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ABSTRACT 

The real time estimation of ship motion is considered in 
this paper. The problem is viewed as an estimatiod 
prediction problem for partially unknown systems. A 
neural estimator based on a dynamic recurrent neural 
network is considered. The model that describes the ship 
motion dynamics is presented, and the neural algorithm 
is tested and evaluated via extensive simulations. The 
results show that the new algorithm has excellent 
performance, and a significant saving in computational 
time is achieved. 

I. INTRODUCTION 

The accurate on-line estimation of ship motion is 
essential to many ship related problems such as ship 
steering [l], dynamic positioning [2], marine oil 
exploration [3], off shore platforms, and aircraft landing 
and take-off [41. Based upon predicted ship motion, the 
necessary control commands for the control of highly 
qualified ships like hovercrafts are calculated and 
generated. Ship motion prediction is also essential 
when accurate control of position mechanisms for guns 
or missiles is required. When tracking of a maneuvering 
target is the objective, there is a considerable amount of 
delay in transmitting information regarding the motion 
to the position mechanism. It is obvious that accurate 
predictions are required before an appropriate tracking 
command can be issued [31. 

In the past a lot of studies have been carried out for the 
solution of the ship positioning problem, most of them 
utilizing the Kalman Filter approach, or other least- 
squares estimation methods [ 1],[3]. However the design 
of a statistical estimator like the Kalman Filter requires 
the definition of a linear model describing the motion of 
the ship. More specifically, it requires a state-space 
representation of this motion. In most of the cases, the 

model equations are derived from the ship motion 
spectral density which corresponds to a particular sea- 
ship condition, the wave excitation input, and a gaussian 
random noise as driving input. In other words the sea- 
state magnitude, the ship speed, the ship heading with 
respect to the waves, and the disturbance pattern of the 
sea waves are incorporated in the model 151, [6].  

In this paper the estimation of the ship motion based on 
a linear state-space model that includes the wave- 
excitation input is proposed. Specifically, the paper is 
organized as follows. In Section 11, the general 
formulation of the ship motion dynamics is presented. 
In Section 111, the neural solutions are tested in 
extensive simulations on the ship motion model, and are 
compared with the conventional methods. Conclusions 
are given in Section IV. 

II. SHIP MOTION DYNAMICS 

The motion of the ship can be described by a set of 
differential equations. As it was mentioned above, the 
model depends on the sea-state magnitude, the ship 
speed and the ship heading with respect to the waves. 
For a rigid ship travelling with a constant forward speed 
and in the direction which makes an arbitrary angle with 
regard to sinusoidal waves, its motion can be described 
by a set of second-order linear differential equations of 
the form: 

o q ( t )  + b i ( t )  + c q ( r )  = { ( l )  

(1) 
where, 
q(t) represent a vector of surge, sway and heave motions 
or variations of roll, pitch and yaw orientations, t ( t )  
represents the sea-wave excitation, and a,b,c are 
constants that represents the virtual mass, damping and 
restoring stiffness, and are determined by the 
dimensions and shape of the ship. 
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The above linear model can be obtained using the power 
spectral density function under different sea-wave 
excitation [5]. The most important part of the equation 
is representation of the periodlc sea-wave excitation. 
The wave excitation can be approximated by the 
superposition of sinusoidal waves [6]. 

c ( 1 )  = E A l  s i n ( w ,  l + b , )  

(2) 
where, A, is the amplitude of wave excitation, w,, the 
frequency and b,, the phase of each different wave. 

In most of the cases, the amplitude and the frequency of 
the waves are considered to be time-invariant. When 
the ship is moving with forward speed, there exists a 
certain relation between the ac tual wave frequencies, 
and the frequencies encountered by the ship[6]. 
Following this relation, the direct influence of the waves 
on the ship is given as follows: 

(3) 

62 
w . = w -. 2 ' U ' cos ( x )  

el i g 

(4) 
where, w e i  is the transformed wave frequency, v is the 
forward speed of the ship, x is the angle between the 
ship hcading and the wave direction, and g is the 
standard gravitational acccleration. 

Moreover since the energy of each individual wave 
component rapidly decreases as the frequency of the 
wave increases, the above expression can be simplified 
further. Truncating the high frequency components the 
expression takes thc following rorm: 

N 

i =  1 
5 , ( 1 )  = 1 A i . s i n ( w e i . l + D i )  

( 5 )  
It is reported in numerous studies [11,[51,[61,[7] that a 
value of 3 for N, is sufficient to approximate the wave 
excitation input, in the caw of small ships. After all the 
approximations and tranciformations, the equation for 
the ship motion in the equivalent state space 
representation can be writl.en as follows: 

(6) 
where, x(t) is the state vector which represents the ship 
motion. It is a 2 x 1 vector defined as follows: 

(7) 
Ce(t) is the truncated wave excitation input, w(t) is the 
state random noise, z(k) is the discrete measurement 
vector and v (k )  is a random noise which corrupts the 
measurements. 

