
Narrowband Interference Suppression via Nonlinear Estimation

K.N. Plataniotis
School of Computer Science

Ryerson Polytechnic University, Toronto, M5B 2K3, ON, Canada
kplatani@acs.ryerson.ca

A.N. Venetsanopoulos
Department of Electrical & Computer Engineering

University of Toronto, Toronto, M5S 3G4, ON, Canada
anv@dsp.toronto.edu

Abstract

The problem of narrowband interference suppression
in impulsive noise environments is considered in this pa-
per. To suppress the interference we introduce a new non-
linear estimator. The proposed estimator can be applied
to any discrete time, linear system which is observed in
additive non-Gaussian measurement noise. The new fil-
ter is recursive, computationally efficient and with signifi-
cantly improved performance over other linear and nonlin-
ear schemes which are currently used for interference sup-
pression.

1. Introduction

Estimation (filtering) theory has received considerable
attention in the past four decades, primarily due to its prac-
tical significance in solving engineering and scientific prob-
lems. As a result of the combined research efforts of many
scientists in the field, numerous estimation algorithms have
been developed. These can be classified into two major cat-
egories. Namely, linear and nonlinear filtering algorithms,
corresponding to linear (or linearized) physical dynamic
models with Gaussian noise statistics and to nonlinear or
non-Gaussian physical models.

The linear estimation problem in particular, has attracted
considerable attention as can be seen in books and sur-
veys of the subject [1]. The discrete linear, state estimation
problem is described by the following model equations and
statement of objective:

x(k + 1) = �(k + 1; k)x(k) + w(k) (1)

z(k + 1) = H(k + 1)x(k + 1) + v(k + 1) (2)

wherex(k) is the n-dimensional state process,z(k) is
the m-dimensional measurement process, w(k) is the associ-
ated state noise, modeled as an uncorrelated white Gaussian
sequence with covarianceQ(k) and v(k) is the observa-
tion (measurement) noise, modeled as an uncorrelated white
Gaussian sequence with covarianceR(k) . The initial state
vectorx(0) is Gaussian with mean valuêx(0) and covari-
ance P (0) . It is also assumed independent of the noise
processes8k > 0 . Given the set of measurementsZk =
[z(1); z(2); :::; z(k�1); z(k)] , we desire themean-squared-
error optimal filtered estimatêx(kjk) = E(x(k)jZk) of the
statex(k) given the recordZk .

The above problem was first solved by Kalman who ob-
tained its well known filter [1]. The so called Kalman filter
is the optimal recursive estimator for the above problem. It
must be emphasized that the Kalman filter is the optimal es-
timator if the processesw(k) and v(k) are Gaussian. The
performance of a linear estimator developed under the as-
sumption of additive Gaussian noise can be degraded by the
non-Gaussian noise due to the deviation from normality in
the tails of the noise distribution [2]. Thus, if either of the
noise processes in (1)-(2) are non-Gaussian, the measure-
ment z(k) will be non-Gaussian, and the degradation in
the performance of the Kalman filter is rather dramatic.

In most cases,w(k) , which is in fact a tuning parameter
that greatly depends on the filter designer, can be modeled
as a Gaussian process. However, this is not the case for the
observation noise v(k). Many physical environments can be
modeled more accurately as non-Gaussian rather than Gaus-
sian observation channels and are characterized by heavy-
tailed non-Gaussian distributions. Thus, the development
of an efficient and ‘robust’ filter which can provide accu-
rate and reliable estimates in the presence of non-Gaussian
measurement noise is of paramount importance [2], [3]. In
this paper, our objective is to develop an efficient nonlin-



ear filter for state estimation when the observation noise is
non-Gaussian and the actual signal has a linear state space
representation.

2. Filtering in Non-Gaussian Noise

Several models have been used to date to model non-
Gaussian noise environments. Some of these models have
been developed directly from the underlying physical phe-
nomenon, most notably theMiddleton Class A, B and C
model [4]. On the other hand, empirically devised noise
models have been used over the years to approximate many
non-Gaussian noise distributions. Based on the Wiener ap-
proximation theorem, any non-Gaussian noise distribution
can be expressed as, or approximated sufficiently well by,
a finite sum of known Gaussian distributions. This ap-
proximation procedure has been used in the development of
approximate empirical distributions which relate to many
physical non-Gaussian phenomena. A special case of the
Gaussian sum approach, the� � mixture , is of particu-
lar interest. This model can be used to describe a nominal
Gaussian noise environment with an impulsive or ‘heavy-
tailed’ component. The probability density function for
such a model can be written asf(x) = (1 � �)fG(x) +
�fnG(x) where � 2 (0; 1) , fG is the pdf of the nominal
or background Gaussian density function, andfnG is the
pdf of the dominant non-Gaussian noise often taken to be a
heavy-tailed density, such as a Laplacian density or a Gaus-
sian density with a large variance (covariance). The mixing
parameter� regulates the contribution of the non-Gaussian
component. Usually it varies between0:01 to 0:25 [7].
When a Gaussian density with large variance is used to em-
ulate the non-Gaussian dominant component, the ratio of
the dominant to nominal density variancesk is on the or-
der of 10 to 10; 000 [7], [8]. Due to its flexibility, many
different naturally occurring noise distribution shapes can
be approximated using the��mixture approach.

