m, y), where
Fy(z,y,t), Fy(z,y,t), Fy(z,y, t) are the red, green and blue channel respectively. The PDE eqyation (1.13)

can be written for the multichannel case as

Fr(z,y) OFy)

aF SU, ,t aF $7 Z,

DI~ el 0VE Gy, 0] Bwp) = | Fyfany) | To) = | O | 1.25)
Fy(z,y) LFba(f’y)

wherec(z,y,t) = f(||G]|) is a conductivity function, which couples the three color image channels, [37,
134,23/ 53| 86]. The conductivity function is the same for all the image channels and is a function of the

local gradient vectoG (x, y)

OFy(z,y, V C ; -

Blrleat) 6?tyt) [C(ZL‘, Y, t) T(x’ Y, t)] OF (z,y) Ta( 4) ga( V) ba(m =

OF, x,Y, __ (; | | |

M = C [C(.’E, y, t) _l g(.’):, y, t)] 5 G ('r’ y) 8F(oc7y) E)PT(IZ,y) ol g(ﬁ,y) b(x7y)
5 gEAnY) 5 s F) ’ 2] ’

761“ l;y’t) V [C(l’,y,t) CFb(ﬂﬁ,y’t)} ’ ' y y

Estimating the local multichannel image gradient is one of the most important tasks, when designing an
anisotropic diffusion scheme. Many of the approaches devised for color images are basedertdhe

gradient normintroduced by Di Zenzd [31]. Local variations of the color imdgi# ||? are expressed as

T
dz gi1 gi2 dz

|dF||* = : (1.27)
dy g21 g22 dy

- (25 s (o) (my
where gzzzz(953%@)2—%(Qf%fﬁd)2+—(95§%@)2 . (1.28)

g1g = (8Fg§,y)) <3F:9(y:v,y)> i <8Fga(;c,y)) (8Fg‘d(;7y)> 4 <8F1,8(;:,y)) <3F%(yz,y)>

The eigenvalues of the matrjy; ;],7 = 1,2

_ gutget V(911 — g22)2 + 447, P + g22 — /(911 — 922) + 49, (1.29)

A
+ 2 ’ 2

are the extremum dfdF ||> and the orthogonal eigenvectors determine the corresponding variation directions

n and§
1 2912 ™
n=—arctan ————— |, £=n+ —. (2.30)
2 911 — 922 2

Based on the eigenvalues, different gradient norms leading to various PDE schemes can be developed,

[126,[127/ 95, 94, 99, 19].
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1.4 Noise Reduction Filters for Color Image Processing

Several nonlinear techniques for color image processing have been proposed over the years. Among them
are linear processing methods, whose mathematical simplicity and the existence of a unifying theory make
their design and implementation easy. However, not all filtering problems can be efficiently solved using
linear techniques. For example, conventional linear techniques cannot cope with nonlinearities of the image
formation model and fail to preserve edges and image details.

To this end, nonlinear color image processing techniques are introduced. Nonlinear techniques, to some
extent, are able to suppress non-Gaussian noise and preserve important image elements, such as edges,
corners and fine details, and eliminate degradations occurring during image formation and transmission

through noisy channels.

1.4.1 Order-statistics Filters

One of the most popular families of nonlinear filters for impulsive noise removal are order-statistics filters,
[129,[124| 73, 72, 7%, 55, 65]. These filters utilize algebraic ordering of a windowed set of data to compute
the output signal.

The early approaches to color image processing usually comprised extensions of the scalar filters to
color images. Ordering of scalar data, such as the values of pixels in gray-scale images is well defined and it
was extensively studied, [3]. However, the concept of input ordering, initially applied to scalar quantities is
not easily extended to multichannel data, since there is no universal way to define ordering in vector spaces.
A number of different ways to order multivariate data has been proposed. These techniques are generally
classified intol[12, 84, 65, 117]

e marginal ordering(M-ordering), where the multivariate samples are ordered along each dimension inde-
pendently,

¢ reducedor aggregated orderingR-ordering), where each multivariate observation is reduced to a scalar

value according to a distance metric,

e partial ordering (P-ordering), where the input data are partitioned into smaller groups which are then or-
dered,

e conditional ordering(C-ordering), where multivariate samples are ordered conditional on one of its

marginal sets of observations.

R-ordering filters

Let F(x) be a multichannel image and & be a window of finite sizex+ 1, (filter length). The noisy

image vectors inside the filtering window will be denoted asF';, j = 0,1, ..., n. If the distance between
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two vectorsF;, F; is denoted ag(F;, F;), then the scalar quantity
R; =) p(F;,Fy), (1.31)
=0

is the aggregated distance associated with the noisy v@Gtanside the processing window. Assuming a
reduced ordering of thék;'s: Rg) < Ry < ... < R;) < ..., < Ryy,), implies the same ordering of

the corresponding vectorB; : Fg); F(1);...;F(7);...;F(,) . Nonlinear ranked type multichannel filters
define the vectoF 5, as the output of the filtering operation. This selection is due to the fact that vectors that
diverge greatly from the data population usually appear in higher indexed locations in the ordered sequence

[71,140].

Vector Median Filter (VMF)

The best known member of the family of the ranked type multichannel filters is the so \tatitm Median
Filter, (VMF) [9]128,[13] 15, 36, 105, 1077, 109, 130, 135]. The definition of the multichannel median is a
direct extension of the ordinary scalar median definition with fheor L, norm utilized to order vectors
according to their relative magnitude differendes [9]. The output of the VMF is the Bixel W for which

the following condition is satisfied
> p(FF) <> p(Fi,Fy), i=0,...,n. (1.32)
§=0 j=0

It has been observed through experimentation that the Vector Median Filter (VMF) discards impulses and
preserves edges and details in the image [9]. However, its performance in the suppression of additive white
Gaussian noise, which is frequently encountered in image processing, is inferior to that of the Arithmetic
Mean Filter (AMF). If a color image is corrupted by both additive Gaussian noise and impulsive noise, an
effective filtering scheme should make an appropriate compromise between the Arithmetic Mean Filter and

the Vector Median Filter.

Extended Vector Median Filter (EVMF)

The VMF concept may be combined with linear filtering when the vector median is inadequate for filtering
out noise, (such as in the case of additive Gaussian noise). The filter based on this idea, $txtaiided
Vector Median FilteEVMF) has been presented i [9]. If the output of fkéthmetic Mean Filtey (AMF)

is denoted a$'4,, then

n
[[Fanr —Fj|| < X |[Fvmr — Fy|
0 =0

Faur if
F* = J

Fvur otherwise

n

, (1.33)
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a-trimmed Vector Median Filter (VMF )

In this filter, the 1 + o samples closest to the vector median are selected as inputs to an average type of

filter, (see page]7). The output of the-trimmed VMF can be defined as follows [130, 84]

«
1
F* = F 1.34

The trimming operation guarantees good performance in the presence of long tailed or impulsive noise and
helps in the preservation of sharp edges. On the other hand, the averaging operation causes the filter to

perform well in the presence of short tailed noise.

Crossing Level Median Mean Filter (CLMMF)

On the basis of the vector ordering another efficient technique combining the idea of the VMF and the AMF
can be proposed. Let; be a weight associated witff* element of the ordered vectdf$o); Fyy; - s F,
then the filter output is declared &5, = > " w(;) - F(;). One of the simplest possibilities of weight

selection is

l—-—"2—— fori=0
(n+l)(n+l+'y) (135)

—1 fori=1,...,n,
(n+1)(n+1+7)

W) =

where~ is the filter parameter. For — oo we obtain the standard vector median filter, andhfet 0 this

filter reduces to the arithmetic mean (AMF).

Weighted Vector Median Filter (WVMF)

In [135,[130/ 4] the vector median concept has been generalized and the so/dgiligdied Vector Median
Filter has been proposed. Using the weighted vector median approach, the filter output is th& Vefctor

which the following condition holds
ij'p(F*,Fj) §2ij(FiaFj)a i:O,...,n. (136)
j=0 j=0

Basic vector directional filter (BVDF)

Within the framework of ranked type nonlinear filters, the orientation difference between color vectors can
also be used to remove vectors with atypical directions. Basic Vector Directional Filter (BVDF) is
a ranked order filter, similar to the VMF, which uses the angle between two color vectors as the distance

criterion. This criterion is defined using the scalar measure

n F; - F
A; =) a(F,F)), with a(F;,F;)=cos ' <|F | !Fj> ' (37
=0 ne
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As in the case of vector median filter, the ordering of thgs implies the same ordering of the correspond-
ing vectorsF;. The BVDF outputs the vectdr ) that minimizes the sum of angles with all the other
vectors within the processing window. Since the BVDF uses only information about vector directions, it

cannot remove achromatic noisy pixels.

