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Abstract 

The problem of nonlinear filtering with a non-Gaussian 
model of measurement errors is considered in this paper: 
Based on Bayes classification of the observations an ap- 
proximate solution is introduced. The Bayesian estimator 
can be applied to any discrete time, lineal; or nonlinear 
system which is observed in additive non-Gaussian mea- 
surement noise. The problem of narrowband inte$erence 
suppression in additive noise is considered as an important 
example of non-Gaussian noisejltering. It is shown that the 
approximate filter outperforms currently used approaches 
and at the same time offers simplicity in the design. 

1.0 Introduction 

Estimation (filtering) theory has received considerable at- 
tention in the past four decades, primarily due to its practi- 
cal significance in solving engineering and scientific prob- 
lems. Estimation algorithms can be classified into two ma- 
jor categories. Namely, linear and nonlinear filtering algo- 
rithms, corresponding to linear (or linearized) physical dy- 
namic models with Gaussian noise statistics and to nonlin- 
ear or non-Gaussian physical models. 

The linear estimation problem in particular, has attracted 
considerable attention as can be seen in books and sur- 
veys of the subject [2]. The discrete linear, state estimation 
problem is described by the following model equations and 
statement of objective: 

z ( k  + 1) = @(k + 1, k ) z ( k )  + w ( k )  

z(k + 1) = H ( k  + l ) z (k  + 1) + v(k + 1) 
(1) 

(2) 
where z ( k )  is the n-dimensional state process, z(k) is the 
m-dimensional measurement process, w(k) is the associ- 
ated state noise, modeled as an uncorrelated white Gaussian 
sequence with covariance Q ( k )  and v(k) is the observa- 
tion (measurement) noise, modeled as an uncorrelated white 
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Gaussian sequence with covariance R(k)  . The initial state 
vector z(0) is Gaussian with mean value 2(0) and covari- 
ance P(0)  . It is also assumed independent of the noise pro- 
cesses Vk > 0 .  Given the set Z k  = [z(l), 2(2), ..., z ( k  - 
l), ~ ( k ) ]  , the mean-squared-error optimal filtered estimate 
2(kllc) of z(k) = f ( k l k )  = E(z (k ) lZk )  is to beobtained. 

The above problem was first solved by Kalman who ob- 
tained its well known filter [2]. The so called Kalman filter 
is the optimal recursive estimator for the above problem. It 
must be emphasized that the Kalman filter is the optimal es- 
timator if the processes w ( k )  and v(k) are Gaussian. The 
performance of a linear estimator developed under the as- 
sumption of additive Gaussian noise can be degraded by the 
non-Gaussian noise due to the deviation from normality in 
the tails of the noise distribution [ll]. Thus, if either of 
the noise processes in (1)-(2) are non-Gaussian, the mea- 
surement z(k) will be non-Gaussian, and the degradation 
in the performance of the Kalman filter is rather dramatic. 
In most cases, w ( k )  , which is in fact a tuning parameter 
that greatly depends on the filter designer, can be modeled 
as a Gaussian process. However, this is not the case for the 
observation noise v(k). Many physical environments can be 
modeled more accurately as non-Gaussian rather than Gaus- 
sian observation channels and are characterized by heavy- 
tailed non-Gaussian distributions. Thus, the development of 
an efficient and robust filter which can provide accurate and 
reliable estimates in the presence of non-Gaussian measure- 
ment noise is of paramount importance [ 5 ] .  In this paper, 
we discuss approximate nonlinear filters for state estimation 
when the observation noise is non-Gaussian and the actual 
signal has a linear state space representation. 