The Gaussian sum approximation is applied to the prob-
lem of state estimation in non-Gaussian measurement noise.
The system model (1)-(2) is used, however, it is assumed
that the density function of the measurement noisev(k) is
not Gaussian but a linear combination of Gaussian terms,
such asf(v(k)) =

Pl

i=1N(�i; Ri) Such an assumption
about the noise statistics results in a predictive measurement
density f(z(k)jx(k); Zk�1) which has a similar form. A
number of filtering techniques have been derived utilizing
such empirical noise modeling schemes to tackle the prob-
lem of estimating the state of a linear system in a non-
Gaussian noise environment. In particular, Sorenson and
Alspach [5] considered the case where both the state and
the measurement noise sequences are non-Gaussian. They
have assumed that the noise sequences have a uniformly
convergent series expression in terms of known Gaussian

distributions. They used a fixed number of Gaussian terms
with known moments in a truncated approximation series
to develop an optimal, under these assumptions, minimum
mean square error filtering algorithm. The output of the
Gaussian sum filter is formed by combining the outputs of a
bank of Kalman filters, each one matched to a specific term
of the Gaussian sum. The major disadvantage of their ap-
proach however, is its computational complexity since the
numerical computations in the filter increase almost expo-
nentially in time. In the Gaussian case, the number of terms
involved in the derivation of the optimal Kalman filter re-
main constant. If however, for any time index(k) the den-
sity f(x(k)jZk�1) is a Gaussian mixture of(l1) compo-
nents and the distributionv(k) contains(l2) components,
then the combined density needed for the next step calcu-
lations is a mixture with(l1xl2) components. Thus, the
computational burden at each stage becomes larger as the
number of terms increases in the mixture used in the cal-
culations. Thus, the Gaussian sum method is not attractive
and in many cases is not feasible in practice due to its com-
putational complexity. In an attempt to alleviate the compu-
tational burden associated with the Gaussian sum approach,
Masreliez proposed a different filtering methodology based
on the so called ‘score-function’. His approximate condi-
tional mean filter is computationally more efficient than that
of Alspach and Sorenson, but requires the use of problem
dependent nonlinearities in the filter gain and a rather de-
manding convolution operation in the development of the
nonlinear score function [6].

A new filter which is computationally attractive and does
not require any problem dependent nonlinearities in its de-
sign is introduced in this paper. The new filter, called
Bayesian Adaptive Filter, utilizes the same methodology
with that of the ‘ Gaussian Sum filter’ [5]. However, in or-
der for the procedure to be practical the number of terms
in the mixture is controlled at each step. A Bayesian
learning technique is employed to collapse the resulting
non-Gaussian sum mixture to an equivalent Gaussian term.
Thus, at the end of the current cycle of the filter, the result-
ing Gaussian mixturef(z(k)jx(k); Zk�1) is collapsed and
approximately represented with only one equivalent Gaus-
sian term. In the next filtering cycle, the calculations in-
volve only the l terms used in the representation of the
measurement noise, resulting in fixed complexity. In this
way the new filter resolves the computational burden of the
Gaussian Sum filter without the use of any problem depen-
dent nonlinearities, such as those required by the Masreliez
filter.

The main points of our strategy can be summarized as
follows:

� For each Gaussian term, which describes the observa-
tion noise, a dedicated Kalman filter is employed.



� Based on the interim results from these dedicated
Kalman filters we obtain a Bayesian a-posteriori es-
timate of the Gaussian mixturef(z(k)jx(k); Zk�1)
required in the filtering process.

� The optimal (in the minimum mean square error sense)
Gaussian approximation for the above mixture is de-
rived. Then the first two moments of this equivalent
Gaussian term are used to complete the filtering cycle
of a recursive, Kalman-like filter.

The equations of the new filter are summarized in the
following theorem:

Theorem 2.1 Nonlinear filter for state estimation in non-
Gaussian observation channels

x̂(kjk � 1) = �(k; k � 1)x̂(k � 1jk � 1) (3)

P (kjk�1) = �(k; k�1)P (k�1jk�1)�(k; k�1)�+Q(k�1)
(4)

with initial conditionsx̂(0j0) = x(0) andP (0j0) = P (0) .