Generalized Vector Directional Filter (GVDF)

To overcome the deficiencies of the BVDF, tGeneralized Vector Directional Filte{GVDF) was intro-
duced, [122]. The GVDF generalizes BVDF in the sense that its output is a superset of the single BVDF
output. The first vector in the ordered sequence constitutes the output of the Basic Vector Directional Filter,

whereas the first vectors constitute the output of tkieneralized Vector Directional Filte(GVDF)
BVDF{F,Fy,....F,} =Fy, GVDF{Fy,Fy,...,F,} = {Fo,F1,...,F,}, 1<7<n. (1.38)

The output of GVDF is subsequently passed through an additional filter in order to produce a single output
vector. In this step the designer can only consider the magnitudes of the VBgidis, . . ., F . since they

have approximately the same direction in the vector space. As a result the GVDF separates the processing of
color vectors into directional processing and then magnitude processing, (the vector’s direction signifies its
chromaticity, while its magnitude is a measure of its brightness). The resulting cascade of filters is usually

complex and the implementations may be slow since they operate in two steps,/[57, 58].

Directional Distance Filter (DDF)

To overcome the deficiencies of the directional filters, another method dillectional - Distance Filter
(DDF) was proposed [42]. DDF constitutes a combination of VMF and BVDF and is derived by simultane-
ous minimization of their defining functions. Specifically, in the case of the DDF the accumulated distance
inside the processing window is defined as

1—¢

S
Bi=|Y aF,Fy)| (D pFsF)| (1.39)
Jj=0 j=0

wherea (F;, F;) is the directional (angular) distance defined.37) and distarigg, F;) could be
calculated using MinkowskL,, norm. The parameterregulates the influence of angle and distance com-
ponents. As for any other ranked-order filter, an ordering of Bhés implies the same ordering of the
corresponding vector¥'; . Thus, DDF defines th# ) vector as its outputFppr = Fo. For¢ = 0 we
obtain the VMF and for = 1 the BVDF. The DDF is defined far = 0.5 and its usefulness stems from the
fact that it combines both the criteria used in BVDF and VMF, [122, 56].
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Hybrid Directional Filter (HDF)

Another efficient rank-ordered operation calldgbrid Directional Filter HDF was proposed in [36]. This
filter operates on the direction and magnitude of the color vectors independently and then combines them to
produce a final output. This hybrid filter, which can be viewed as a nonlinear combination of the VMF and

BVDF filters, produces an output according to the following rule

- Fvur if Fyyr=Fpvpr (1.40)
7‘@;%?"' Fpvpr otherwise

where Fpypr is the output of the BVDF filterFy y,r is the output of the VMF and| - || denotes the

vector norm.

1.4.2 Fuzzy Adaptive Filters

The performance of the different nonlinear filters based on order statistics depends heavily on the problem
under consideration. The types of noise which are present in an image affect considerablu the filter perfor-
mance. To overcome difficulties associated with the uncertainty associated with the data, adaptive designs
based on local statistics have been introduced([80, 79, 16, 32,177, 78]. Such filters, utilize data-dependent
coefficients to adapt to local image characteristics. The weights of the adaptive filters are determined by
fuzzy transformations based on features from local data. The general form of the fuzzy adaptive filters is

given as a nonlinear transformation of a weighted average of the input vectors inside the processing window

F*=f (Z w;»kFi) =f (Z w;F; /Z wi) : (1.41)
i=0 i=0 i=0
wheref(-) is a nonlinear function that operates over the weighted average of the input set. The relationship
between the pixel under consideration and each pixel in the window should be reflected in the decision for
the filters weights. In the adaptive design, the weights provide the degree to which an input vector contributes
to the output of the filter. They are determined adaptively using fuzzy transformations of a distance criterion
at each image position.

In this framework the weights are determined by fuzzy transformations based on features from local
data. The fuzzy module extracts information without any a-priori knowledge about noise characteristics.
The weighting coefficients are transformations of the distance between the vector under consideration, (cen-
ter of the processing windowl’) and all other vector samples inside the processing winddw This
transformation can be considered to be a membership function with respect to a specific window compo-
nent. The adaptive algorithm evaluates a membership function based on a given vector signal and then uses

the membership values to calculate the filter output. Adaptive fuzzy algorithms utilize features extracted
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from local data, here in the form of a sum of distances, as inputs to the fuzzy weights. In this case, the
distance functions are not used to order input vectors. Instead they provide selected features in reduced

space; features used as inputs for the fuzzy membership function.

Several candidate functions, such as triangular, trapezoidal, piecewise linear or Gaussian-like functions
can be used as a membership function. If the distance criterion describpd By (1.37) is used as a distance

measure, a sigmoidal membership function can be seletted, [[76, 83]
w; = B(1+exp{A;})", (1.42)

where 4; is a cumulative distance from (1]37), whiltandr are parameters to be determined. The
value is used to adjust weighting effect of the membership functiongaisda weight scale threshold. If
the MinkowskiL, metric is used as the distance function, the fuzzy membership function with exponential

form gives good results

w; = exp (ﬁ) , (1.43)

whereR; is a cumulative distance associated withvector in the processing windolW” using generalized

Minkowski norm,r is a positive constant anglis a distance threshold.

Within the general Fuzzy Adaptive Filter framework, numerous filters may be constructed by changing
the form of the nonlinear functiofi(-), as well as the way the fuzzy weights are calculated. The choice of

these two parameters determines the filter characteristics.

Fuzzy Weighted Average Filter

The first class of filters derived from the general nonlinear fuzzy algorithm is the so called Fuzzy Weighted
Average Filters (FWAF). In this case, the output of the filter is a fuzzy weighted sum of the input set. The

form of the filter is given as
.1

This filter provides a vector-valued signal which is not included in the original set of inputs. The weighted
average form of the filter provides a compromise between a nonlinear order statistics filter and an adaptive
filter with data dependent coefficients. Depending on the form of the distance criterion and the corresponding
fuzzy transformation, different fuzzy filters can be designed. If the distance criterion selected is the sum of
vector angles, the Fuzzy Vector Directional Filter (FVDF) is obtained. lf.anorm is used as the distance

criterion, a fuzzy generalization of the Vector Median Filter (VMF) is constructed.
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Maximum Fuzzy Vector Directional Filters

Another possible choice of the nonlinear functif) is the maximum selector. In this case, the output
of the nonlinear function is the input vector that corresponds to the maximum fuzzy weight. Using the

maximum selector concept, the output of the filter is a part of the original input set. The form of this filter is

Fy=F, with i=argmax w;, i=0,...,n. (1.45)

In other words, as an output the input vector associated with the maximum fuzzy weight is selected. It must
be emphasized that through the fuzzy membership function, the maximum fuzzy weight corresponds to the
minimum distance. If the vector angle criterion is used to calculate distances, the fuzzy filter delivers the
same output as the BVDE_[76,183]. If tHg or L. is adopted as distance criterion, the filter provides the
same output as the VMF. Utilizing the appropriate distance function, different filters can be obtained. Thus,

filters such as VMF or BVDF can be seen as special cases of this specific class of fuzzy filters.

Fuzzy Ordered Vector Directional Filters

In many cases it is favorable not use all the inputs inside the operational window to produce the final output
of the nonlinear filter. Instead, only a part of the vector-valued input signals can be used. The input vectors
are ordered according to their respective fuzzy membership strengths. The form of the fuzzy ordered vector

directional filter is given as

F* = %Zw(i)F(i) . 2= g, (1.46)
i=0 =0
wherew;) represents théth ordered fuzzy membership function ang,) < w_;) < ... < wg), with
w(g) being the fuzzy coefficient with the largest membership strength.

The above form of the filter constitutes a fuzzy generalization ofathemmed filters, [(1.34),[[73].
Through the fuzzy transformation, the weights to be sorted are scalar values. In this way the nonlinear or-
dering process does not introduce any significant computational burden. Depending on the distance criterion
and the associate fuzzy chosen by the designer, a number of diffeténtmed filters can be obtained.

The fuzzy transformations of (1.42) arid (1.43) are not the only way in which the adaptive weights of
can be constructed. In addition to fuzzy membership functions, other design concepts can be utilized for the
task. One of such designs is thearest neighbor rul§82], in which the value of the weighw; in (1.41) is

calculated according to the following formula
D) — D)
D) = Do)

where D, is the maximum distance in the filtering window, measured using an appropriate distance

(1.47)

Ww; =

criterion, and D) is the minimum distance, which is associated with the center-most vector inside the
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window. As in the case of the fuzzy membership function, the value of the weight il (1.47) expresses the
degree to which the vectdt; is close to the center-most vector, and far away from the worst value, the outer
rank.

In [82] an adaptive vector processing filter named Adaptive Nearest Neighbour Filter, (ANNF) was
devised utilizing the general framework ¢f (1.41). The weights in ANNF were calculated by using the
formula of [1.4T) with the angular distance as a measure of dissimilarity between the color vectors.

