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ABSTRACT

Changeability, privacy protection, and verification accuracy are im-
portant factors for widespread deployment of biometrics based au-
thentication systems. In this paper, we introduce a method for effec-
tive combination of biometrics data with user specific secret key for
human verification. The proposed approach is based on discretized
random orthonormal transformation of biometrics features. It pro-
vides attractive properties of zero error rate, and generates revocable
and non-invertible biometrics templates. In addition, we also present
another scheme where no discretization procedure is involved. The
proposed methods are well supported by mathematical analysis. The
feasibility of the introduced solutions on a face verification prob-
lem is demonstrated using the well known ORL and GT database.
Experimentation shows the effectiveness of the proposed methods
comparing with existing works.

1. INTRODUCTION

Traditional methods of identity verification are based on knowledge
(e.g., passwords), or possession factors (e.g., ID cards) [1]. Such
methods afford low level of security since passwords can be for-
gotten, acquired by covert observation, while ID cards can be lost,
stolen, and forged. Biometrics based authentication systems confirm
an individual’s identity based on the physiological and/or behavioral
characteristics of the individual. Biometrics based method provides
direct link between the service and actual user. With biometrics,
there is nothing to lose or forget, and it is relatively difficult to cir-
cumvent [2].

A biometrics verification system is a one-to-one match that de-
termines whether the claim of an individual is true. A feature vector
xP is extracted from the biometrics signal of the authentication indi-
vidualU ′ , and compared with the stored templatexI of the claimed
identityU through a similarity functionS. The evaluation of a veri-
fication system can be performed in terms of hypothesis testing [3]:
H0: U ′ = U , the claimed identity is correct,H1: U ′ 6= U , the
claimed identity is not correct. The decision is made based on the
system thresholdt: H0 is decided ifS(xP , xI) ≤ t andH1 is de-
cided if S(xP , xI) > t. A verification system makes two types of
errors: false accept (decidingH0 whenH1 is true), and false reject
(decidingH1 whenH0 is true). The performance of a biometrics
verification system is usually evaluated in terms of false accept rate
(FAR, P(H0|H1)), false reject rate (FRR,P(H1|H0)), and equal er-
ror rate(EER, operating point where FAR and FRR are equal). The

FAR and FRR are closely related functions of the system decision
thresholdt.

While biometrics technology provides various advantages, there
exist some major problems. 1.Changeability: Biometrics can not be
easily changed and reissued if compromised due to the limited num-
ber of biometrics traits that human has. Ideally, just like password,
the users should use different biometrics representation for differ-
ent applications. When the biometrics template in one application
is compromised, the biometrics signal itself is not lost forever and a
new biometrics template can be issued [2]. 2.Privacy: Biometrics
data reflects the user’s physiological/behavior characteristics, if the
storage device of biometrics templates is compromised, the user’s
privacy may be revealed. The biometrics templates should be stored
in a format such that the user’s privacy is preserved even the stor-
age device is compromised. 3.Accuracy: Unlike knowledge or
token based systems where exact match can be obtained, biomet-
rics systems are based on fuzzy match due to the noisy nature of
biometrics data. This fuzzyness deteriorates the performance of bio-
metrics systems, and in general zero error rate can not be achieved
by using biometrics alone. This characteristic of biometrics limits
the widespread deployment in large scale and high security.

Existing solutions for changeable and privacy preservable bio-
metrics are intentional transformation [3] or binding of biometrics
with random cryptographic keys [2]. The major challenge in the for-
mer lies in the difficulty of preserving the verification performance
in the transformed domain, while the latter in the error tolerant ca-
pability to retrieve the key from noisy biometrics data. A common
problem with existing works is the lack of strong verification accu-
racy. In this paper, we propose an approach for strong combination
of biometrics with user specific secret key to generate changeable
and privacy preservable biometrics, while producing zero error rate.
To elaborate our approach, we also discuss another scheme where no
discretization is applied on the transformed features. In this scheme,
the template has the same level of security as that of the secret key,
but it provides good property that exactly the same performance can
be preserved as the original features in the stolen key scenario.

