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ABSTRACT 

A powerful adaptive filter algorithm for estimation of 
forces acting on an Autonomous Underwater Vehicle 
(AUV), and the corresponding adaptive control law 
which determines the desired heading commands are 
considered in this paper. Due to the complicated nature 
of AUV’s task and incorporation of the ocean current, 
uncertain parameters arise in thc equations of motion 
that constitute the AUV’s dynamic model. Based on the 
Lainiotis Partitioning Theory, a highly adaptive scheme 
is used to estimate the vclocity components, for 
controlling the vehicle. Extensive simulations 
demonstrate the robustness and the effcctiveness of the 
new scheme in a variety of different environments. 

I .  I N T R O D U C T I O N  

Autonomous Underwater Vehicles (AUVs) are an 
important tool for various undersea tasks such as 
construction [ 11, repairing of underwater equipment [2], 
waste management, pollution monitoring, undersea 
research and data collection [3]. Due to the complicated 
nature of the tasks and the potential for assuming 
various payloads, there is a need for tight control and 
maneuverability of the AUV under large variations in 
the operating conditions. A robust control algorithm 
that can enhance the efficiency of the vehicle is 
therefore highly desirable [2],[3],[4]. However, due to 
the ocean current and the nature of the vehicle most of 
the available methods have limited applicability [2],[4]. 

The dynamics of the autonomous underwater vehicle 
are nonlinear in nature due to rigid body coupling and 
the hydrodynamic forccs of thc vehicle. Moreover most 
autonomous vehicles perform maneuvers in different 
directions using thrusters, which makes the uncertainties 
even more severe. Recently, several control suategies 
for the AUVs have been discussed. Most of these 

methods require linearized models. The main problem 
in these methods is that the robustness of the control 
scheme with respect to parameter uncertainties cannot 
be guaranteed, since the linearized set of equations have 
to be corrected almost continuously, to account for 
frequent changcs in the operating point of the vehicle. 
Hence an adaptive contol scheme is required that will 
account for these hydrodynamic uncertainties and 
variable loading conditions. The proposed strategy is 
called the Partitioned Adaptive Control. Based on the 
general theory of Partitioning algorithms, the new 
method uses the Adaptive Lainiotis Filter for estimation 
and a quadratic performance criterion, to calculate the 
required control input [71,[91,[101. 

Specifically, the paper is organized as follows: Section 
I1 describes the model representing the AUV motion. In 
Section 111 the Adaptive Lainiotis approach to 
estimation and control is discussed. The simulation 
results and conclusions are presented in Sections IV and 
V, respectively. 

II .  THE AUV MODEL 

Several continuous state-space models have been 
developed based on the nonlinear equations of motion 
derived for an underwater vehicle. The most complete 
set of equations of motion for underwater vehicles are in 
[ 5 ] .  These models are basically representations of the 
vehicle dynamics. The non-linear equations of the 
underwater motion are by themselves very hard to 
analyze. In most of the cases, a linearized version of the 
overall model is used. The linearized model is not 
capable of simulating the entire movement of the 
vehicle around a particular axis at any time, but it is 
valid around one opcrating point, which is very 
important, because the underwater vehicle performs 
tasks which dcpcnd on very precise maneuvers. 
According to 141, i f  the cross-coupling in the model is 
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ignored, the following linearized model, for rotation 
around an arbitrary axis can be obtained: 

K1 .K2 
G ( s )  = 

(TJ+1)  ‘ ( J s + C )  ‘ S  

(1) 
where, 

T=0.3 sec., is the time constant of the propellor 
5=2560 fb.ff, is the moment of inertia of the vehicle 
C=I50, is the linearized damping coefficient, for 
rotational motion 

The state-space representation of the model developed 
above is summarized below: 

-- _ _  

where, 
0 XI, X2 and X3 are the orientation, angular velocity and 

angular acceleration, respectively, along an 
arbitrary axis 

0 w(t) is zero-mean, white, gaussian, plant noise with 
covariance, Q 

0 u(t) is the control input, in volts 
0 z(k) are the discrete measurements 
0 v(k) is zero-mean, white, gaussian, measurement noise 

with covariance, R 

The coefficients that describe the model are given by: 

5 .K2 
K-- 

T . I  

M - -  T .  I 

( T . C t J )  
T I  

N=- 

The only information that can be measured from a 
vehicle for orientation control, are angles. It is obvious 
from the above definition of the states, that a statistical 
estimator has to be used in order to provide adequate 
information to the controller, since the last has to use 
angular velocities and accelerations as well. Most of the 
current control schemes use statistical estimators like 
Kalman filter to obtain the required information. 
However, the Kalman filter is not the optimal estimator 
when parametric uncertainty exists. Unfortunately this 
is exactly the case for an underwater vehicle. It is well 

known that the condition of the manipulator arm 
connected to the AUV can significantly affect the 
moment of inertia of the vehicle depending on its size 
and degrees of freedom. This can degrade the 
performance of the controller, since it is obvious from 
Eqns. (1) and (2) that the above changes in moment of 
inertia can affect the parameters of the model [ 33, [4]. 