It is evident that the outcome of such an adaptive vector processing filter depends on the choice of
the distance criterion selected as a measure of dissimilarity among vectors. As befofg, tiegm or
the angular distance (sum of angles) between the color vectors can be used to remove vector signals with
atypical directions. However, both these distance metrics utilize only part of the information carried by the
color image vectors. As in the case of DDF, it is anticipated that an adaptive vector processing filter based
on an ordering criterion, which utilizes both vector features, namely magnitude and direction, will provide
a robust solution whenever the noise characteristics are unknown.

In [81] a distance measure for the noisy vectors was introduced

n

_ o o ECEN (L IF -
Ji= ) - SELFL with S(F“FJ)‘<|FZ-HF§|><1 max(HFz-\,fw)' (1.48)

=0
As can be seen, the similarity measur¢ of (IL.48) takes into consideration both the direction and the magnitude
of the vector inputs. The first part of the measi$rés equivalent to the angular distance=¢tor angle
criterion) and the second part is related to the normalized difference in magnitude. Thus, if the two vectors
under consideration have the same length, the second pa(¥efF ;) equals to one and only the directional
information is used i (1.48). On the other hand, if the vectors under consideration have the same direction
in the vector space (collinear vectors), the first pa @f;, F;), (directional information) equals to one and

the similarity measure of (1.48) is based only on the magnitude of the difference part.

Utilizing this similarity measure, an adaptive vector processing filter based on the general framework of
(1.43) and the weighting formula df (1)48) was devised in [81]. The so called Adaptive Nearest Neighbour
Multichannel Filter (ANNMF) belongs to the adaptive vector processing filter family defined through (1.41).
However, ANNMF combines the weighting formula ¢f (1.47) with the new distance measuyre df (1.48) to

evaluate its weights.

1.4.3 Nonparametric Adaptive Multichannel Filter

Consider the following model for the color image degradation process.

Fj = Xj + Gj , (1.49)
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where X is athree-dimensionalincorrupted image vectof; is the corresponding noisy vector to be
fitered andG; is an additive noise vector. In our analysis, it is assumed that the color image vectors are
unknown and that the noise vectors are uncorrelated at the different image locations and signal independent.
Let us denote with®(F) the minimum variance estimator of the color veclorgiven the noisy mea-
surement vectoF'. The expected square error of the filter, when the image vectors are corrupted by additive

noise as in[(1.49), can be written as

V://[X—<I>(F)][X—@(F)]Tf(X\F)f(F)dXdF, (1.50)
B [e’e) [e'e) B B T
v_/oo [/w[x &(F)|[X — ®(F)|T f(X|F)dX| f(F)dF, (1.51)

where 27" denotes the transpose of. Since ®(F) does not enter into the outer integral aridF) is
always positive, it is sufficient for the optimal minimum variance estimator to minimize the expected value
of the estimation cost (conditional Bayesian risk), given the observatidhus, it is sufficient to minimize
the quantity

Van = [ X - ®(®)X - 2(F)" f(XIF) dX. (1.52)

—00

The minimum variance estimator, which minimizes the above cost is then known to be

e(F)uv = /_OO X f(X|F)dX = /_OO de, (1.53)

with
£F) = [ FXE)FX) X (1.54)

If the densities in[(1.52) are known and a training record of the sample pXir¥) is available, the
minimum variance estimator can be derived. Unfortunately, in a realistic image processing scenarios, no
a-priori knowledge about the noise process or the image itself is available. Thus, a nonparametric estimator
must be utilized to approximate the probability density functions (PDK) in|(1.52).

Let us assume a window of finite lengthcentered around a noisy vectpr Through this window, a
set of multivariate noisy sampldd” = (F, Fq, ..., F,,) becomes available. Based on the samples from the
filtering windowW, an adaptive, data dependent multivariate kernel estimator can be devised to approximate

the densities i (1.52). The form of the adaptive kernel estimator selected, is as follows

R 11 F-F,;
X,F)=— — K N = 1 1.55
FE = g3 () e (155

where F; is the i*" training vector, withi = 0,1,...,n, L = 3 is the dimensionality of the measurement

space andh; is the data dependent smoothing parameter which regulates the shape of the kernel. The
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variable kernel density estimator exhibits local smoothing, which depends both on the point at which the
density is evaluated and and also on the information on the local neighborh@ad in

The h; can be any function of the sample siXe= n+ 1, [35]. The bandwidths:; (smoothing factors)
can be defined as a function of the aggregated distance between the local observation under consideration

and all the other vectors inside tiiéwindow. Thus,

hi=N"TA=NTY |[F,—Fy, (1.56)
k=0

wherek is a design parameter. The choice of the kernel functiop in(1.55) is not nearly as important as the
bandwidth, (smoothing factor). For the applications, the multivariate extension of the exponential kernel
K(z) = exp(—|z|) or the Gaussian kernék (z) = exp(—|z’z|/2) can be selected [35].

Given [1.52){(1.5p), the non-parametric estimator can be defined as

= > Q — §n . (Nil)hi_L (F;zyz>
S /oo f(F) = i=0 o ;:0: (N—l)h;L K (F;F) (1.57)
P(F _ En X, hi_L (FZlFL> _ En D¢ (1.58)
( )NP = e 7 ,_1 h;L (F%ZFZ) = 2 W; Mg .

=0

where w; is a weighting function defined in the interval [0,1].

To obtain the required estimate we must assume that, in the absence of noise, discrete sample vectors
X, are available. This is not a severe restriction, since in many cases such samples may be obtained by
a calibration procedure in a controlled environment, perhaps at a very high signal-to-noise ratio. In a real
time image processing application however, that is not the case. Therefore, alternative suboptimal solutions
are introduced. In a first approach, we substitute the vecXgrén (1.57) with their noisy measurements.
The resulting Adaptive Nonparametric Multichannel Filter (ANMF) is solely based on the available noisy
vectors and the form of the minimum variance estimator. Thus, the form of the ANMF is

h K ()

P (F)y = F; | — ‘ ) (1.59)
1 NMF ZZ; ,zzohi_LK (%>

A different form of the adaptive nonparametric estimator can be obtained if a reference vector is used
instead of the actual noisy measurement. The ideal reference vector is of course the actual value of the
multidimensional signal in the specific location under consideration. However, sind€thector is not
available, a robust estimate, usually evaluated in a small subset of the input vector set, is utilized instead.

Usually the vector mediaK " is the preferable choice, since it smooths out impulsive noise and preserves
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to some extent the edges. The median based Adaptive Nonparametric Multichannel Filter has then the

following form

n e (FfF )
VM i hi
o (F)anmr = Z X; — : (1.60)
i=0 ‘ hi_LK (F;—ZFZ>
=0

This filter can be viewed as a double-window, two stage estimator. First the original image is filtered by
a multichannel median filter in a small processing window in order to reject possible outliers and then an
adaptive nonlinear filter with data dependent coefficients defingd in|(1.57) is utilized to provide the final
filtered output.

1.5 Digital Paths Approach to Color Image Filtering

In this section a novel approach to color image filtering is proposed. Instead of using a fixed window, the
new method exploits connections between image pixels using the concept of digital paths. According to the
proposed methodology, image pixels are grouped together, forming paths that reveal the underlying struc-
tural dynamics of the image, (see Fips.| [.5] 1.6). Depending on the design principles and the computational
constraints, the new filter framework allows the paths to be considered on the entire image or to be restricted
to a predefined search area, [1/08,1104]. The new approach focuses on the latter case.

To facilitate comparisons with existing ranked type operations and to illustrate the computational effi-
ciency of the proposed framework, the path searching area is allowed to match the Windesed by the
ranked type filters. However, instead of the indiscriminately use of the window pixels, an approach advo-
cated by the majority of existing multichannel filters, the proposed here framework allows for the formation
of a number of digital path models, which in turn are used to determine the coefficients of a weighted average
type of filtering operation.

The new filter class based on digital paths and connection cost can be seen as a powerful generalization
of the multichannel anisotropic diffusion presented in Sedtiop 1.3 and an extension of the fuzzy adaptive
filters described in 1.4.2. The filters discussed there are shown in this Section to be a special case of the new
filtering scheme, when a digital path is degenerated to a step of length 1.

The path connection costs evaluated over all possible digital paths, are used to derive fuzzy membership
functions that quantify the similarity between vectorial inputs. The proposed filtering structure is then using
the function outputs to appropriately weight input contributions in order to determine the filtering result. The
proposed filtering schemes parallelize the familiar structure of the adaptive multichannel filter introduced in
[74] and they can successfully eliminate Gaussian, impulsive as well as mixed-type noise. However, thanks
to the introduction of the digital paths in its supporting element, the new filters not only preserve edges and

fine image details, but can also act as an image sharpening operators.
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1.5.1 Connection Cost Defined Over Digital Paths

In order to perform operations based on the distances we first need to precisely define the notion of a
topological distance. The concept of a topological distance between image points is of extreme importance
in many applications based on the distance transformation, which is one of the fundamental operations of
mathematical morphology, [20, 21, 100/ 85].