In this paper, we demonstrate the analysis in a face verification
scenario due to high user acceptability, easy to capture, and low
cost properties of face biometrics. The proposed framework can
find wide applications in physical access control, ATM, and com-
puter/network login. However, the methods are general enough and
can also be used in conjunction with other biometrics signals. The
remainder of this paper is organized as follows. In section 2, we re-
view the related works. Section 3 introduces proposed methods and

1-4244-1549-7/07/$25.00
©2007 IEEE 2007 Biometrics Symposium



provides probabilistic analysis. Experimental results along with de-
tailed discussion are presented in Section 4. Finally, conclusion and
future works are provided in Section 5.

2. RELATED WORKS

A number of research works have been proposed in recent years to
address the changeability and privacy problems of biometrics sys-
tems. Among the earliest efforts, Soutar et al [4] presented a cor-
relation based method for fingerprint verification, Davida et al [5]
proposed to store a set of user specific error correction parameters as
template for an iris based system. However, Soutar et al, and Davida
et al’s words are lack of practical implementation and can not pro-
vide rigorous security guarantees [2].

In [6], Juels and Wattenberg introduced a error correction based
method, fuzzy commitment scheme, which generalized and improved
Davida’s methods. Feng et al [7] and Kevenaar et al [8] subse-
quently implemented similar schemes on iris and face biometrics re-
spectively. Later, a polynomial reconstruction based scheme, fuzzy
vault, is proposed by Juels and Sudan [9], and a few implementation
works have been reported in [10][11] based on fingerprints. In gen-
eral, these methods [6-11] provide enhanced security by combining
biometrics features with randomly generated keys. However, except
Feng et al’s method for iris, the rest of the works all produce unac-
ceptable high FRR.

Recently, Teoh et al [12] introduced a BioHashing method which
produces changeable, non-invertible biometrics template, and also
claimed good performance, near zero EER. The BioHashing method
is a two factor authenticator based on iterated inner product between
tokenised pseudo-random number and user specific biometrics fea-
tures [12]. The technique has been applied on various biometrics
traits [13][14] and demonstrates zero or near zero equal error rate.
Kong et al [15] points out that the good performance of BioHash-
ing are based on impractical assumption that the secret key can not
be stolen. They also showed that the performance will be degraded
if the key is stolen through experimental results. Lumini et al [16]
introduce some ideas to improve the performance of BioHashing in
case of stolen token by utilizing different threshold values and fuse
the scores.

The BioHashing method provides significant improvement in
terms of verification accuracy. However, as shown in the analysis
and experiments in later sections, the performance of BioHashing
depends on the characteristics and dimensionality of biometrics fea-
tures, and generally can not produce zero EER. In this paper, we
introduce methods that produce zero EER and are independent of
characteristics and dimensionality of the extracted features. Experi-
mental results show that the proposed methods outperforms the ex-
isting works.

3. METHODOLOGY

This section presents the proposed methods for face based human
verification. Fig. 1 depicts the diagrammatic representation of the
proposed solution. A set of biometrics features is first extracted
from the user’s face images. The feature extraction module provides
discriminant and low dimension biometrics representation. The ex-
tracted features are then combined with user specific inputs, which is
associated with a secret key, and the generated templates are stored
for authentication. To produce changeable and privacy preservable
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Fig. 1. General framework of proposed verification system

biometrics template, the combination should be performed such that
the original face features will not be revealed if the templates are
compromised. The verification will be successful if and only if both
the correct biometrics and secret key are presented.

In this section, we first give a brief description of the applied
feature extraction methods. We then detail the proposed schemes for
combination of biometrics and user specific secret key to produce
changeable and privacy preservable biometrics template. Specifi-
cally, we present two schemes that are both based on random or-
thonormal transformation, while differ in a discretization procedure
and corresponding performance enhancing methods.

3.1. Feature Extraction

To study the effects of different feature extractors on the perfor-
mance of proposed methods, we compare Principal Component Anal-
ysis (PCA) and Kernel Direct Discriminant Analysis (KDDA) .PCA
is an unsupervised learning technique which provides an optimal,
in the least mean square error sense, representation of the input in
a lower dimensional space. In the Eigenfaces method [17], given
a training setZ = {Zi}C

i=1, containingC classes with each class
Zi = {zij}Ci

j=1 consisting of a number of face imageszij , a total of

M =
PC

i=1 Ci images, the PCA is applied to the training setZ to
find theM eigenvectors of the covariance matrix,

Scov =
1

M

CX
i=1

CiX
j=1

(zij − z̄)(zij − z̄)T (1)

wherez̄ = 1
M

PC
i=1

PCi
j=1 zij is the average of the ensemble.

