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Abstract 

Processing multichannel signals using digital signal pro- 
cessing techniques has received increased attention lately 
due to its importance in applications, such as multimedia 
technologies and telecommunications. The perspective of 
the topic offered here is one that comes primarily from work 
done in the field of multichannel image processing. The 
adaptive filtering techniques discussed in the paper relate 
to image processing with the emphasis placed primarily on 
filtering algorithms based on f iuy logic concepts, multidi- 
mensional scaling, and order statistics-based designs. The 
strong potential of adaptive filters for multichannel image 
processing is illustrated with several examples. 

1.0. Introduction 

The availability of a wide set of multichannel information 
sources in application areas, such as color image process- 
ing, multispectral remote sensing imagery, biomedicine, 
robotics, and industrial inspection have stimulated a re- 
newed interest in developing efficient and cost effective 
processing techniques for multichannel signals. In recent 
years, significant advances have been made in the develop- 
ment of multichannel signal processing techniques. Such 
techniques are used in a variety of tasks, such as color im- 
age filtering and processing video sequences, enhancement 
of multispectral remote sensing data, seismic deconvolution 
for oil exploration, and boundary detection in vector fields. 
The most common signal processing task is noise filtering. 
Filtering is the process of estimating a signal degraded, in 
most cases, by additive random noise. This task is an essen- 
tial part of any signal processing system, especially when 
the final product is used for human interpretation, such as 
visual inspection or for automatic analysis [l], 121. Sev- 
eral filtering techniques have been proposed over the years. 
Among them are linear processing techniques, whose math- 
ematical simplicity and the existence of a unifying theory 
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make their design and implementation easy. Their simplic- 
ity, in addition to their satisfactory performance in a variety 
of practical applications, has made them methods of choice 
for many years. However, most of these techniques operate 
assuming a Gaussian model for the statistical characteris- 
tics of the underlying process, and thus they try to optimize 
the parameters of a system suitable for such a model. Many 
signal processing problems cannot be efficiently solved by 
using linear techniques. For example, an area where lin- 
ear processing techniques fail is in image processing, where 
conventional linear techniques cannot cope with the non- 
linearities of the image formation model and do not take 
into account the nonlinear nature of the human visual sys- 
tem. Image signals are composed of flat regional parts 
and abruptly changing areas, such as edges, which carry 
important information for visual perception. Filters hav- 
ing good edge and image detail preservation properties are 
highly suitable for image filtering and enhancement. Un- 
fortunately, most of the linear signal processing techniques 
tend to blur edges and to degrade lines, edges, and other fine 
image details [3]. 

Recently fuzzy techniques have been investigated to pro- 
vide a bridge between linear and nonlinear techniques. This 
paper summarizes efforts devoted in the development of 
fuzzy systems suitable for filtering multichannel signals. 
The approach discussed here is an adaptive one. It inte- 
grates well-known theories in the areas of nonlinear filter- 
ing, multidimensional scaling, robust statistics, and fuzzy 
sets so as to form a new composite model. At the heart . 

of the approach is a filter whose weights (parameters) are 
adaptively determined on the basis of local signal context. 
The filtering procedure is seen as the estimation of the pro- 
totype for a given set of input signals in a processing win- 
dow. Thus, filtering is the process of replacing a noisy sig- 
nal by a prototypical value, such that some metric which is a 
function of the filter output and its neighbors is minimized. 
The organization of the paper is as follows. In Section 2.0, 
we present the problem under consideration and we intro- 
duce the general framework for an adaptive solution. In 
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Section 3.0 we review membership functions based on the 
distance and similarity measures used in multichannel sig- 
nal processing applications [4]. Properties, characteristics, 
and implementation issues are also discussed in detail. Sec- 
tion 4.0 deals with the problem of color image processing, 
an important area of multichannel signal processing, where 
we present experimental results and comparisons with other 
standard methods. Finally, Section 5.0 summarizes the con- 
clusions and describes future research. 