Let B be a nonempty set. We can measure distances between polfitsvimch amounts to defining
a real valued function on the Cartesian prodck B of 5 with itself. Let the functiorp : B x B — R
be called a distance if it is positive definite{x,y) > 0, with p(x,y) = 0, whenx = y and symmetric:
p(z,y) = p(y,x), forall z,y € BxB. A distance is called a metric if additionally it satisfies the triangle
inequality [46]: p(x, z) < p(z,y) + p(y, z), forall z,y, z € BxB.

In digital image processing three basic distance functions are usually applied=If(p;, p2) and
q = (q1,q2) denote two image pointy{(q € Z?) then we define th€ity-Block Distance p4(p,q) =
Ip1 — q1] + |p2 — 2|, Chessboard Distanceps(p, ¢) = max{|p1 — qi1|, |p2 — ¢2|} andEuclidean Distance
pe(D,q) = [(p1 — @1)* + (p2 — 42)?] :, Using the city-block and chessboard distances we are able to define
the two basic types of neighborhoods, 4-neighborh&@¢x) = {y : ps(z,y) = 1} and 8-neighborhood
Ns(x) = {y : ps(z,y) = 1}.

Letw € {4,8}. Two pointsp, ¢ € Z? are said to be io\,,-neighborhood relation, (denoted &3, or
to be V,-adjacent ifg € N, (p) or equivalentlyp € N, (q). This N, -adjacency relation defines a graph
structure on the image domain, call&g -adjacency graph. On the graph, a finkg-path can be defined
as a sequence of pointgy, p1, . . ., py) such that fori € {1,2,...,n} the pointp;_; is N, adjacent tq;.
A path is called simple if # j implies thatp; # p;. This is a very important property of a path, as it means

that a path does not intersect itself or in other words it is self-avoiding. [59, 113].

221 ] 240 | 244 | 190 | 238 | 221
228 § 219 215 § 224 226
224 @ 205 214 § 200 0] 240

' 221 § 221 | 210 6 (g 206 | 239
£\
235 0 214 < 225 | 206

} 180 § 229 | 212 | 211 225
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a) b)

Figure 1.5: lllustration of the concept of digital paths and connection cost. The pixels a, b, ¢, d are

connected with the central pixel along paths whose connection costs are minimal.
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Figure 1.6: In the DPAF and DPAL filters, the weights are assigned to the pixels surrounding the central
pixel and are determined in different ways. In the DPAF approajittfe weights in[(1.74) are calculated
exploring all digital paths starting from the central pixel and crossing its nearest neighbors, then a weighted
average of the nearest neighbors of the central pixel is calculated, (1.75). In the DPAL approach, the weights
are obtained by exploring all digital paths leading from the central pixel to the pixels contained in the filtering

window (b) and then a weighted average of all pixels from that window is calculated] (1.81).

Using the distances between neighboring points, which are called prime distandes [114], we are able to
define a distance between any two image points by following all admissible paths linking those points and
then taking the minimum of the total length over all possible paths, which is the sum of the prime distances
between the nodes of the paths. In this way, the distance between two image points is the length of the path
for which the sum of the prime distances between the path nodes is minimal. For the city-block distance
the admissible paths consist of horizontal and vertical moves only, whereas for the chessboard distance also
the diagonal moves are allowed. The prime distances for the two kinds of neighborhood are declared in this

work to be equal to 1.

Let us now introduce the definition of a geodesic distance. Let us assum&Zligthe Euclidean
spaceS is a planar subset @2 andz, y are points belonging to sét A path fromz to y is a continuous
mappingll: [a,b] — S, such thafl(a) = = andII(b) = y. The pointz is considered as the starting point,
while y is the ending point on the patf, [21].

An increasing polygonal liné> on the pathl is any polygonal line such tha = {II(\;)}]_,, a =
Ao <,...,< A, =0b. The length of the polygonal lin® is considered to be the total sum of its constitutive
line segmentd.(P) = >0, p(II(A\;i—1), II()\;)), wherep(z, y) is the distance between the pointandy,

when a specific metric is adopted. A pdiifrom x to y is called rectifiable, if and only iL.(P), whereP
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is an increasing polygonal line, is bounded. Its upper bound is called the length of tHé.path

The geodesic distange’ (z, ) between pointg: andy is the lower bound of the length of all paths
leading fromz to y which are totally included inS. If such paths do not exist, then the value of the
geodesic distance is setdo. In generap®(z, y) > p(z,y). However, if the sef is convex, meaning that
there are no points on the line betweemandy that are not members &, the geodesic distance verifies
pi(@,y) = p(z,y).

The notion of a path can be extended to a lattice, which is a set of discrete points on the plane, in our
case the spatial locations of the image pixels. Let a digital latiice (F, \') be defined by, which is the
set of all points of the plane, (pixels of a color image) and a neighborhood rel&tibatween the lattice
points [97].

A digital pathP = {p;}!_, defined on the lattic@{ is a sequence of neighboring poiits_1,p;) € N.
The lengthL(P) of the digital path? {p;}!_, is simply>-"_, p™(p;_1,p;), wherep’ denotes the distance
between two neighboring points of the lattiteand the geodesic distance betwegmandp,, is the minimal
length of L(P).

Constraining the paths to be totally included in a predefinedisgields the digital geodesic distance
pV. In this work A/ ,-neighborhood systemu(= 4 or w = 8) is considered, with a topological distance of
1 assigned to any neighboring points and thel®es the supporting window of appropriate size. All paths

considered in this chapter are included in the filtering wind®w(Fig.[1.7).

. .
A A

b)
Figure 1.7: Digital paths o&) length 2 andb) length 3, connecting two neighboring points within a

predefined windowV of size3 x 3, when the 8-neighborhood system is applied.

Let us now adopt the following notation, which will help us define the distance functions defined over
geodesic paths. The starting point of a path will be denoted as (x¢, yo). Its neighbors will be denoted
asp1 = (zu,, Yv, ), Which means that the neighbors are the second points of all digital paths originating

atpp. Then the third point of a digital path startingat will be ps = (z.,, y,) and so on, till the path
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reaches im steps the ending poipt, = (zy,, ¥, ). In this way the sequences,, ..., z,, andy,,, ..., ¥,
uniquely define the digital path startingaat, yo and ending at.,, , y», . The set of all possible digital paths
contained in//” joining two pointsz,y € W will be denoted a®r" (z, y).

Two pixelsz andy will be called connected, (hereafter denoted:as y), if there exists a digital path
PW (z,y) contained in the sét starting fromz and ending ay. If two pixelsp, andp, are connected by a
digital pathP""" {po, p1,...,p,} of lengthn then letA"-"{py, p1, ..., p,} be a measure of the connection
cost defined over the digital path linking the starting ppinand ending poinp,,, (f is a nonnegative scalar

function ofy vector variables)

AWJ] {p()v'--apn} :f{F(p0)7aF(p77)} = f{F (:BO)yO)?F(:Eulvyvl)?"'aF(xunayvn)} . (161)

The connection cost over the digital pat":” can be seen as a measure of dissimilarity between color
image pixels at pointgy, p1, ..., p, forming a specific path linkingy andp,, [118,[29,85]. If a path
joining two distinct pointse, y, such thaff'(z) = F(y) consists of the pixels of the same channel values,
then the connection cost should be zero, otherdie’ > 0.

Let us now define a generalized connection cost function, based on the Distance Transform on the
Curved Space (DTOCS), [85, 118] introduced by Toivanen for the gray scale images. For two given points
pi = (Tu;, Yo;) @NApi—1 = (Tu,_4,Yv,_,), ¢ = 1,2,...,n, which are in neighborhood relation, let the
generalized distance between the two points be called connection cost defined on the hybrid spatial-color
space discussed in 45, 1100 p;_1,p:} = ||[F(p:) — F(pi—1)|| + & - pV (pi, pi_1), where¢ establishes
a proper weighting in the hybrid spatial-color space. The connection cost of a whole digita) path. . .,
py Will be then

n

AV {po, gy =Y [IF (0) = F (pie) | + € 0" (pipic)] (1.62)
=1

As we will work with small filtering window, we will focus on the color space only, by setting 0.