The Eigenfaces are the firstN(≤ M) eigenvectors corresponding to
the largest eigenvalues, denoted asΨ. The original image is trans-
formed to the N-dimension face space by a linear mapping:

yij = ΨT (zij − z̄) (2)

PCA produces the most expressive subspace for face representa-
tion, but is not necessarily the most discriminating one. This is due
to the fact that the underlying class structure of the data is not con-
sidered in the PCA technique. Linear Discriminant Analysis (LDA),
is a supervised learning technique that provides a class specific solu-
tion. It produces the optimal feature subspace in such a way that the
ratio of between-class scatter and within-class scatter is maximized.
PCA and LDA are linear solutions, and provides good performance
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in many cases. However, as the complexity of the face pattern in-
creases, linear methods may can not provide satisfying performance.
In such a case, nonlinear models are introduced to capture the com-
plex distribution. In [18], different linear and nonlinear methods
were compared in a complex generic database. It was shown that
KDDA outperforms other techniques in most of the cases. There-
fore we also adopt KDDA in this paper.

KDDA was proposed by Lu et al [19] to address the nonlineari-
ties in complex face patterns. Kernel based solution find a nonlinear
transform from the original image spaceRJ to a high-dimensional
feature spaceF using a nonlinear functionφ(·). In the transformed
high-dimensional feature spaceF , the convexity of the distribution
is expected to be retained so that traditional linear methodologies
such as PCA and LDA can be applied. The optimal nonlinear dis-
criminant feature representation ofz can be obtained by:

y = Θ · ν(φ(z)) (3)

whereΘ is a matrix representing the found kernel discriminant sub-
space, andν(φ(z)) is the kernel vector of the inputz. The detailed
implementation algorithm of KDDA can be found in [19].

3.2. Random Orthonormal Transformation (ROT)

To produce changeable biometrics representation, the extracted face
featuresy is converted to a new feature vectorx by a repeatable
transformation. The first scheme is based on random orthornormal
transformation (ROT) of shifted biometrics features. The procedure
of producing the shifted ROT feature vector is as follows:

1. Extract feature vectory ∈ <N from the biometrics data

2. Generate a new feature vectorys = y + d, d ∈ <N and the
elementsdi >> t, wheret is the system threshold.

3. Use a user specific keyk to generate a pseudo-random matrix,
and apply the Gram-Schmidt method to transform it into an
orthogonal matrixQ of sizeN× N.

4. Compute shifted ROT feature vectorx = QT ys.

In this scheme, Euclidean distance is used as the similarity measure
functionS. Throughout this paper, we use the subscriptsP andI to
represent the authenticate individual and the template of the claimed
identity respectively. In a true user authentication scenario, the cor-
rect key is presented, thenQP = QI . SinceQP QT

I = I, whereI is
the identity matrix, we have:

S(xP , xI) = ‖QT
P (yP + d)−QT

I (yI + d)‖2
= ‖QT

P yP −QT
I yI‖2

= ‖QT
P yP ‖2 + ‖QT

I yI‖2 − 2(QT
P xP )T (QT

I yI)

= ‖yP ‖2 + ‖yI‖2 − 2yT
P QP QT

I yI

= ‖yP ‖2 + ‖yI‖2 − 2yT
P yI

= ‖yP − yI‖2 (4)

As shown in Equation 4, the ROT exactly preserves the similarity of
original face feature. This also accounts for the stolen key scenario,
where an imposter steals the secret key of the claimed identity, and
use his own biometrics for verification. In this case, the verification
performance will be the same as the original face features.