2.0. The General Framework 

Consider the following commonly used model for a multi- 
channel signal corrupted by additive noise: x = y + no, 
where y denotes the m-channel uncorrupted signal vec- 
tor, x is the corresponding noisy vector to be filtered and 
no an additive noise vector. The signal processing liter- 
ature has been dominated by the assumption of the Gaus- 
sian model for the statistical characteristics of the noise. 
Optimal filtering solutions for the problem at hand can be 
devised based on this assumption. Although the Gaus- 
sian model is often justified in practice by the central limit 
theorem, we often encounter noise processes that exhibit 
impulsive behavior and are more accurately modeled by 
heavy-tailed, non-Gaussian distributions [5] ,  161. Impul- 
sive behavior can be characterized in terms of short du- 
ration, high-energy spikes attaining large amplitudes with 
probability higher than that predicted by a Gaussian den- 
sity model. Even if the level of non-Gaussian noise con- 
tamination is small, the performance of a filtering system 
optimized under the Gaussian assumption can suffer from 
drastic degradation. In such a case, the performance of 
classical adaptive filtering schemes, such as recursive least 
squares (RLS) [7] or simple weighted average filters, is se- 
riously degraded. Thus, there is a need for a flexible and 
efficient filter class for non-Gaussian environments that can 
appear in practice. Let us define x(Z) as the multichannel 
sample to be processed at time index 2 and let W be a set 
of (n = 2N + 1) neighboring samples which belong to 
the window W centered on XI: W = [ x ~ , x z ,  ..., xn] = 
[XI-N, ..., XI-1 , XI,  x1+1, . .., XI+N]. Since the most com- 
monly used method to decrease the level of random noise 
present in the signal is smoothing, an averaging operation 
is required in order to replace the noisy vector at the win- 
dow center with a suitable representative vector (prototypi- 
cal value). The general form of the system presented here is 
given as a weighted average of the input vectors inside the 
window W. Thus, the uncorrupted multichannel signal is es- 
timated by determining the centroid as follows [4], [8]-[9]: 

n n 

where f(pj) = p; is a function adaptively determined on 

the basis of local context with pj the membership function 
of input xj and X a parameter such that X E [0, cm) . In 
this adaptive design the weights provide the degree to which 
an input vector contributes to the output of the filter. The 
relationship between the signal at the window center (vec- 
tor under consideration) and each signal within the window 
should be reflected in the decision for the weights of the fil- 
ter. Through the normalization procedure, two constraints 
necessary to ensure that the output is an unbiased estimator 
are satisfied. Namely, (i) each weight is a positive number, 
wj 2 0, and (ii) the summation of all the weights is equal to 
unity: E:=, wj = 1. The weights can be considered to be 
a membership function with respect to the specific window 
component. The adaptive algorithm evaluates a member- 
ship function based on a given vector signal and then uses 
the membership values to calculate the final filtered output. 
To explain the concepts behind the filter only the defini- 
tion of the fuzzy set is required. Other definitions, such as 
fuzzy rule bases and fuzzy control are not essential to this 
work and thus are omitted. Assume that X is a universe 
of discourse with elements x. Then, a fuzzy set A in x is 
a set of ordered pairs A = [ e I x E X ] ,  where p ~ ( x )  is 
the membership function or grade of membership of x in 
A which maps X into a membership space M. The range 
of the membership function is a subset of the non-negative 
real numbers whose supremum is finite. In practical ap- 
plications M is normalized to the interval [0,1]. The de- 
sign summarized here qualifies as an adaptive fuzzy system 
since it utilizes sample input data and inference procedures 
(here in the form of transformed distance metrics), to define 
a fuzzy system at each time instant. Through the adapta- 
tion mechanism utilized, the system structure changes over 
time resulting in a time-varying mapping between input val- 
ues and filtered output. This temporal mapping defines an 
adaptive fuzzy system. As was argued in [IO], adaptation, 
or learning, is essentially parameter changing. Thus, by 
changing the weights in (I), we have developed an adaptive 
fuzzy system capable of learning new associations between 
input patterns and new functional dependencies. The noise 
smoothing problem is seen as a problem of prototype esti- 
mation given a set of signal inputs. In this sense, filtering 
is the process of replacing the noise-corrupted multichan- 
nel signal at the window center by a prototype signal, such 
that the differences between this prototype and all its neigh- 
bors inside the window are minimized in some sense. This 
operation is, essentially, a defuzzification procedure. It de- 
termines the most appropriate signal value (a vector signal 
in the case of multichannel inputs), to represent a collec- 
tion of elements whose membership functions have been 
constructed over a universe of discourse. Although a num- 
ber of different defuzzification strategies exist, the centroid 
defuzzification approach, known as the Center of Gruv- 
ify (COG), is often utilized in practice. The COG method 
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generates a defuzzified value which is at the center of the 
values of a fuzzy set. Its defuzzified output actually cor- 
responds to the membership-graded weighted mean of the 
square (Euclidean) distance. To clarify this, let us consider 
a fuzzy set A that is defuzzified as: A = (fi, E, ..., 5) 
where ,U, is the membership function associated with the 
input value x, . If a quadratic cost function is considered: 
K(%) = cy=, Ixi - %lTpilxi - 21 the COG defuzzified 
value is obtained when K(%) is minimized by differenti- 