ẑ(kjk � 1) =

lX

i=1

wi(k)ẑi(kjk � 1) (5)

ẑi(kjk � 1) = H(k)x̂(kjk � 1) + �i (6)

Pz(kjk�1) =

lX

i=1

(Pzi(kjk � 1) + ~z(kjk � 1)~z(kjk � 1)
�
)wi(k)

(7)

~z(kjk � 1) = (ẑ(kjk � 1)� ẑi(kjk � 1)) (8)

Pzi(kjk � 1) = H(k)P (kjk � 1)H� (k) +Ri (9)

wi(k) =
((2�)

�m
jPzij

�1
exp(�0:5(jj~z(kjk � 1)jj

2
P
�1

zi
(kjk�1))))ai

c(k)
(10)

where j:j denotes the determinant of the matrix,jj:jj the
inner product in the Euclidean spaceRm and c(k) is a
weighting coefficient defined as follows:

c(k) =

lX

i=1

((2�)
�m

jPzij
�1
exp(�0:5(jj~z(kjk � 1)jj

2
P
�1

zi
(kjk�1))))ai

(11)

K(k) = P (kjk � 1)H� (kjk � 1)P�1
z (kjk � 1) (12)

P (kjk) = (I �K(k)H(k))P (kjk � 1) (13)

x̂(kjk) = x̂(kjk � 1) +K(k)(z(k)� ẑ(kjk � 1) (14)

2.1. Comments

1. The new Bayesian Adaptive Filter is easy to imple-
ment, requires no special information and can adapt
to changes in the noise environment. Through the ap-
propriate a-posteriori weights the filter continuously
adapts to the true underlying noise conditions.

2. The collapsed density which is used in the approxi-
mation has only one Gaussian term, thus it can be in-
corporated in the recursive form of the usual Kalman
filter. The nonlinear weights ensure that the collapsed
equivalent density captures any skewness or bimodal-
ity existing in the original nonlinear mixture.

3. The performance of the nonlinear filter depends on the
approximation of the Gaussian mixture by the single
Gaussian term. The closer the Gaussian density ap-
proximates the mixture, the better the filter estimates
are. The rationale of this approximation lies in the
fact that some of the members in the original density
carry small mixing weights at a particular time instant
and hence the information that they carry can safely
be ignored for practical purposes. As a measure of the
goodness of the approximation theBhattacharyya co-
efficientbetween two densitiesfi(x) and fj(x) de-
fined as�ij =

R
[fi(x)fj(x)]

0:5
dx with 0��ij�1

and �ij = 1 if fi(x) = fj(x) may be utilized to
measure the distance between the mixture density and
the Gaussian term resulting after the collapse of the
mixture.

4. It can be seen in the theorem that the density
f(z(k)jx(k); Zk�1) is represented by a finite num-
ber of parameters which are obtained using recursive
Kalman filters. Thus, the Gaussian sum density is
formed as the combination of the output of a number of
linear filters operating in parallel, resulting in a nonlin-
ear filter with computational complexity similar to that
of the linear Kalman filter.

3. Application to Narrowband Interference
Suppression in Impulsive Channels

The nonlinear filter introduced here is studied for its re-
jection capability of an autoregressive interferer in a non-
Gaussian channel. The problem of interest is the suppres-
sion of a narrowband interferer in a direct-sequence spread-
spectrum (DSSS) system operating as anN th order au-
toregressive process of the formik =

PN
n=1�nik�n + ek

where ek is a zero mean white Gaussian noise process
and �1;�2; :::;�N�1;�N are the autoregressive parame-
ters known to the receiver. The received signal can be mod-
eled using the following state-space representation:

x(k) = �x(k � 1) + w(k)



z(k) = Hx(k) + v(k) (15)

with x(k) = [ik; ik�1; :::; ik�N+1]
� , w(k) =

[ek; 0; :::; 0]
� , H = [1; 0; :::; 0] , and

� =

��������

�1 �2 � � � �N

1: 0: � � � 0:
. . . . . . . . . . . . . . . . . .
0: 0: � � � 1:

��������
.

The additive observation noisev(k) in the above model
is defined asv(k) = n(k)(+s(k)): Following the assump-
tions introduced in [9], the received waveform has been pro-
cessed by a matched filter and sampled at the chip rate, to
generate the discrete signalz(k) at the receiver. Since in
the model above the first component of the statex(k) is
the interfererik , an estimate of the state contains an esti-
mate of theik , which can be subtracted from the received
signal in order to increase the system performance. The
sequencev(k) is the impulsive noise process derived using
the ��mixture model ands(k) is the DSSS signal which
is treated as ani.i.d binary sequence with equal probability
to occur p(sk = �1) = p(sk = 1) = 0:5 . The sequences
s(k) , n(k) and ik are assumed to be mutually indepen-
dent.