Let’s consider a scenario where an imposter tries to authenticate
as the true user. Since different users are associated with distinct
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Fig. 2. Demonstration of computing probability of error in 2-D
space

keys, thereforeQP 6= QI . To quantify the probability of error and
illustrate the importance of shifting the face features (step 2), we first
consider a case where ROT is applied on the extracted face features
directly, i.e.,x = QT y. The FAR corresponds to the probability
of decidingH0 when H1 is true, P (H0|H1), and the FRR corre-
sponds toP (H1|H0). Let’s select the system thresholdt such that
P (H1|H0)=0. Since the transformation is orthonormal and random,
the ROT of a point in N-D space corresponds the rotation of point in
the hyper-sphere whose radius is specified by the length of the point.
We have:

P (H0|H1) = P (lxI − t ≤ lxP ≤ lxI + t, S(xI , xP ) ≤ t) (5)

wherelxI and lxP represent the length of the template and au-
thenticate vector respectively. As shown in Fig. 2, the computation
of Equation 5needs to be split into two cases:lxI ≤ t andlxI > t. In

2-D space,P (S(xP , xI) ≤ t|lxI − t ≤ lxP ≤ lxI + t) = πt2

π(lxI
+t)2

when lxI ≤ t, andP (S(xP , xI) ≤ t|lxI − t ≤ lxP ≤ lxI + t) =
πt2

π(lxI
+t)2−π(lxI

−t)2 when lxI > t. This can be easily extended to

N-D space, where the volume of a N-D hypersphere with radiusr is

defined as [20]:VN = SN rN

N , whereSN is the hyper-surface area of
anN-sphere of unit radius. In N-D space, we have:

P1 = P (S(xP , xI) ≤ t|lxI − t ≤ lxP ≤ lxI + t, lxI ≤ t)

=
SN tN

N
SN (lxI

+t)N

N

=
tN

(lxI + t)N

P2 = P (S(xP , xI) ≤ t|lxI − t ≤ lxP ≤ lxI + t, lxI > t)

=
SN tN

N
SN (lxI

+t)N

N − SN (lxI
−t)N

N

=
tN

(lxI + t)N − (lxI − t)N

P (H0|H1) = P (lxI ≤ t)P (lxP ≤ lxI + t|lxI ≤ t)P1 (6)

+P (lxI > t)P (lxI − t ≤ lxP ≤ lxI + t|lxI > t)P2

From Equation 6, it is clear that the probability of false accept
depends on the characteristics and dimensionality of the features. In
general, zero error rate can not be achieved by directly apply ROT
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on the extracted face features. However, sinceP (lxP ≤ lxI +t|lxI ≤
t)P1 ≤ 1, andP (lxI > t)P (lxI − t ≤ lxP ≤ lxI + t|lxI > t) ≤ 1,
Equation 6 can be simplified as:

P (H0|H1) ≤ P (lxI ≤ t) +
tN

(lxI + t)N − (lxI − t)N
(7)

This probability can be minimized by adding an extra vectord ∈
<N , di >> t, to the extracted face features,ys = y + d, such that
after ROT,P (lxI < t) = 0. We have:

P (H0|H1) ≤ tN

(lxI + t)N − (lxI − t)N
(8)

and
lim

t
lxI
→0,∀N

P (H0|H1) = 0 (9)

By using the proposed method, both zero FAR and FRR can be
achieved. It should be noted that the stolen biometrics scenario also
complies with the above analysis, since thexP in Equation 5 can
also be generated from the true user’s biometric features. Therefore
it has the same performance as both-non-stolen scenario. This also
explains the changeability of our methods. After generating a new
biometric templates, the old templates can not be used for successful
authentication.

3.3. Discretized Random Orthonormal Transformation (DROT)

The proposed shifted ROT method provide changeable biometrics
template, and produce zero error rate. However, it only offers lim-
ited security since the ROT is invertible. If the storage and the se-
cret key are both compromised, the original face features of the user
will be revealed. To overcome this problem, we propose another
scheme which discretizes the random orthonormal transformation of
the original features. The discretization is non-invertible, therefore
this method provides more rigorous security.

The procedure of producing the discretized ROT feature vectors
are as follows:

1. Extract feature vectory ∈ <N from the biometrics data

2. Use a user specific keyk to generate a pseudo-random matrix,
and apply the Gram-Schmidt method to transform it into an
orthogonal matrixQ of sizeN× N.

3. Compute feature vectoru = QT y.

4. Compute theN bits codebi,i = 1, ..., N , according to:

bi =

(
0, ifui < τ
1, ifui ≥ τ

whereτ is a preset threshold (usually 0).