ation: = -e. Simple inspection of the COG de- 

fuzzified value obtained reveals the similarity with the adap- 
tive filtered output of (1). We can therefore claim that the 
output of our adaptive filter can be considered as the output 
of the COG defuzzification strategy with the noisy multi- 
channel signals as members of a fuzzy set and the member- 
ship functions pi , i - 1,2,  ..., n defined over them. In such 
a design, the overall performance of the processing sys- 
tem is determined by the defuzzification procedure selected. 
The quadratic cost function discussed above can be gener- 
alized to include any arbitrary function of ,U. Under such a 
scenario, we assume that the cost function associated with 
the selection of the defuzzified value to represent the fuzzy 
set A is: K(%) = Cy', !xi - 21 f(pi)lxi - 31 where 
f(pi) is a function of the associated membership func- 
tion. By minimizing the above quadratic form, a defuzzi- 

fied (crisp) value can be obtained as: 7 = 
which is identical to the form used to generate the filtered 
output in the adaptive design of (1). If the power func- 
tion f(pi) = ,U; with XE[O,co) is used, the defuzzi- 
fied value can be obtained through the following equation: 

Y = .-. It can easily be seen that, in the gener- 

alized defuzzification rule, if X = 1 the widely used COG 
strategy can be obtained. The defuzzified vector-valued sig- 
nal obtained through the COG strategy is a vector-valued 
signal, which was not part of the original set of input vec- 
tors. However, there are signal processing applications, 
such as image filtering, where it is desirable for the filter 
output to be one of the samples in the input window. As an 
example, the vector median filter (Vh4F) [ 111 is always con- 
strained, by definition, to be one of the input samples. Thus, 
if the output of the adaptive fuzzy system is required to be 
a member of the original input set, a different defuzzifica- 
tiori strategy should be used. By defining p(maz) to be the 
largest membership value, the adaptive weights in (1) can 

x.' 

T 

E?= x i f ( M i )  

x i r :  

A I 'j ) A  

be rewritten as follows: w .  - 

Given that pj < p(maz)  , as X+co  then: 

Eq. ( 2 )  represents the maximum defuuijier strategy. If the 

maximum value occurs at a single point only, the maxi- 
mum defuzzifier strategy coincides with the mean of m- 
ima (MOM) defuzzification process. Through the m i m u m  
defuuifier, the output of an adaptive fuzzy system is defined 
as: y = xj ,U' - - /qmaz). In this case, the fuzzy adaptive 
filter behaves as a mode-like selection filter since by con- 
struction its output is always one of the samples inside the 
processing window. This selection property is shared by 
well-known nonlinear filters, such as the VMF and the myr- 
iad filter [6]. However, unlike these filters, which are opti- 
mized for specific noise models (the Laplacian and Cauchy 
model respectively), the fuzzy filter can be optimized for 
any noise model by tuning its membership function. Thus 
existing selection filters can be generalized. 

3.0. Determining the Parameters 

The most crucial step in the design of the adaptive fuzzy 
system lies in determining the membership function to be 
used in the construction of its weights. The difficulties asso- 
ciated with the meaning and measurement of the member- 
ship function hinder the applicability of fuzzy techniques 
to many practical applications. Our analysis considers the 
membership function as a function of similarity. Viewing 
membership values as similarity indicators is often used in 
prototype theory where membership is a notion of being 
similar to a representative of a category [12]. Thus a mem- 
bership function value can be used to quantify the degree 
of similarity of an element to the set in question. The as- 
sumption behind this approach is that there exists a perfect 
(ideal) example of the set which belongs to the set to the 
full degree. The valuation of membership for the rest of the 
elements in the set can be regarded as the comparison of a 
given input xi with the ideal input xr  , which results in a 
distance d(xi, xr). The generic form of our function was 
given in [13] as: pa = &, where f(-) is a function of 
the distance between the vector signal xi and the ideal pro- 
totype xr . Membership functions are either monotonically 
increasing functions from 0 to 1, monotonically decreasing 
from 1 to 0, or can be divided into monotonically increas- 
ing or decreasing parts. Each increasing or decreasing part 
is specified by a cross-over or dispersion point. The partic- 
ular function f ( d i )  used in the equation will determine the 
actual shape of the membership function. The approach of 
[ 131 suggests that since the relationship between distances 
measured in physical units and perception is generally ex- 
ponential, an exponential type of function should be used 
in the generic membership function. The resulting type of 
a sigmoidal function deduced from this proposition can be 
defined as: 