Similarly to the gray-scale case, we will call the minimal connection Ed5t(z, y) of a path of length
n linking two pointsz,y € W, then-geodesic betweenandy: IV (z,y) = min {A (7),y € ¥W7},

In this way then-geodesic is defined as the path of lengthwvhich gives the minimal connection cost
between two points linked by a digital path. If we take the minimum of the connection costs generated by
all possible paths joining two pointsandy € W, then we obtain the generalized multichannel geodesic
distance between these point8” (z,y) = min {T'"" (z,y)} = min {A (7), 7 € P" (2,y),n € N}.

' (z,vy) defines the multidimensional distannce transform, which is a generalization of DTOCS, [118].

In general, two distinct pixel’s locations on the image lattice can be connected by many paths. Moreover,

the number of possible geodesic paths of certain lepgthnnecting two distinct points depends on their

locations, length of the path and the neighborhood system used] (Rig. 1.7).
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1.5.2 General Filter Framework

In this work, fuzzy filtering structure proposed In [80, 76] 79] will be used. The general form of the fuzzy

adaptive filters presented here is defined as a weighted average of input vectorgvnside

n > wiF;
Fo=) wFi==—. (1.63)
=0 Z w;
=0

The relationship between the pixel under considerdilgand each pixel in the window should be reflected
in the decision how to define the filter weights. In our case, the weights will be determined using the
similarity functions calculated over digital paths included in the processing wirnélow

On the basis of the connection cost function concept, it is possible to define different classes of similarity
functions. Choosing a specific form of a similarity function yields different filters of specific properties,

which can be applied for a wide range of low-level vision tasks.

1.5.3 Digital Paths Approach Filter Class

Let us now define a similarity function, analogous to a membership function used in fuzzy systems, between

two pixels connected through all possible digital paths leading frdoy
w2, y) =Y A (2y)} (1.64)
m=1

wherew is the number of all paths connectingandy, A" (z,y) is a dissimilarity value along a specific
pathm from the set of allv possible paths leading fromto y and f(-) is a smooth function o,V By
definitionw""" (z,y) returns a value evaluated over all possible routes linking the startingzpwiith the
endpointy. The smooth functiorf : (0; co) — R should satisfy following conditionsf is a decreasing

in (0; 00), fis convex in(0; co), f(0) =1, f (x) — 0, wheny — oo. Several functions satisfying the
above conditions have been proposed in the literature [83,/ 1083, 74, 53, 106]. However, for the impulsive

noise removal good results are obtained using the exponential form of the fuificfio]. Therefore,
w7 (z,y) = Y exp [~ AN (x,y)], (1.65)
m=1

whereg is the filter design parameter.

Forn = 1 and a squaré3 x 3) window I, the similarity functionw is defined according t¢ (1.562) as
w (z,y) = exp {—f||F(z) — F(y)||}, and then ifF (z) = F(y), AW (z,y) = 0, w(z,y) = 1, and for
[F(x) — F(y)|| — oo thenw — 0, [78].

Figure[1.8 illustrates the calculation of the similarity function between two points connected by two

geodesic paths of lengih= 2. In this case, the cost functions related to pdthand P, are

AV (@y) =db + 2, AP (a,y) = db + dE, (1.66)
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whered! andd? are connection costs between neighboring points on thefpatefined according t¢ (1.52),

while d3, d3 are connection costs defined on p&th The total similarity value can be expressed as

Fy F, F3 P d Fs F3

[ ] [ ] [ ] [ ] o —Fr0 [ ] [ ] [ ]

I ]

Fs | F, | Fy dl dzl

[ ) [ ] [ ) [ ] [ ] [ ] *—>

Fo Fy Py

Fr Fg Fs

[ ) [ ] [ ] [ ] [ [ ] [ ) [ ] [ ]

Figure 1.8: Digital paths of length = 2 connecting point&, andF's.

w2 = exp (—ﬁ : A?’@) +exp (—ﬁ : Agm) . (1.67)

A normalized form of the similarity function is defined as

\ _wa,y)
w(,y) = ST wWin(z, z)’

Z=T

(1.68)

wherey < z denotes all pointg connected by digital paths withcontained ini?/.
Assuming that the pixdF, is the pixel under consideration, wilfy, representing the pixel included in

the supporting element’, which is connected t&',, via a digital path, the filter outpd’ is given as

* * * wwm(xvy)
Fx:Zw (,y) - Fy, w (:c,y):m. (1.69)
yer 2T ’

As can be easily noticed;, is the weighted average of all poinks, connected by digital paths with the
pixel . The pixelF, is the ending point of a path leading frarmand therefore this filter structure is called
DPA Last (DPAL), ag is the last point on the path, (see Hig.|1.6 b).

Another possible filtering scheme takes into account the similarity between the starting: peinpt
and pointy = p; crossed by a digital path connecting pixgland its neighbop; with all possible points
pn € W which can be reached ipsteps fronyp,, (Digital Path Approach First, DPAF).

The aim of taking into account the poinis, . . ., p, when calculating the filter output is to explore not
only the direct neighborhood ¢f, but also to use the information on the local image structure. This can be
done by acquiring the information on the local image features investigating the connection costs of digital
paths originating apg, passingr; and then visiting successive points, till the path reaches lepdththis

case the new similarity function takes the form

wW,n (x7y) :wVV’n (P()vpl) = Z .]C(A}/Vﬂ7 {p07p17p§7p§7"'7p;;}) ) (170)
{p5.p5,.p5 }
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where{po, p1,p3, - - -, py,} denotes all paths originating at= p, crossingy = p; end ending ap;, which
are totally included i/, f(-) is a smooth function oAV,

If the exponential function is used, then the similarity function takes the form

w (@, y) =" (po,pr) = Y. exp[—B- AV {po,pr,p5,.. .00}, (L.7D)
{50505 }

wheref is the smoothing parameter. A normalized form of the similarity function can be defined as follows

{ > }eXp[—ﬁ-AW’"{po,php;---,pZ}]

D53 5-D%

w* (x,y) = w* (po,p1) = , 1.72
() =0 o) = e o5 A {por s 73] (72

{pi.p3.05}

where{po, p1,p3, . . ., pj,} denotes a path joining = py andp,;, crossingy = py, wheread po, p}, p5, - .- ,p;;}

do not necessarily crogs= p; when joiningpy andp;,.

Assuming that the pixdF, at the position: = py is the pixel under consideration, wilfy, representing
the pixel aty = py, the filter outpufF”;, is given as
Fi=Fp =Y w (z,y) Fy=> w(z,y) -Fy= > wpop}) Fp, (1.73)
yoT Yy~ P ~Po
and combining this witH (1.72) gives
> exp[—6- A {po,p}, 05, ..., 0} }]

A {p3.p3.-05 } ) )
Fo =¥ = Fpr = Fpr .
> > exp [0 AW {po,plips. . ppt] T > " (po.pi) - Fyg

pi~po . 4 Pi~P0
{piws-pi}
(1.74)
Using the notation from Sectiofis 13,]1.2 and Eq. (1.20) we can formulatg Eq. (1.74) as
Fy=> wiFy, (1.75)
k=1

wherewy, the normalized weighting coefficients, play the role of the generalized conductivity coefficients
from Sectior} 1.8 an#';, are the neighbors dfy, which is the central pixel in the filter magk'.

The general form of the anisotropic diffusion scheme based on the digital paths, can be written as

Fj=(1-X)F5+ A\ ) wiFy, (1.76)
k=1
or using the iterative notation, as
Fi = (1- \)Fh+ A" ) wiFy. (1.77)
k=1

Using the relation\* = X\ >_ ¢, (1.20) it is possible to obtain the classical form of the anisotropic diffusion
k=0
scheme defined by Eq. (1]15).
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Figure 1.9 shows the dependence of PSNR on\thend K values for colo.ENAimage contaminated
by impulsive and mixed noise for the classic multichannel anisotropic diffusion scheme (AD) and the new
DPAF filter defined by Eq.[(1.75). Especially interesting is the behavior of the plots as a functidn of
As can be seen, for images contaminated by a noise process of high intensity, the maximum of PSNR is
obtained for\* very close to 1, which means that it is favorable to omit the central pixel while calculating
the weighted average in Ed. (1]20) and alsd in (1.75). This was already noticed in the scheme of Smith,
[102], (Eq.[1.8), who did not take the central pixel into the averaging process, which is equivalent to setting
A* = 1. That is why we seA* = 1 in Eq. (1.7%) to define the new DPAF filtelr, (1}74), (1.75).

The superiority of this approach over the classic scheme is clearly seen |n Fig. 1.9, where especially for
highly corrupted images, the difference in terms of PSNR is quite significant, (see al$o Tab.[1.4 and 1.5).