III. ADAPTIVE PARTITIONING CONTROL 

It is unrealistic to expect the designer of the controller to 
know in advance the exact values of the parameters in 
the model, at any time. However if parametric 
uncertainty exists, adaptive estimation techniques [6], 
[lo], can be used to provide accurate estimates of the 
system state. The adaptive estimation/control problem, 
can be specified as follows: 

- ~ ( t ;  e i ) X ( t ) + v ( i )  

(3) 
The above state-space model, has all quantities as 
described previously. ‘0’ represents the unknown 
parameter vector. Using the measurement set, 
z(&)  = { ~ ( 1 ) , ~ ( 2 ) ,  ..., Z ( L ) } ,  the optimal estimate of the 
system state in the minimum mean square error sense is 
obtained. The desired control sequence, 
{ u ( o ) , u ( i ) ,  ..., ~ ( i v - i ) } ,  is obtained by minimizing the 
following quadratic cost criterion: 

The solution to the above problem has been addressed 
by Lainiotis [71, [81, [lo]. The details of the approach 
are summarized below. The adaptive control signal is 
given by: 

U’(@) is the discrete linear separation control 
corresponding to model parameter vector, 0, 
p(0&0) is the a-posteriori probability density function 
which is given by a recursive Baye’s rule formula: 

~ ( s o / e . )  
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where, 

(9) 

~ ( U ~ - I , O ;  a,’ 
estimate. The PAC structure is given in Fig. 1. 

is the model conditional Kalman Filter 

Commenrs: 

The effectiveness of the controller relies heavily on 
the performance of the adaptive estimator. I t  is well 
known that the adaptive estimator recognizes the correct 
model, if the true value of the paramctcr is present in the 
sample space, and if it is not, converges to a value that is 
closest to the true valuc. 

The partitioning realization has a natural decoupled 
structure. All the subunits needed to implement the 
adaptive scheme can be realized indcpendently. In this 
way, thc scheme 
-can be implcmcnted on a parallel processing machine, 
resulting in enormous computational savings [6],[8]. 
-the overall realization is robust with respect to failure 
of any of {he parallel processors [61,[101. 

IV. SIMULATION RESULTS 

The moment of inertia, J is choscn as the unknown 
parameter vector, 8. A four-fold change in the value of 
the moment of inertia is assumed and the parameter 
vector is quantized for values of ‘J’ in that range. It is 
assumed that the actual model parameter value lies in 
that range. Monte Carlo simulation is carried out using 
a discrete model with a sampling interval of 0.1 sec. 
The plant and measurement noisc covariances, Q and R 
are assumed to be 0.25 and 0.1, respectively. 

The weighting matrices used for thc control law are: 

Two experiments are conducted: 
SIMULATION I: 
In this experiment, four values of the moment of inertia, 
J, 2J ,  3J and 4J are used. A bank of linear filters 
corresponding to each parameter value is implemented. 
A discrete LQG control law is applied to each model, to 
calculate the corresponding control gains. The actual 
model value is assumed to be ‘J’. The adaptive control 
signal obtained as described in the previous section and 
the associated mean square error plots are shown in 
Figs. 2 and 3. The adaptive control signal shows an 
initial offset from the desired control trajectory, but as 
the estimation proceeds and the probabilistic weighting 
gets updated, the adaptive signal exactly follows the 
desired trajectory. In Fig. 4 the non-linear decision 
mechanism of the adaptive filter is illustrated. The filter 
has the ability to detect the correct model in a limited 
number of steps. The orientation of the AUV along an 
arbitrary axis and the associated mean square error plots 
are shown in Figs. 5 and 6. The errors are averaged over 
100 Monte Carlo runs using the following criterion: 

I mc 
M S E  = - .  [.(U -i(k/k)I2 

mc 
r = l  

(10) * 

SIMULATION 11: 
To demonstrate the robustness of the control algorithm, 
it is assumed that the moment of inertia undergoes a 
four-fold change after 30 seconds. Fig. 7 shows how the 
model selection occurs. The control trajectories and the 
associated mean square error plots are shown in Figs. 8 
and 9. Figs. 10 and 11 give the orientation of the vehicle 
and mean square error between the desired and adaptive 
esimates. 

In summary, an adaptive control structure like that of the 
Partitioned Adaptive Control, can handle parametric 
uncertainty and provide more meaningful estimates of 
the states and the control signals. The separation 
controls arc given by the product of a deterministic 
control gain, which can be computed off-line, and a 
mean square error causal estimate of the current state. 
The Kalman filter gains which are not dependent on the 
measurements can also be computed off-line. All these 
contribute to an attractive structural property. The 
emphasis on parallel processing capabilities in the new 
control designs and the availability of powerful parallel 
computers, make the Partitioned Adaptive Control a 
preferrable choice for real time applications in 
underwater environments. 
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Fig. 1 PAC Structure 
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Fig. 2 AUV Desired vs. Adaptive Control Signals 

Fig. 3 AUV Error between Desired and Adaptive Control Signals 
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Fig. 4 Adaptive Filter: Model Selection 
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Fig. 5 AUV Orientation: Actual vs. Adaptive Estimate 

Fig. 7 Adaptive filter: Model Selection 
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Fig. 10 AUV 0rientation:Actual vs. Adaptive Estimate 
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Fig. 11 AUV Orientation: Mean Square Error, 100 MCR 
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