1 
(3) 

) '  Pi(xi) = + ,,.(-c(s(xi,x~)-a~) 
0 1  
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with lims,m pi = 1 and lims,o pi = 0 for a monotoni- 
cally increasing function, where s(xi, x,) is any similarity 
function between two vectors and 

(4) 
1 

+ e.p( -c(dp(xi,xT)-az) ' Pi (xi) = 
0 2  1 

with limd,, pi = 0 and limd,o pi = 1 for a monotoni- 
cally decreasing function, where dp(xi, x,) is any member 
of the generalized Minkowski family of metrics. In cases 
where a distance measure is used to quantify dissimilarity 
between the vector under consideration and the ideal pro- 
totype, the decreasing form of the function is utilized. If a 
similarity measure is used instead, we consider the mono- 
tonically increasing version of the membership function. 
The model of (3)-(4) satisfies the requirement imposed by 
the adaptive fuzzy framework. However, the membership 
function in its present form is computationally expensive 
since it involves the evaluation of the exponential function, 
and more importantly its parameters cannot be evaluated 
easily in practical applications. Therefore, other functions 
which can retain the same characteristics and are easier to 
implement are needed. Such a membership form was pro- 
posed in [ 121. This function is continuously increasing (de- 
creasing), satisfies the same boundaries conditions, com- 
plies with the generic membership function, and retains the 
properties of the S-shaped membership function. However, 
unlike the function in (3)-(4) it can be written as a rational 
function of two polynomials. In the new formulation, for 
any input value z,  the membership function, by construc- 
tion, can be completely characterized by only four param- 
eters: (i-ii) the interval [a, b] of the input parameter z, (iii) 
the sharpness X of the membership function, and, (iv) the 
inflection point v of the S-shaped function. Based on these 
parameters a membership function can be defined as: 

x 
(5) 

(1 - V y ( z  -a) 
(1 - v)x- l ( z  - ay + / 2 - ' ( b  - z)x ' PL(Z) = 

for a monotonically increasing function, and 

(1 - v ) x - l ( b  - z p  
(1 - v y ( b  - z y  + pX-'(z - a) x 1  (6)  P(Z)  = 

(1 - v ) x - l ( b  - z p  
(1 - v y ( b  - z y  + pX-'(z - a) x 1  (6)  P(Z)  = 

for a monotonically decreasing function, with the inflection 
point v defined via ~ ( z , )  = v and z, = ( b  - a). + a or 
z, = (a - b)v + b for the case of monotonically increas- 
ing or decreasing functions respectively. The sharpness of 
the function (an indicator of increasing/decreasing member- 
ship) can be defined respectively as:X = f'(z - v)(b - a). 
This membership function, which is universally applica- 
ble, can be utilized by considering the distance or similar- 
ity value as the input to the membership function. Assume 
that di = dp(xil x,) and si = &(xi - x,) are appropriate 

distance or similarity measures between the vector under 
consideration and the ideal prototype, similar to those dis- 
cussed in the previous section, we may rewrite the member- 
ship function needed in the fuzzy system of (1) as follows: 

(1 - v)x-l(dmaz -dip 
(1 - v)x-l(dmaz - day + /!L+'(di - d,Z*y  

Pi = 

(7) 
with di E [dmaz ,  &in]. Alternatively a monotonically in- 
creasing function can be defined based on a similarity mea- 
sure si = si(xi - x,) as follows: 

with siE[smaz,smin]. For the case of X = 1 the lin- 
ear form of the membership function is obtained: pi = 

for a monotonically increasing function, and 
for a monotonically decreasing function, 