2.0 The Problem of Nonlinear Filtering 

Several models have been used to date to model non- 
Gaussian noise environments. Some of these models have 
been developed directly from the underlying physical phe- 
nomenon, most notably the Middleton Class A, B and C 
model [8], [9] while others are empirically devised. A fi- 
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nite sum of known Gaussian distributions can be used in the 
development of approximate empirical distributions which 
relate to many physical non-Gaussian phenomena. A spe- 
cial case of the Gaussian sum approach, the ( E - mixture ), 
is of particular interest. This model is particular useful 
when a nominal Gaussian noise environment with an im- 
pulsive or 'heavy-tailed' component is assumed. The prob- 
ability density function for such a model can be written 
as f(z) = (1 - E ) ~ c ( z )  + E ~ * c ( z )  where E E (0 , l ) .  
f~ is the pdf of the nominal or background Gaussian den- 
sity function, and f& is the pdf of the dominant non- 
Gaussian noise often taken to be a heavy-tailed density, 
such as a Laplacian density or a Gaussian density with a 
large variance (covariance). The mixing parameter E regu- 
lates the contribution of the non-Gaussian component. Usu- 
ally it varies between 0.01 to 0.25 [14]. When a Gaus- 
sian density with large variance is used to emulate the non- 
Gaussian dominant component, the ratio of the dominant 
to nominal density variances K is on the order of 10 to 
10,000 [ 141, [4]. Due to its flexibility, many different nat- 
urally occurring noise distribution shapes can be approx- 
imated using the E - mixture approach. The Gaussian 
sum approximation is applied to the problem of state es- 
timation in non-Gaussian measurement noise. The system 
model (1)-(2) is used, however, it is assumed that the den- 
sity function of the measurement noise v (k )  is not Gaus- 
sian but a linear combination of Gaussian terms, such as 
f ( v ( k ) )  = xi=, ~ i N ( p i ,  &). Such an assumption about 
the noise statistics results in a predictive measurement den- 
sity f ( z (k ) l z (k ) ,Zk- ' )  which has a similar form [13]. 
A number of filtering techniques have been derived uti- 
lizing such empirical noise modeling schemes to tackle 
the problem of estimating the state of a linear system in 
a non-Gaussian noise environment. In particular, Soren- 
son and Alspach [ 131, [ 11 considered the case where both 
the state and the measurement noise sequences are non- 
Gaussian. They have assumed that the noise sequences have 
a uniformly convergent series expression in terms of known 
Gaussian distributions. They used a fixed number of Gaus- 
sian terms with known moments in a truncated approxima- 
tion series to develop an optimal, under these assumptions, 
minimum mean square error filtering algorithm. The out- 
put of the Gaussian sum filter is formed by combining the 
outputs of a bank of Kalman filters, each one matched to 
a specific term of the Gaussian sum. The major disadvan- 
tage of their approach however, is its computational com- 
plexity since the numerical computations in the filter in- 
crease almost exponentially in time. In the Gaussian case, 
the number of terms involved in the derivation of the op- 
timal Kalman filter remain constant. If however, for any 
time index (k) the density f(z(k)lZ"-')' is a Gaussian 
mixture of ( 1 1 )  components and the distribution v(k)  con- 
tains (/*) components, then the combined density needed 

for the next step calculations is a mixture with (11x12) com- 
ponents. Thus, the computational burden at each stage be- 
comes larger as the number of terms increases in the mixture 
used in the calculations. Thus, the Gaussian sum method is 
not attractive and in many cases is not feasible in practice 
due to its computational complexity. In an attempt to alle- 
viate the computational burden associated with the Gaus- 
sian sum approach, Masreliez proposed a different filter- 
ing methodology based on the so called 'score-function'. 
His approximate conditional mean filter is computationally 
more efficient than that of Alspach and Sorenson, but re- 
quires the use of problem dependent nonlinearities in the fil- 
ter gain and a rather demanding convolution operation in the 
development of the nonlinear score function [6], [7]. An ap- 
proximate filter called adaptive Gaussian sum filter (AGSF) 
which is computationally attractive and does not require any 
problem dependent nonlinearities can be used instead [ 121. 
The approximate filter utilizes the same methodology with 
that of the Gaussian sum filter of Sorenson and Alspach. 
However, in order for the procedure to be practical the num- 
ber of terms in the mixture is controlled at each step. A 
Bayesian learning technique is employed to collapse the re- 
sulting non-Gaussian sum mixture to an equivalent Gaus- 
sian term. Thus, at the end of the current cycle of the filter, 
the resulting Gaussian mixture f ( z ( k ) l z ( k ) ,  Z k - I )  is col- 
lapsed and approximately represented with only one equiv- 
alent Gaussian term. In the next filtering cycle, the calcula- 
tions involve only the I terms used in the representation 
of the measurement noise, resulting in fixed complexity. 
In this way the new filter resolves the computational bur- 
den of the Gaussian sum filter without the use of any prob- 
lem dependent nonlinearities, such as those required by the 
Masreliez filter. The main points of our strategy are: (i) 
for each Gaussian term in f ( v ( k ) )  = zf=, EiN(pi, I&) a 
dedicated Kalman filter is employed, (ii) based on the in- 
terim results from these dedicated Kalman filters we obtain 
a Bayesian a-posteriori estimate of the Gaussian mixture 
f ( z ( k ) l z ( k ) ,  Z"-') needed in the filtering process, and 
(iii) the optimal (in the minimum mse error sense) Gaussian 
approximation for the above mixture is derived. Then the 
first two moments of this equivalent Gaussian term are used 
to complete the filtering cycle of a recursive, Kalman-like 
filter. The form of the estimator is as follows: 