In a similar way the DPAL filter can be defined as

{ Z }eXp [—,B'AVV’T) {pOapT7p;a"-7p:<7}] pr,
_ P1D5 D3P

Ff—F* —
oo > exp 8- A" {po,pi,p5. .., 05 }]
{piws,py}

=> w* (po.p}) - Fp:, (1.78)
Py

which can be written as

N
Fy=)Y wiFy, (1.79)
k=1

where N denotes the number of pixels surroundifigin the filtering window. Analogously tq (1.76), we

can introduce the general form of DPAL defined py (1.78)

N
Fj=(1-X)F;+ A" wiFy, (1.80)
k=1
and its iterative version
N
Fitl = (1-A)F)+ A" wiF}, (1.81)
k=1

wherew;, are the normalized weighting coefficients fr.78).

The concept of the DPAF and DPAL filters is presented in Fig,. 1.6. The weights assigned to the pixels
surrounding the central pix@, are determined in different ways. In the DPAF approach, the weights in
(1.74) are calculated exploring all digital paths starting from the central pixel and crossing its neighbors,
(Fig.[1.6 a) and then a weighted average of the nearest neighbors of the central pixel is calfulajed, (1.75).

In the DPAL approach, the weights are obtained by exploring all digital paths leading from the central
pixel to any of the pixel in the filtering window, (Fig. 1.6 b) and then a weighted average of all pixels
contained in that window is calculatef, (1.81).

Although, both schemes work on supporting windows of the same size, determined by the number of

stepsy and the kind of neighborhood relatien, the DPAL has more powerful smoothing properties, as it
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involves all theN pixels from the filtering window into the averaging process, whereas the DPAF determines
the weighted output using only its nearest neighbors. The efficiency of the new class of filters DPAF and

DPAL is evaluated and compared with some of the standard filtering techniques in $edtion 1.6.

The computational complexity of the DPA filters depends on the path lengtid the number of paths,
which can be constructed in the supporting windidwof size (k x k). It is not hard to see that for large
k, which may be required in certain applications, the computational complexity of the filters makes them
inapplicable. To decrease the computational burden, another filter structure is introduced. In the Fast Digital
Paths Approach (FDPA), the size of the supporting windibws set to 8 x 3) independently of the digital
paths length.

It is possible to construct both the fast DPAF and fast DPAL filters, however their properties are quite
similar and therefore only the filtering approach based on DPAL, (denoted as FDPA) will be investigated.
Using the FDPA formulation a number of interesting properties of the proposed filtering structure can be
observed. For example, let us assume that paranfetesed in [(1.6p), is very smallj — 0. Then the
weights in [(1.6p) reduce to* (z,y) = w (z,y) /?, wherew (z, y) is the number of digital paths of length
n connecting points: andy, and(2 denotes the number of all possible digital paths starting fromhich

are totally included ifi¥/.

The examination of the convolution masks obtained in this way, reveals their similarity to the masks
obtained through Gaussian kernels. Therefore, the FDPA can be viewed as a non-linear generalization of

the Gaussian kernel based schemes, which are widely used in many image processing tasks.

The parameteg in (1.63,[1.71) regulates the smoothness of the similarity function. Since the filtering
structure of [(1.63) is a regression estimator, which enables a smooth interpolation among the observed,
noise-corrupted image vectors, the paramgterovides the required balance between smoothing and detail
preservation. Therefore, it is not surprising that the best results are obtained when the smoothing operators
F* in (1.69) and[(1.73) are applied in an iterative way. Starting with a low valyeesfables the smoothing
of the image noise components. At each iteration step the parathederbe increased, following a scheme
similar to that used in simulated annealing applications. In particalaan be increased exponentially:

B(k) = B(k—1)-a, k € N, wherex is the iteration number andis a design parameter. The increasing of

the 5 parameter causes that after a few iterations no further changes are introduced to the image, as for high
0 the filter output is that pixel, which lies on the geodesic digital path in the color space. The influence of

on the performance of the DPAL and FDPA filters is shown in Fig. |1.11. The valuei®hot critical for

the efficiency of the new filter class, and takindgrom the interval[l, 2] guarantees fast filter convergence

and good filtering results.
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1.5.4 Computational Complexity and Fast Filter Design

Apart from the numerical behavior of any proposed algorithm, its computational complexity is a realistic
measure of its practicality and usefulness, since it determines the required computing power and processing,
(execution) time. A general framework to evaluate the computational requirements of image filtering algo-
rithms based on fixed processing window is giveriin [13] and [84]. The requirement of this approach is that
the filter windowW is symmetric(k x k) and containg? vector samples of dimensiai In most image

processing applications a valke= 3 is considered, while for color RGB imagés= 3.

The computational complexity of a specific filter is given in terms of the total execution time needed for
a complete filtering cycle. The total time is calculated B$M E = > woppr - OPER, whereOPER
is the number of particular operations required for a complete cyclewaid:r is the relative weight of
this operation. In the following analysis the following operations are usddD S (additions),MU LTS
(multiplications), DIV S (divisions), SQRT'S (square roots)COM PS (comparisons)ARCCOS (arc
cosines) andv X PS (exponents). Mostlywv4pps is assumed to bg, while otherwopgr values depend
on the computing platform. The determination of the weights of different operations is beyond the scope of

this work.

Since the structure of the new filters is not based on fixed window, the methodology presehted in [13]
and [84] cannot be directly applied to evaluate the new filter class complexity. The computational burden of
the proposed filters depends mostly on the number of possible digital paths, which in turn depends on the
path length. For a given path of lengghthe number of simple patti3 can be easily computed. Talple]1.1
depicts the number of possible paths corresponding to the DPA and FDPA filters, [115, 116, 106, 104].

Table 1.1: Number of possible simple digital pathé dependence on path length

n 1] 2 3 4
DPA | 8 | 56 | 368 | 2336
FDPA | 8| 24| 56 69

The complexity of the DPA and FDPA filters can be determined as follows| [115, 116]
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1. Filtering of 1 pixel requires computation of all weight$ (see point 2)L({2 — 1) additions and
L - Q multiplications.
2. Computation of all weights* requires computation of all similarity functions’:" (see point 3),
Q) divisions and {2 — 1) additions.
3. Computation of all similarity functions"" requires2 computations of distancg), " (see point

4), (2 — 1) additions 2 multiplications and? computations of an exponent.

4. Computation of one distance),"” along pathm requiresn. computations of Euclidean distance
(if the Ly metric is used) andy — 1) additions.
5. Computation of one particular Euclidean distance requiresultiplications,2L additions and 1

square root.

Thus the total number of operations needed to implement the filters is

(2nLQ+ Qp+ LY — L —2) - ADDS + (Q+ LQ + 2n) - MULTS + +Q - DIVS + Q- SQRTS + Q- EXPS. (1.82)

Using the framework of [13] and assuming that the size of the processing windéwxig), the computa-
tional complexity for the VMF, BVDF and DDF can be evaluated, (Tab.1.2).

It should be emphasized at this point that the computational complexity analysis of the new filter was
based on straightforward application of the described algorithms without any consideration of a particular
implementation. However, it is possible to significantly reduce the computational complexity of the pro-
posed filters. To illustrate this, the FDPA filter is considered. The analysis of the filtering structure reveals
that thelL, distance should be evaluatgdimes for each path of length If the total number of paths in the
supporting window is2, the number ofL, norm evaluations i§2 - ). However, most of these calculations
are unnecessary, since values already computed for other paths can be used. For exaf@pte3nwain-
dow there are onlg0 possible distances to be calculated. These values can be computed and stored in order
to be used to determine the path related weights for a neighboring pixel. Furthermore, other techniques used
to improve the performance of the VMF presented.in [13] can be applied in the DPA or FDPA filter design.

Table[1.2 summarizes the total number of operation for different filter, with,Dd#oting the basic
DPA filter of lengthn, FDPA, denoting straightforward application of FDPA algorithms and FDfe
optimized version of FDPA. As can be seen the fast implementation of the proposed filter is computationally

more attractive than the VMF and it significantly outperforms filters based on angular distances.
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Table 1.2: Number of elementary operations for a complete processing cycle.

FILTER ‘ ADDS ‘ MULTS ‘ DIVS ‘ SQRTS‘ EXPS‘ COMPS‘ ARCCOS‘ TOTAL ‘

DPA; 947 228 56 112 56 — — 1399
DPA3 8827 1478 368 1104 368 — — 12145
FDPA, 403 100 24 48 24 — — 599
FDPAg 1139 230 56 168 56 — — 1649
FDPA; 169 22 24 9 24 — — 248
FDPA; 721 24 56 9 56 — — 866
VMF 33 186 63 — 21 — 8 — 278
VMF55 855 330 — 110 — 24 — 1319
BVDFsx3 | 375 210 21 21 — 8 21 656
BVDFsyx5 | 1970 1100 110 110 — 24 110 3424
DDF3x3 540 282 21 42 — 8 21 914
DDFs5 x5 2785 1455 110 220 — 24 110 4704

Table 1.3: Filters taken for comparison with the proposed noise reduction techniques.