which corresponds to the nearest-neighbor rule used in [3], 
[4] to define membership functions. The membership func- 
tion is critically dependent on the similarity measure and 
the reference point selected. The ideal reference signal is 
the actual value of the multidimensional signal in the spe- 
cific location under consideration. This signal, however, is 
not available. In addition, the noisy vector at the same lo- 
cation is not the appropriate choice since any input vector 
inside the window can be an outlier. Therefore, to make 
the procedure more robust and to ensure that the fuzzy sys- 
tem will provide accurate results, we eliminate the need for 
a reference point by evaluating the membership function 
used to weight each input vector xi in (1) on the aggregate 
distance between the vector xi under consideration and all 
the other vectors inside the processing window. Thus, the 
vector with the smallest overall distance (or maximum sim- 
ilarity) is now assigned the maximum membership value. 
Needless to say the membership function selected is now 
evaluated on the aggregated distances and not on the dis- 
tance between the vector and the ideal prototype. It is obvi- 
ous that such a design does not depend on a reference point 
and thus is more robust to occasional outliers. However, the 
computational complexity of the algorithm increases as a 
result of the need to evaluate a number of distances (sim- 
ilarities) in the processing window. Many distance met- 
ric or similarity functions [ 141, [3] can be used in the for- 
mulation of the aggregate distance. For example, assume 
that the noisy vector xi inside the processing window W 
is considered. Its aggregated distance from all other vec- 
tors inside the window is given as: di = cy=, d2(xi1xj) 
with d2(i,j) = (Er='=, (zf - z: )~)~  iftheEuclideanmet- 
ric has been selected to measure dissimilarity between two 
vector signals. This aggregate distance value is used as an 
input to the membership functions of (4) or (7) that will 

s;--Smin 
Smaz -Smin 

d -d. 
Pi = c - d . , , i n  
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be used to determine the fuzzy weights in the multichan- 
nel filter. Similarly, the vector angle criterion defines the 
scalar measure: d,i = Cy=, A(xi, xj) as the distance 
associated with the noisy vector xi inside the processing 
window of length n, when the angle between two vectors 
A(x i ,  xj) = cos-’ (e,) is used to measure dissimilar- 
ity. The approach suggested here eliminates the need for a 
reference point and generalizes the concept of membership 
function as a similarity indicator. In the suggested formula- 
tion, the valuation of membership is regarded not as a com- 
parison with an ideal point but as a comparison to the rest of 
the elements to be included in the fuzzy set. To summarize, 
we have outlined a possible interpretation of the member- 
ship function and discussed how membership functions can 
be built based on similarity concepts. A generalized model 
for building membership functions was utilized here. The 
different similarity or distance measures discussed here can 
be used as input values to this membership function model. 
The possibility of tuning the design parameters, namely dis- 
tance (similarity) metrics and membership functions pro- 
vides the adaptive fuzzy system of (1) with a rich variety 
of modes of operation that range from simple selection type 
filters, such as the VMF to hybrid FIR/nonlinear filters, such 
as the a-trimmed filter. 

4.0. Color Image Processing 

x i x r  

The adaptive filters discussed here can be used to pro- 
cess multichannel signals in a variety of practical appli- 
cations, such as color image processing, medical imaging, 
remote sensing applications, geophysical signal processing 
and military communications. Due to numerous practical 
applications, color images comprise an important class of 
multichannel signals and thus they can serve as an excel- 
lent illustrative application. We have conducted a set of 
experiments in order to evaluate the adaptive designs and 
compare their performance against the performance of other 
filters. The noise attenuation properties of the different fil- 
ters are examined by utilizing the widely used 512x480 
RGB color image ‘Peppers’. The test image has been con- 
taminated using various noise source models in order to as- 
sess the performance of the filters under different scenar- 
ios. The test image is contaminated with: (1) Gaussian 
noise (a = 30), (2) impulsive noise (4%), (3) Gaussian 
(a = 15) impulsive (2%) , and (4) Gaussian (CJ = 30) im- 
pulsive (4%). The normalized mean square emor (NMSE) 
has been used as quantitative measure for evaluation pur- 
poses. Since it is impossible to discuss all the adaptive 
filters resulting from the theory introduced here, we in- 
stead construct five different filters based on our designs. 
These filters are compared in terms of performance with 
other widely used multichannel filters, such as Basic vec- 
tor directionai filter (BVDF), Generalized vector directional 