5. Use keyk to generate a set ofM random bitsd, M À N, .

6. GeneratingN+ M dimension code by concatenatingb andd,
x = [b d].

The first four steps in the above procedure correspond to the
best performance scenario in the BioHashing method [12]. Unlike
the shifted ROT method, the discretized ROT method utilizes Ham-
ming distance as the metric to measure the distance between two bit

strings. To quantify the probability of error, let’s first consider the
case whereb is used for verification (i.e., BioHashing). Since the or-
thonormal transformation is random, we can assume each bit inb is
random. Lett be the system threshold in terms of Hamming distance,
and thet is selected such thatP (H1|H0)=0, then the probability of

false acceptP (H0|H1) =
Pt

i=0 (N
i )

2N . This probability (therefore
the performance of BioHashing) depends on two factors, the sys-
tem thresholdt and dimensionN. The system thresholdt depends
on the separability of biometrics features in terms of Hamming dis-
tance. It is also not suitable to increase the dimension of extracted
face features as will since increase of feature dimension may also
increase system threshold. However,P (H0|H1) can be minimized
by appendingM, M À N, extra random bits associated with each se-

cret key to vectorb, such thatP (H0|H1) =
Pt

i=0 (N
i )

2N+M , and we have
limm→∞,∀N,t P (H0|H1) = 0.

The attachment of random bits does not increase the system
threshold sinced is unique for every user. For different users, the
added bits are different, which is equivalent to increase the Hamming
distance between different users. Therefore, by adding sufficiently
large number of random bits, we can produce zero error rate. For ex-
ample, even in relatively low dimension and high threshold scenario,
let N = 20 andt = 10, thenP (H0|H1) = 0.5881. If we add 100
random bits to the bit string, thenP (H0|H1) = 1.53× 10−17 ≈ 0.

4. EXPERIMENTS AND DISCUSSION

To evaluate the performance of proposed methods, we conducted our
experiments on two sets of face databases: ORL [21] and GT [22].
The ORL database contains 400 face images from 40 subjects with
10 images each. The GT database contains 750 images of 50 people
with 15 images each. The face images in GT database have larger
pose and illumination variation than the ORL database. The original
images in GT database were taken on cluttered background. In this
work, we use the cropped data set generated by manually determined
label filters. In both database, the first five images of each subject are
used as training samples as well as gallery sets. The rest images of
each subject are used as probe samples. The classification is based
on nearest neighbor.

Our evaluation is based on equal error rate (EER), which is de-
fined as the operating point at which false accept rate (FAR) and
false reject rate (FRR) are equal, i.e.,EER = (FAR + FRR)/2
[12]. As illustrated in Section 3, the stolen biometrics scenario is the
same as the both-non-stolen case. Therefore only analyzing both-
non-stolen and stolen key scenarios will be sufficient. A description
of the abbreviations of the terminologies used in the paper is given in
Table 1. In the shifted ROT method, all extracted features are shifted
by di = 1010, while M = 200 random bits are added in the dis-
cretized ROT method. To minimize the effect of randomness, all the
experiments were performed 5 times, and the average of the results
are reported.

Fig. 3 depicts the EER as a function of feature dimensions when
PCA and KDDA are used as feature extractors respectively. The
EER obtained at the highest dimensionality of our experimental set-
ting are reported in Table 2. In general, The ROT-O and DROT-BH
methods can not produce zero EER, while ROT-S and DROT-RB
achieve zero EER in all dimensions. This complies with our analy-
sis in Section 3. In the stolen key scenario, The ROT based meth-
ods exactly preserve the performance of original face features, but
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Name Description
ROT-O ROT on original face features
ROT-S ROT on shifted face features
ROT SK ROT stolen key scenario
DROT-BH BioHashing method
DROT-RB DROT with added random bits
DROT SK DROT stolen key scenario

Table 1. Description of abbreviations of terminologies
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Fig. 3. EER obtained as a function of feature dimension by using
PCA and KDDA as feature extractors

the performance of DROT methods degrades since the discretization
procedure corrupts the representation of biometrics features. The
performance of DROT based methods is improved as the dimension-
ality increases, but leveled off after a certain dimension. This is due
to the inherent discriminant capability of the face features.