q k l k  - 1) = +(k,k - l)i.(k - Ilk - 1) 

P(klk-1) = +(k, k - l ) P ( k - l l k - l ) d ( k ,  k-l)'+Q(k-1) 

(3) 

(4) 
with initial conditions 5(010) = z(0) and P(OI0) = P(0) .  

( 5 )  

(6) 

1 

i(klk - 1) = c W i ( l c ) i i ( k l k  - 1) 
i=l 

i i ( k l k  - 1) = H ( k ) i ( k ( k  - 1) + pi 
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P,(klk - 1) = 

(P,i(kJk - 1) + q k l k  - l)Z(klk - l)')Wi(k) 
1 

(7) 

(8) 

i= 1 

P,i(klk - 1) = H ( k ) P ( k l k  - l)H'(k) + Ri 

c ( k )  = 

K ( k )  = P(klk - l)H'(klk - 1)Pz-l(kp - 1) (11) 

(12) P(k lk )  = ( I  - K ( k ) H ( k ) ) P ( k l k  - 1) 

?(kirk) = ?(klk - 1) + K ( k ) ( ~ ( k )  - i ( k l k  - 1) (13) 

where 1.1 denotes thedeterminant of the matrix, 11.11 the 
inner product in the Euclidean space R". 

The collapsed density which is used in the approxima- 
tion has only one Gaussian term, thus it can be incorporated 
in the recursive form of the usual Kalman filter. The per- 
formance of the nonlinear filter depends on the approxima- 
tion of the Gaussian mixture by the single Gaussian term. 
The closer the Gaussian density approximates the mixture, 
the better the filter estimates are. The rationale of this ap- 
proximation lies in the fact that some of the members in the 
original density carry small mixing weights at a particular 
time instant and hence the information that they carry can 
safely be ignored for practical purposes. As a measure of 
the goodness of the approximation the Bhattachatyya coef- 
jcienr between two densities f i ( z )  and f j ( z )  defined as 

if f i ( z )  = f j ( z )  [3 ]  may be utilized to measure the dis- 
tance between the mixture density and the Gaussian term 
resulting after the collapse of the mixture. It can be seen in 
the theorem that the density f ( z ( k ) l z ( k ) ,  Zk-') is repre- 
sented by a finite number of parameters which are obtained 
using recursive Kalman filters. Thus, the Gaussian sum den- 
sity is formed as the combination of the output of a number 
of linear filters operating in parallel, resulting in a nonlinear 
filter with computational complexity similar to that of the 
linear Kalman filter. 

In the special case in which E takes the values of either 
0 or 1, the sequence of ( 4 1 ) , 4 2 ) ,  ..., ~ ( k  - l ) ,  ~ ( k ) ,  ....) 
becomes a Markov sequence of random quantities. In 
this scenario the measurement errors at the kth time in- 
stant belong to one of two models. The standard model 
vo(k)  where vo(k)-N(po, &,) or the alternative model 
vl(k)-N(pl, RI) ,  Rl (k)  = (K&(k))  whichcorresponds 
to rarely occurring dominant noise. 