Notation METHOD REF.
AMF Arithmetic Mean Filter [83]
VMF Vector Median Filter @l
BVDF Basic Vector Directional Filter [125,[123]
GVDF Generalized Vector Directional Filter [122]
DDF Directional-Distance Filter [42]
HDF Hybrid Directional Filter [36]
AHDF Adaptive Hybrid Directional Filter [36]
FVDF Fuzzy Vector Directional Filter [76]
ANNF Adaptive Nearest Neighbor Filter [81,182]

ANP-E Adaptive Non Parametric (Exponential) Filter [80,[83]

ANP-G Adaptive Non Parametric (Gaussian) Filter [80,[83]

ANP-D Adaptive Non Parametric (Directional) Filter [80,[83]

VBAMMF | Vector Bayesian Adaptive Median/Mean Filter [80,[83]

AD Perona-Malik Anisotropic Diffusion Filter with, [68,[67]
GD-PDE Geometric Diffusion PDE [126]
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Figure 1.9: Dependence of the efficiency of the P-M anisotropic diffusion filter and the DPAF o the
parametera) color image LENA contaminated with impulsive noisg,=€ 0.12, p1 = pa = p3 = 0.3), b)
test image corrupted by mixed noise, € 30, p = 0.12, p; = p2 = p3 = 0.3), ¢) andd) results obtained
with the P-M anisotropic diffusion filteg) andf) results obtained with the DPAF 5 (= 2). As expected

the maximum of PSNR is achieved fat close to 1.
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a)

Noisy image

c)

Noisy image

Figure 1.10: a) Test imageSQUARE b) SQUARE Figure 1.11: Efficiency of tha) DPAL andb) FDPA

image corrupted by impulsive noise, (green chalh-t€™mS of NCD and their dependence®and;3 for
nel), ¢ test imagePYRAMID d) PYRAMIDimage -ENAIMage corrupted by impulsive & 0.12, p1 =

corrupted by mixed impulsive and Gaussian noidg = P3 = 0-3) and Gaussian noise (= 30), (n =

(green channel). 2, third iteration).
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1.6 Efficiency of the New Filter Class

In this section the performance of the new filter class is evaluated comparing the results with some of the
noise reduction techniques listed in Tab.] 1.3 using synthetic and natural color images corrupted by Gaussian

and mixed Gaussian and impulsive noise.

1.6.1 Simulations Performed on Artificial Images

The use of nonlinear filters in color image processing is motivated primarily by the good performance of the
filters near edges and other sharp signal transitions. Edges are basic images features which carry valuable
information, useful in image analysis and object classification. Therefore, any nonlinear noise reduction
operator is required to preserve edges and smooth out noise without altering sharp signal transitions.

In this section some examples of the efficiency of the new filter class are presented in order to illustrate
its excellent noise reduction properties. To quantitatively evaluate the behavior of the proposed algorithms,
two color synthetic images were prepared. To examine the performance of the new filters in case of an
artificial step edge, a three-channel image caB€UAREof size (60 x 60) containing a square of size
(30 x 30) was generated, (Fifj. 1]10 a). Further, for the evaluation of the filter performance in case of a ramp
edge, a synthetic test image calR¥RAMIDwas constructed. The three-channel image of g9ex 90)
contains a top-cut pyramid, which is used to simulate a "ramp-edge” scenarid, (Fig. 1.10 c).

The test imag&sQUAREwas corrupted by multivariate impulsive noise following the model given by
Eq. (1.1.1) in Section 1} 1 with the degree of contaminagien0.1 andp; = p» = ps = 0.25, (Fig.[1.10 b).

The test imag®YRAMIDwas corrupted by mixed impulsive noise wjth= 0.1 andp; = p2 = p3 = 0.25
ando = 20, (Fig.[1.10 d).

The new techniques based on the Digital Paths Approach (DPAF, DPAL), and the Fast Digital Paths
Approach (FDPA) algorithms were compared in terms of objective quality criteria with the Vector Median
Filter (VMF), with the Arithmetic Mean Filter (AMF), with the classic Perona-Malik anisotropic diffusion
(AD) and other filtering techniques listed in Tab.]1.3.
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Figure 1.12: Three-dimensional representation of the results of noise attenuation in the green channel of the
SQUAREmMmage corrupted by impulsive noise, using the standard and new techniquedf, b) VMF, c)
AD, d) FDPA, e) DPAL ande) DPAF, (five iterationsy = 2).
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Figure 1.13: Three-dimensional representation of the results of noise attenuation in the the green channel
of the PYRAMIDimage corrupted by mixed Gaussian and impulsive noise using the standard and new

techniquesa) AMF, b) VMF, c) AD, d) FDPA, e) DPAL ande) DPAF, (five iterationsy = 2).
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Table 1.4: Comparison of the efficiency of th&able 1.5: Comparison of the new algorithms with
new algorithms with different techniques, (Tab.]1.3he techniques from (Tap. 1.3) using theENA color

using theLENA standard color image corrupted bymage corrupted by mixed Gaussian and impulsive

Gaussian noise of = 30. noise, ¢ = 30, p = 0.12, p; = pa = p3 = 0.25).
FILTER | NMSE | RMSE | SNR | PSNR | NCD FILTER | NMSE | RMSE | SNR | PSNR | NCD
[1077] [dB] [dB] [1074] [107%] | [dB] [dB] [1074]

NONE 420.55 | 29.075 | 13.762 | 18.860| 250.090|| NONE 905.93 | 42.674| 10.429| 15.528 | 305.55
AMF 66.452 | 11.558 | 21.775| 26.873 | 95.347 AMF 97.444 | 13.996| 20.112| 25.211| 95.80

VMF 87.314 | 13.248 | 20.589 | 25.688 | 117.170|| VMF 96.464 | 13.925| 20.156 | 25.255| 121.79
BVDF 279.54 | 23.705 | 15.536| 20.634 | 117.400|| BVDF 336.46 | 26.006 | 14.731| 19.829| 123.93
GVDF 76.713 | 12.418 | 21.151| 26.250 | 84.876 GVDF 91.118 | 13.534| 20.404 | 25.503 | 89.277
DDF 100.50 | 14.213 | 19.979| 25.077| 108.960|| DDF 110.62 | 14.912| 19.561| 24.660 | 113.39
HDF 66.584 | 11.569 | 21.766 | 26.865| 92.769 HDF 74.487 | 12.236| 21.279| 26.378 | 97.596
AHDF 60.166 | 10.997 | 22.206 | 27.305| 91.369 AHDF 68.563 | 11.740| 21.639| 26.738 | 96.327
FVDF 57.466 | 10.748 | 22.406 | 27.504 | 77.111 FVDF 108.76 | 14.786| 19.635| 24.734 | 111.22
ANNF 63.341 | 11.284 | 21.983| 27.082| 82.587 ANNF 75.652 | 12.332| 21.212| 26.310 | 86.836
ANP-E 60.396 | 11.018 | 22.190| 27.288| 76.896 ANP-E 90.509 | 13.488| 20.433| 25.532| 97.621
ANP-G 60.443 | 11.023 | 22.187 | 27.285| 76.890 ANP-G 90.523 | 13.489| 20.432| 25.531 | 97.603
ANP-D 58.389 | 10.834 | 22.337 | 27.435| 78.486 ANP-D 74.203 | 12.213| 21.296 | 26.394 | 85.026
AD 41.434 | 9.126 | 23.826 | 28.925| 69.482 AD 339.55 | 26.125| 14.691| 19.790| 113.65
GD-PDE | 34.530 | 8.296 | 24.618| 29.753| 72.100 GD-PDE | 59.371 | 10.924 | 22.264 | 27.363 | 77.510
DPAF 42.873 | 9.244 | 23.678| 28.813 | 82.814 DPAF 50.804 | 10.106 | 22.941| 28.040| 76.076
DPAL 43.005 | 9.258 | 23.665| 28.800| 77.932 DPAL 49.999 | 10.025| 23.010| 28.109| 72.851
FDPA 44913 | 9.462 | 23.476| 28.611| 84.918 FDPA 53.573 | 10.377| 22.711| 27.809 | 78.666
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In the DPAF, DPAL and FDPA filters, the paths of length= 2 with design parameters set@at= 20
anda = 1.2 were used. The AMF and VMF operated on a filtering window of $&e 3). Anisotropic
diffusion filter used in the experiments denoted as AD is a vector implementation of the Perona-Malik
anisotropic diffusion, which utilizes the conductivity functien (1.14), [67,/37]. For the AD filter the
parameters which gave the best results in terms of PSNR were used.

It should be pointed out that the parameters used for the FDPA, DPAF and DPAL filters were not optimal
and in majority of cases better results can be obtained for images corrupted by a specific noise process.
However in practical situations the optimal values of the design filter parameters are generally unknown and
therefore the experimental values of these parameters were used.