When only the impulsive noise of the channel is assumed
present, without the DSSS signal, each v(k) has the follow-
ing density:

f(v(k)) = (1� �)N(0; �2n) + �N(0; k�2n) (16)

In the simulation studies reported here, the interferer is
found by channeling white noise through a second-order
infinite-duration impulse response (IIR) filter with two
poles at 0.99, thereforeik = 1:98ik�1 � 0:9801ik�2 + ek
whereek is zero mean white Gaussian noise with variance
0:01 . To demonstrate the effectiveness of the proposed al-
gorithm in a non-Gaussian environment the regulatory co-
efficient � is set to be� = 0:2 and the ratiok is taken to
be k = 10 or k = 10; 000 with �n = 1: .

The following algorithms have been tested: two Kalman
filters each one matched to a part of the mixture above,
the Masreliez filter and the new filter introduced in this pa-
per. Filter initialization requires an initial filtered estimate
x̂(0j0) and an initial error covarianceP (0j0) . All four
filters are initialized using an initial mean value of0:01
and a covariance1:0 . The normalized mean square error
(NMSE) was utilized for filter comparison purposes in all
experiments. The data were averaged through Monte Carlo
techniques. In the simulation studies, 50 independent runs
were processed, each 1000 samples in length. The filter-
ing results for a single run, when non-Gaussian noise is as-
sumed (k = 10; 000 ), are depicted in Figs. 2-3. Significant
findings and corresponding remarks are herein organized in
a series of comments, which are supported by the appropri-
ate figures:

1. Due to the independence of the Kalman filter calcu-
lations from the actual noise distribution shape, the
performance of the optimal linear filter in the pres-
ence of non-Gaussian measurement noise is not sat-
isfactory. The outliers generated by the heavy-tails
of the non-Gaussian noise distribution result in erro-
neous estimates of the prediction measurement covari-
ancePz(kjk�1) . The divergence from the theoretical
covariances involved in the calculations of the Kalman
filter gain leads to unacceptable estimation results.

2. The nonlinear Masreliez filter performs relatively well
in modest non-Gaussian channels. However, it fails to
deliver accurate and reliable estimates in highly impul-
sive measurement channels. Due to its complexity, the
need for customized, problem dependent nonlinearities
in the ‘score-function’ and the inconsistency in its per-
formance, this filter can not be considered as a general
purpose robust recursive estimator.

3. The new filter performed well under all the different
noise scenarios selected. From the plots included the
improvement accomplished by the utilization of the
new filter versus the Kalman filter and the Masreliez
filter is immediately evident. The effects have ap-
peared more pronounced at more dense non-Gaussian
(impulsive) environments. This trend was also veri-
fied during the error analysis utilizing the Monte Carlo
error plots. Furthermore, the improvement has been
obtained without additional computations.

To conclude our study a comprehensive comparison of the
filters discussed in this paper must be provided. Taking
into consideration all the above mentioned facts, we can
decide to use the following crude ranking of performance:
(i) 0: Poor performance; (ii) 1: Average performance; (iii)
2: Good performance. A similar ranking can be used for
the evaluation of the computational complexity: (i) 0: High
computational complexity; (ii) 1: Average computational
complexity; (iii) Low computational performance. Based
on the above figures of merit the applicability of the filters
to the problem of narrowband interference suppression in
impulsive channels is summarized in Table II. In conclu-
sion, from the simulation studies reported here we can con-
clude that the performance of the different linear or non-
linear filter depends on the departure from the normality of
the measurement noise and of course the signal-to-noise ra-
tio (SNR). For low SNR and strong non-Gaussian measure-
ment noise the nonlinear filters outperform the linear sub-
optimal estimators. Of the nonlinear filters considered, the
new filter outperforms the Masreliez filter, and also exhibits
significantly less computational complexity. computational
requirements.



4. Conclusions

The paper has addressed the important problem of state
estimation in non-Gaussian observation channels. A new,
adaptive filter was introduced. Its application to the prob-
lem of narrowband interferer suppression in impulsive noise
channels has been considered. Results indicate that the new
filter performs well, it is computationally attractive, and it
can adapt to varying noise statistics and satisfies the require-
ments of a general purpose real-time filtering system.
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Figure of Merit
a Impulsive/ No DSSS signal
b Intense Impulsive/ No DSSS signal
c Intense Impulsive/DSSS signal present
d Computational complexity

Table 1. Filter comparison
Filter a b c d
Kalman 0 0 0 2

Masreliez 2 1 - 0
Bayesian Adaptive 2 2 2 0
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Figure 1. The Adaptive Filter
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Figure 2. Nonlinear filters: Estimation results
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Figure 3. Linear filters: Estimation results