The optimal estimate ?(klk) requires knowledge of the 
actual value e for that particular time instant. When the 

p i j  = J [ f i ( ~ ) f j ( ~ ) ] O . '  dsc with O < p i j < l  and p i j  = 1 

value E at time k is fixed thedensity function f(Z(k1k- 1 ) l ~ )  
is Gaussian with covariance P,o)(klk - 1) = H ( k ) P ( k l k  - 
l ) H T ( k )  + & for E = 0, or P,l(klk - 1) = H ( k ) P ( k l k  - 
l)H'(k) + R1 for E = 1. The optimal procedure for esti- 
mating E reduces to the calculation of the ratio X(klk - 1) = 

with E^ = 1 if X(klk - 1)L l .  The state esti- f(i(klt-ljk=of 
mate IS given by the following set of equations: 

f ( Z ( k l k - l ) l ~ = l  

i ( k l k  - 1) @(k, k - l)?(k - Ilk - 1) (14) 

P(klk-1) = 9 ( k ,  k-l)P(k-l lk- l )@(k,  k-l)'+Q(k-l) 
(15) 

with initial conditions ?(010) = z(0) and P(OI0) = P(0) .  

i ( k l k  - 1) = 

H(k)i.(klk - 1) + [(I - E^)PO(k) + E^Pl(k)l (16) 

P,i(klk - 1) = 

H ( k ) P ( k l k  - l ) H ' ( k )  + [ ( l  - E^)&(k) + E^Rl(k)] (17) 

(18) K ( k )  = P(klk  - l )H ' ( k l k  - l)P,-'(klk - 1) 

P(klk)  = ( I  - K ( k ) H ( k ) ) P ( k l k  - 1) (19) 

?(klk) = ?(klk - 1) + K ( k ) ( z ( k )  - i ( k l k  - 1 )  (20) 

3.0 Application to Narrowband Interference 
Suppression in Impulsive Channels 

The approximate filter described here is studied for its 
rejection capability of an autoregressive interferer in a non- 
Gaussian channel. The problem of interest is the suppres- 
sion of a narrowband interferer in a direct-sequence spread- 
spectrum (DSSS) system operating as an N'* order au- 
toregressive process of the form it = onik-n + ek 
where ek is a zero mean white Gaussian noise process 
and @ I ,  Qi2, ..., ~ N - I ,  @ N  are the autoregressive parame- 
ters known to the receiver. The received signal can be mod- 
eled using the following state-space representation: 

N 

z ( k )  = k ( k  - 1) + w ( k )  

z(k) = H z ( k )  + v(k) (21) 

with z ( k )  = [ i k , i k - l ,  ..., ik -N+l] ' ,  w(k) = 
[ ek ,O ,  ..., 01' , H = [1,0, ..., 01, and 

o1 o2 ... o N  
1. 0. ... 0. 

0. 0. ... 1. 

o =  .................. 

The additive observation noise v ( k )  in the above model 
is defined as v(k) = n(k ) (+s (k ) ) :  Following the assump- 
tions introduced in [15], the received waveform has been 
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processed by a matched filter and sampled at the chip rate, 
to generate the discrete signal z(k) at the receiver. Since 
in the model above the first component of the state z ( k )  is 
the interferer zk , an estimate of the state contains an esti- 
mate of the ik , which can be subtracted from the received 
signal in order to increase the system performance. The 
sequence v ( k )  is the impulsive noise process derived using 
the ~ - " i z t u r e  model and s(k) is the DSSS signal which 
is treated as an i.i.d binary sequence with equal probability 
to occur p(sk  = -1) = p(sk  = 1) = 0.5. The sequences 
s(k) , n(k) and ik are assumed to be mutually indepen- 
dent. When only the impulsive noise of the channel is as- 
sumed present, without the DSSS signal, each v(k) has the 
following density: 

f(v(k)) = (1 - E ) I V ( O ,  0:) + €N(O, kc:) (22) 

In the simulation studies reported here, the interferer is 
found by channeling white noise through a second-order 
infinite-duration impulse response (IIR) filter with two 
poles at 0.99, therefore ik = 1.98ik-1 - 0.9801ik-2 + ek 
where ek is zero mean white Gaussian noise with variance 
0.01 . To demonstrate the effectiveness of the proposed al- 
gorithm in a non-Gaussian environment the regulatory co- 
efficient E is set to be E = 0.2 and the ratio K is taken to 
be K = 10 or K = 10,000 with cn = 1.0 . 