filter (GVDF), Arithmetic mean filter (AMF), Directional- 
distance filter (DDF), Vector median filter (VMF) [3] and 
the Hybrid directional filter (HF) and Adaptive hybrid direc- 
tional filter (AHF) [ 151. In particular, we introduce a simple 
rank-order filter (hereafter referred to as content-based rank 
filter (CBRF)), which can be seen as an adaptive system 
utilizing a maximum defuzzifier. We also include the fuzzy 
vector directional filter (FVDF) which is based on the COG 
defuzzification rule, the membership formula of (4), and the 
d,, aggregated distance evaluated over the filtering window 
W .  Also included in the set, the adaptive nearest-neighbor 
filter (ANNF) which is based on the maximum defuzzifica- 
tion strategy, the linear version of the membership function 
formula of (7), and the distance measure of di. Further, 
we utilized the same defuzzification formula and the same 
membership function, along with the aggregated distance of 
d2 to derive the double window nearest neighbor filter AN- 
NME By using the Canberra distance [3] and the distance 
measure of di instead of the angular distance, four new fil- 
ters have been devised, namely the CANNF, CANNMF, 
CBANNF, and the CBANNME From the results listed in 
the tables, it can be easily seen that the adaptive designs 
provide consistently good results in all types of noise, out- 
performing the other multichannel filters under considera- 
tion here. The versatile design of (1) allows for a num- 
ber of different filters which can provide solutions to many 
types of different filtering problems. Simple adaptive de- 
signs, such as the ANNF or the CANNF can preserve edges 
and smooth noise under different scenarios, outperform- 
ing other widely used multichannel filters. If knowledge 
about the noise characteristics is available, the designer can 
tune the parameters of the adaptive filter to obtain better re- 
sults. Finally, considering the number of computations, the 
computationally intensive part of the adaptive fuzzy system 
is the required distance calculation. However, this step is 
common in all multichannel algorithms considered here. In 
summary, the design is simple, does not increase the numer- 
ical complexity of the multichannel algorithm, and delivers 
excellent results for complicated multichannel signals, such 
as real color images. 

5.0. Conclusions 
The paper reviewed a framework for adaptive multichan- 

nel signal processing based on fuzzy concepts. The frame- 
work combines nonlinear filters, fuzzy membership func- 
tions and distance (similarity) criteria. Several filters can 
be considered special cases of this framework. The behav- 
ior of these adaptive designs was analyzed and their per- 
formance was compared with that of the most commonly 
used filters for a problem of great practical importance, 
namely color image processing. Multichannel signal pro- 
cessing is a rich and expanding field. Numerous new and 
advanced areas have appeared which have increased the im- 
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portance of the tools introduced and analyzed here. Multi- 
media signal processing, visual data processing and analy- 
sis multimodal signal processing telecommunications, dig- 
ital audio restoration, satellite imagery, seismic deconvolu- 
tion, and biomedicine are only some of the areas in which 
the methodologies proposed here can be applied. From a 
long-term research perspective, there is a need to establish 
a coherent theoretical foundation for nonlinear filtering al- 
gorithms. New algorithms and methodologies which may 
result in even more effective filtering structures suitable 
for intelligent processing of multimedia signal processing 
demand investigation. The framework presented here can 
serve as an initial point for further research and develop- 
ment in the area, and ultimately help in the development of 
new results and products in the near future. 

Table 1. NMSE(x10-2) for the RGB ’peppers’ 
image, 3 x 3  window 

Filter 

None 
BVDF 
CBRF 
GVDF 
DDF 
VMF 
FVDF 
ANNF 
A”MF 
HF 
AHF 
CANNF 
CANNMF 
CBANNF 
CBANNMF 

Noise Model 
1 2 3 4 

5 .027  6 .53  3 .29  6 . 5 1  
3 .93  1 . 5 1 0  0.86 1 .49  
1 . 9 6  0 .47  0 .44  0 .47  
1 . 8 5  0 .46  0 .36  0 .46  
3 . 5 1  0 .59  0 .56  0.59 
1 . 8 4  0 .37  0.33 0 .38  
1 . 4 6  0 .43  0 .34  0 . 4 1  

1 . 1 1 0  0 ,510 0 . 3 1  0 .52  
0 . 9 1  0 .36  0 . 3 1  0 .34  
1-59 0.47 0.36 0.48 
1 .43  0 .43  0 .36  0.47 
1 . 1 9  0 .47  0.35 0 .47  
0 .90  0 .47  0.43 0 .46  
1 . 2 3  0 .46  0 .46  0 .44  
0 .89  0 .45  0.43 0.46 
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Table 2. NMSE(X~O-~) for the RGB ‘peppers’ 
image, 5 x 5  window 

Filter -1 Noise Model 

None 
BVDF 
CBRF 
GVDF 
DDF 
VMF 
FVDF 
ANNF 
ANNMF 
HF 
AHF 
CANNF 
CANNMF 
CBANNF 
CBANNMF 

1 2 3 4 
5 .027  6.53 3 . 2 9  6 . 5 1  
4 .28  2 . 8 0  1 . 7 0  4.13 
1 . 4 6  0 . 7 1  0 .68  0.72 
1 . 2 4  0 .70  0 .66  0 . 7 1  
2 .15  0 .77  0 . 7 4  0 .76  
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