PCA KDDA
ORL(100) GT(100) ORL(39) GT(49)

ROT SK 6.78 18.09 7.19 15.08
DROT SK 6.35 20.13 16.53 23.03

ROT-O 2.09 12.75 0 2.01
DROT-BH 1.52 10.39 0.21 0.06

ROT-S 0 0 0 0
DROT-RB 0 0 0 0

Table 2. EER (%) obtained by using PCA and KDDA as feature
extractors (with feature dimension in (-) )

KDDA has similar performance as PCA in the ORL dataset, but
offers improvement in the GT dataset. This is in line with the experi-
ments shown in [18], that KDDA is a more advanced technique, and
particularly as the complexity of dataset increase, the nonlinearity
becomes more severe. Furthermore, it can be observed that the Bio-
Hashing method produces near zero EER at appropriate high dimen-

KDDAPCA KDDAPCA

Fig. 4. Distribution of PCA and KDDA coefficients
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Fig. 5. ROC curve of DROT v.s. normalized DROT

sions. However, the tradeoff of the improvement in BioHashing is
the significant degradation in the stolen key scenario, which in some
cases is even worse than PCA. This is due to the fact that threshold-
ing method adopted in BioHashing is equivalent to use only the angle
information between vectors for classification purpose. More pre-
cisely, the classification is based on the closeness of the orthants that
the feature points fall into. For better discretization consequence,
the feature points should be well spread over the whole plane with
respect to each dimension.

The distributions of the first two PCA and KDDA coefficients of
five subjects in GT dataset are plotted Fig. 4. It is clear that PCA co-
efficients are well spread in the plane since PCA has a normalization
procedure to produce zero mean along each dimension (see Equa-
tion 2). KDDA has a more compact representation since no such
normalization is performed (see Equation 3). In BioHashing, The
compact representation of KDDA produces smaller system threshold
t, and therefore better performance. But this compact representation
also corrupt the separability of discretized code. To produce good
discretization in case of stolen key, it is important to normalize the
KDDA features. In this paper, we normalize the KDDA features by
subtracting the mean vector of the training data. We perform exper-
iments on the maximum dimension of each dataset, i.e., 39 for ORL
and 49 for GT. Fig. 5 shows the ROC curve of different methods
when KDDA and normalized KDDA features are used, while Table
3 details the results in terms of FAR, FRR, and EER.

It can be seen that the performance of DROT in stolen key sce-
nario approaches and sometimes even outperforms that of KDDA
after the normalization procedure. The BioHashing results degrade
using the normalized features. This is due to the normalization pro-
cedure increase the system thresholdt and therefore the error. How-
ever, by utilizing the proposed methods of adding random bits, zero
EER can be achieved.
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ORL(39) GT(49)
FAR FRR EER FAR FRR EER

KDDA 6.88 7.5 7.19 14.76 15.4 15.08
DROT SK 16.8 16.25 16.53 22.13 23.92 23.03
DROT-BH 0.17 0.25 0.21 0.08 0.04 0.06
DROT-RB 0 0 0 0 0 0

DROT SK(N) 7.26 6.1 6.68 14.23 16.2 15.21
DROT-BH(N) 6.21 5.35 5.78 8.83 10.68 9.75
DROT-RB(N) 0 0 0 0 0 0

Table 3. Experimental results (in %) of different methods on
KDDA and normalized KDDA features (”N” denotes normalized)

5. CONCLUSION

This paper introduced a systematic framework for addressing the
challenging problem of template changeability and privacy protec-
tion in biometrics-enabled authentication systems. The proposed
method is based on discretized random orthonormal transformation,
which is associated with a user specific secret key. By using different
keys, distinct biometric templates can be generated. The discretiza-
tion procedure is non-invertible, therefore the privacy of users can
be protected. Our method provides functional advantage in that zero
error rate can be achieved. In the stolen key scenario, we show that
the proposed method maintains the performance of original features
at appropriate high dimension. In addition, we also introduce an-
other method where random orthonormal transformation is applied
on shifted biometric features. This method is less secure since the
transformation is invertible, but it provides exactly the same perfor-
mance as the original features in the stolen key scenario regardless
of the characteristics and dimensionality of the biometrics features.

A detailed mathematical analysis on the proposed framework
was provided in this work. The experiments demonstrated the effec-
tiveness of the proposed approaches comparing with existing works.
Although we focus on face based verification, the proposed meth-
ods are general and can also be applied to other biometrics. In the
future, we are going to work on more advanced feature extraction
techniques to improve the performance in the stolen key scenario.
Discretization methods that preserves the representation of features,
while provide non-invertible properties will also be investigated.
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