The following algorithms have been tested: two Kalman 
filters each one matched to a part of the mixture above, 
the Masreliez filter and the adaptive Gaussian sum filter 
(AGSF). Filter initialization requires an initial filtered esti- 
mate ?(OlO) and an initial error covariance P(OI0). All 
four filters are initialized using an initial mean value of 
0.01 and a covariance 1.0. The normalized mean square 
error (NMSE) was utilized for filter comparison purposes 
in all experiments. The data were averaged through Monte 
Carlo techniques. In the simulation studies, 50 indepen- 
dent runs were processed, each lo00 samples in length. 
The non-Gaussian noise, for a single run, is depicted in 
F ig2  ( K  = 10)  and filtering results are listed in Figs. 
3-4. Significant findings and corresponding remarks are 
herein organized in a series of comments, which are sup- 
ported by the appropriate figures: (i) Due to the indepen- 
dence of the Kalman filter calculations from the actual noise 
distribution shape, the performance of the optimal linear 
filter in the presence of non-Gaussian measurement noise 
is not satisfactory. The outliers generated by the heavy- 
tails of the non-Gaussian noise distribution result in erro- 
neous estimates of the prediction measurement covariance 
P,(klk - 1). The divergence from the theoretical covari- 
ances involved in the calculations of the Kalman filter gain 
leads to unacceptable estimation results. (ii) The nonlin- 
ear Masreliez filter performs relatively well in modest non- 
Gaussian channels. However, it fails to deliver accurate and 
reliable estimates in highly impulsive measurement chan- 

nels. Due to its complexity, the need for customized, prob- 
lem dependent nonlinearities in the 'score-function' and the 
inconsistency in its performance, this filter can not be con- 
sidered as a general purpose robust recursive estimator. (iii) 
The approximate filter performed well under all the differ- 
ent noise scenarios selected. From the plots included the 
improvement accomplished by the utilization of the new fil- 
ter versus the Kalman filter and the Masreliez filter is im- 
mediately evident. The effects have appeared more pro- 
nounced at more dense non-Gaussian (impulsive) environ- 
ments. This trend was also verified during the error analysis 
utilizing the Monte Carlo error plots. Furthermore, the im- 
provement has been obtained without additional computa- 
tions. To conclude our study a comprehensive comparison 
of the filters discussed in this paper must be provided. Tak- 
ing into consideration all the above mentioned facts, we can 
decide to use the following crude ranking of performance: 

0 0: Poor performance 

1 : Average performance 

0 2: Good performance 

A similar ranking can be used for the evaluation of the com- 
putational complexity: 

0 0: High computational complexity 

0 1 : Average computational complexity 

0 2: Low computational performance 

Based on the above figures of merit the applicability of the 
filters to the problem of narrowband interference suppres- 
sion in impulsive channels is summarized in Table 2. In 
summary, from the simulation studies reported here we can 
conclude that the performance of the different linear or non- 
linear filter depends on the departure from the normality of 
the measurement noise and of course the signal-to-noise ra- 
tio ( S N R ) .  For low SNR and strong non-Gaussian measure- 
ment noise the nonlinear filters outperform the linear sub- 
optimal estimators and the the Masreliez filter, exhibiting at 
the same time significantly less computational complexity. 

4.0 Conclusions 

The paper has addressed the important problem of state es- 
timation in non-Gaussian observation channels. A robust 
and computationally efficient approximate filter was intro- 
duced. Its application to the problem of narrowband inter- 
ferer suppression in impulsive noise channels has been con- 
sidered. Extensive experimentation has been introduced to 
demonstrate the effectiveness of the new filter. Results in- 
dicate that the new filter performs better than the presently 
available methods. In addition, the approximate filter is 
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computationally attractive, does not require any problem- 
dependent nonlinearities in its design, can adapt to varying 
noise statistics and satisfies the requirements of a general 
purpose real-time filtering system. 
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Figure 1. The Adaptive Filter 
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Figure 3. Nonlinear filters: Estimation results 
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Figure 4. State estimation error analysis 
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