In case of images corrupted with Gaussian noise the AMF as expected gave better results than the VMF,
especially in the flat homogeneous regions, but it blurred heavily the image edges. Classical P-M anisotropic
diffusion gives good results for images corrupted with Gaussian noise of low intensity, but it requires many
iterations to smooth the image till its performance can be comparable with the new filter class in terms
of objective quality criteria. In case of images distorted by Gaussian noise process with, high PM
approach is not able to suppress the spikes, which leads to a poor overall performance.

The experimentations with images corrupted by mixed Gaussian and impulsive noise revealed as ex-
pected that the AMF filter introduces extensive smoothing into the image and impulses are still visible as
blurred 'bumps’. Anisotropic diffusion with parameters used in the experiments does not blur the image
edges but it leaves impulses almost unchanged, (of course when we increase the threshold parameter
(L.14) we can smooth the noise out but then the AD will also destroy the image edges). The VMF efficiently
reduces the noise component but tends to blur the edges and produces color blotches in flat image regions.
The results obtained using the DPAF, DPAL and FDPA filters confirm their excellent properties in case of
images corrupted by both impulsive and Gaussian noise.

The new filtering structure gives excellent results both in flat regions and also at the edges, (see Figs.
[1.12,1.18 and also 1.16). The results obtained with anisotropic diffusion and with filters proposed in this
work are quite similar in case of images corrupted by low intensity Gaussian noise. Both the schemes pro-
vide efficient smoothing in homogeneous image regions and achieve excellent edge preservation. However,
the new filters achieve its goal much faster and work efficiently even when the intensity of the Gaussian
noise is high, (Figl 1.15). For images corrupted with mixed Gaussian and impulsive noise neither the VMF
nor AMF provide acceptable results. While anisotropic diffusion filter smoothes out only the Gaussian noise
component and AMF introduces blurring, the DPAF, DPAL and FDPA filters performance is excellent. The
new filters remove outliers introduced by impulsive noise, and smooth flat noisy regions leaving the edges
of the objects almost unchanged. The simulations performed on the synthetic images revealed that:

e The VMF performs poorly in the presence of Gaussian noise.
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Figure 1.14: Comparison of the efficiency of the standard filters efficiency with the new filter class in terms
of @) PSNR and) NCD for different amounts of noise, (mixed Gaussian and impulsive noise intensities,
p = 0.01 —0.12,p1 = p2 = p3 = 0.3), ¢). EPM denotes a path in which with every step the distance

between the current point and the origin is increasiggc@ping Particle Modél

e The AMF works well in homogeneous regions with additive Gaussian noise.

¢ Classical Perona-Malik anisotropic diffusion (AD) scheme performs well in images corrupted by low

intensity Gaussian noise, but fails in the presence of impulsive noise.

e The proposed filtering class is able to suppress Gaussian as well as mixed Gaussian and impulsive
noise in homogeneous regions and also near edges. The obtained results confirm the much better

performance of the new filters when compared to the AMF, VMF and P-M AD scheme.

1.6.2 Filter Performance for Natural Color Images

The noise attenuation properties of different filters were examined using the color testiEfgewhich
has been contaminated by Gaussian and mixed Gaussian and impulsive noise in order to compare the new
filters with the filtering techniques listed in Tgb. [1.3. The test images were contaminated by additive Gaus-
sian noise o = 30 and also by mixed impulsiveo(= 0.12, p1 = p2 = p3 = 0.3) and Gaussian noise of
o = 30. As the results fot ENAandPEPPERSare consistent, only the results obtained viiEENAimage
will be reported.

The Root Mean Squared ErrpRMSE), Signal to Noise Ratio(SNR), Peak Signal to Noise Ratio
(PSNR),Normalized Mean Square Errp(NMSE) and theNormalized Color DifferencgNCD) [83] were
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Figure 1.15: Plots of PSNR in subsequent iterations for various filters applied to color LENA image

contaminated with Gaussiap, = 30) a) and mixed impulsive and Gaussian noise= 30, p = 0.12,

p1 = p2 = p3 = 0.3) b).

used for the analysis. The objective quality measures are defined by the following formulas

N M L z . 2
N M L 9 Z 2 Z (F (4,9) — F(%]))
RMSE = LZZZ(FI %)) F’(i,j)) .  NMSE = =17 ; —— :
(1.83)
N M L . 9
Zl Zule (.9) 255
_ i=lj=11= _

SNR = 10log - , PSNR = 201log (RMSE> , (1.84)

whereM, N are the image dimensions, arid (i, 7) and Fl(z‘,j) denote thé*® component of the origi-
nal image vector and its estimation at pixel positign;) , respectively. The NCD perceptual measure is
evaluated over the uniforth*u*v* color space. The difference measure NCD is defined as
N M
>i=1 Zj:l AE
N M 1
Zi:l ijl E

=

NCD =

L AR = (AL 4 (Au') + (AP, B = (L) + () + (o)),
(1.85)
whereAFE is the perceptual color error arfd* is thenormor magnitudeof the uncorrupted original color
image pixel in thel.*u*v* space.
Results obtained using the new filtering techniques are compared with the filtering algorithms from Tab.
1.3 in Tab[1.} and Tal). 1.5. For the denoising of both contamiriE&h images with the new filtering
techniques, predefined parameter values were used: path tergth 3 = 13, « = 1.2. For all evaluated

filters 10 iterations were performed and the best result in terms of PSNR is presented [n Tabs| 1.4, 1.5.
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Figure[1.11 depicts the efficiency of the proposed algorithms, (DPAL and FDPA) in terms of NCD
quality measure, as a function of the design parametarsd. It can be easily noticed that both algorithms
yield comparable results with a flat minimum of NCD, which ensures their robustness to optimal parameter
settings. The parameterensures quick convergence of the proposed filters to a stable state and as can be
seenin Figl good results can be obtained foreamythe rang€l, 2].

Figure[ 1.1} presents the efficiency of the DPAL filter applied to a scanned road map. The new filtering
technique was able to remove the raster structure, while image details such as roads, names etc. were
preserved and even enhanced. The VMF gives much worse results, raster texture is still visible and image
details are blurred.

Tableg .4 and 115 indicate that the new filters yields especially good results in case of images corrupted
by mixed Gaussian and impulsive noise. In addition to excellent noise attenuation properties, the new filters
restore the noisy images so that they have well preserved, and even enhanced edges and corners, which make
them interesting for many different computer vision applications, 1.16).

The best results for the Gaussian and mixed noise attenuation, for the majority of existing filters were
obtained after many iterations, while for filters based on the digital paths concept the best results were
achieved in the second or third iteration, (see Fig.|1.15).

The comparison of the new filters efficiency with some of the standard filters is presented[in Fig. 1.14,
where for different filters, the PSNR and NCD dependence on the amount of mixed impulsive and Gaussian
noise is shown. As the intensity of the noise increases, the quantitative results obtained using the new filters
become significantly better than those obtained by the standard filters, (AMF, VMF, DDF).

The simulations revealed that in the case of both Gaussian and mixed Gaussian and impulsive noise
very good results were obtained using the method GP-PDE, presented in [126, 127], which is based on
the gradient norm described in Sectjon 11.3.1. The visual comparison between the FDPA and the algorithm
GP-PDE[[126] 127] is shown in Fi. 1]18.

In conclusion, from the results listed in the Tables and shown in the Figures, it can be easily seen that
the new filters, especially the FDPA filter, provide consistently good results. The DPAF, DPAL and FDPA
filters can be seen as universal filters able to attenuate different types of noise, while preserving image edges
and corners. Simulation results show that the new class of filters yield favorable noise reduction results for

various kinds of color images in comparison with the standard adaptive smoothing algorithms.

The contribution of Rachid Deriche and David Tschumperle who evaluated the GP-PDE algorithin, [126,

127] on a set of noisy images used in this work is gratefully acknowledged.
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c) d)

Figure 1.16: Color test imagesNAa) andPEPPERS) with depicted regions of interes). The chosen
image regions were contaminated by mixed impulsjpve=(0.12, p; = p2 = p3 = 0.3) and Gaussian noise
of o = 30, d) and then restored with the DPAF methejland VMF,f).
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c)
Figure 1.17: Comparison of efficiency of the vector median with the DRAest image, (part of a scanned

map),b) VMF, (3 x 3 mask),c) DPAF, (5 = 20, « = 1.25,n = 2, 3 iterations).

d)

)

Figure 1.18: Comparison of the method proposef inl[126, 127] with the new approach (P image
HOUSEcontaminated with impulsive noisg & 0.1), b) GD-PDE [126/ 127]¢) DPAF,d) testimagd. ENA

contaminated with mixed impulsive and Gaussian nas&D-PDE,f) DPAF.
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