The position and velocity of the ship are usually 
measured by on-board sensors. Since all the states are 
not measurable, and the measurements always contain 
noise, filters are employed Lo estimate the actual 
position of the ship. The objective is to obtain the 
optimal, stale estimate i (k /k )  of the state x(k/k), in the 
mean square scnsc, given the measurement record, 
Z(k)=( z(l),z(2),.., z(k)) .  

III. SHIP POSITION ESTIMATORS 

In the past K a h n  Filter based techniques, or other 
statistical filters have been used in  connection with state 
space models in order to provide meaningful and 
accurate estimates of the ship motion. If the sea-wave 
excitation (sea condition) is known in advance, and all 
other dynamic and statistical specifications of the above 
model meet h e  assumptions of the Kalman Filter, then 
this filter is the optimal estimator and provides the most 
accurate estimate. However tile sea condition is not 
always known in advance to thc designer of the filter. In 
this situation, when a mismatch occurs between the 
actual model and the model used by the designer, the 
Kalman filter fails. 

A more robust statistical filter, namely the Adaptive 
Lainiotis Filter [8],[9], was successfully used in this 
situation. Unlike the Kalman Filter, this new filter, due 
to its adaptive nature, identifies in real time, the actual 
model and provides the appropriate solutions [8],[ 111. 
Recently, neural networks have been used to estimate 
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states of dynamic systems [12],[13],[14]. In this paper, 
a neural network is used to provide the ship motion 
estimates. The estimator is a multilayer recurrent neural 
network, trained using back-propagation technique, to 
provide estimates of the ship position. 

The following simulation experiments are performed: 

SIMULATION I: 
In this experiment, the neural estimator is compared 
with the optimal Kalman filter. It is supposed for 
comparison purposes that the dynamic model is 
completely known, and the statistical Kalman filter is 
matched to the actual dynamic and statistical model of 
the ship dynamics. Although this situation is highly 
unrealistic, this comparison is made to evaluate the 
performance of the neural estimator, viz. a viz., the 
inaccessible performance of the optimal Kalman filter. 
The experimental set-up is given below: 

System Model: 

where, 

ati-l = A.cos mi), ati = A.sin (bi). The amplitude of the 
wave excitation input, Ad.5,  with a constant excitation 
frequency, wi = d4; different phases are, bl=2~/3, 
b2=n/3, q=d6. Q=0.25 and R=0.1, are zero-mean, 
white, gaussian, plant and measurement noise 
covariances, respectively. 

In order to estimate the states of the above model, the 
following estimators are used in this first experiment: 

Statistical estimator: K a l m n  filter 

The Kalman Filter is matched to the above dynamic and 
statistical model. All the quantities of the state-space 
model is assumed to be known a-priori to the filter 
designer. Moreover, the filter starts its recursive cycle 

assuming initial state estimate, n(O/O) = 0, and initial 
covariance, P(0K)) = loo. 

Neural estimator: recurrent, multilayer network 

- network topology: 
two input nodes: the current and the 
previous neural output are used as input 
signals 
two output nodes: the estimates of the 
system states. The neural network has so 
many output nodes, as the states of the 
model 

two hidden layers with 10-10 hidden nodes 
respectively 

- learning parameters: 

learning rate: 0.005, momentum: 0.2 

backpropagation training algorithm 
the network knows the actual states of the 
model during the training phase. The 
target vector is the actual state vector 

the network tries to minimize the square 
error between the current output and the 
target vector 
The training data set is produced by 
running the system equations. The 
training set consists of 150 input/output 
Pairs (z(k), x&)) 

The test data record consists of a sequence 
of data points produced separately from 
the training record 

the training procedure is terminated if the 
training error tolerance is less than 0.01 
or if the number of iterations of the 
training set is more than 5000 

- Training procedure: 

Observations: 

In Figs.1-3, the performance of the Kalman Filter in the 
estimation of the position and the normalized e m r  over 
100 Monte Carlo trials are given. The average error in 
the performance during the Monte Carlo simulation is 
calculated using the following performance index: 

1 mc MSE = - .  C { ~ ( k )  - n ( k / k ) } / ( x ( k ) )  
mc . r = l  

(10) 
From the figures it is obvious that the Kalman Filter 
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performs very well, when all the parameters of the 
dynamic and statistical model are known. In Figs.2 and 
3, the performance of the neural estimator in the 
estimation of the ship position and its error over 100 
Monte Carlo runs, using the same performance index 
shown above, is given. In summary, the following 
conclusions can be drawn: 

for a linear, gaussian model, if the 
underlying statistics and dynamics of the 
phenomenon is completely known to the 
estimator, the Kalman filter provides the 
optimal results. 

the neural estimator performs similar to the 
optimal filter even though it is a nonlinear 
structure applied to a linear, gaussian 
model. 

SIMULATION 11: 
It was mentioned in the introduction that many times it  
is more important to predict ahead the position of the 
ship, rather than estimate its current position. This will 
be the subject of the second experiment. In particular, 
we arc interested in comparing the performance of a 
neural predictor, with that of the Kalman predictor. The 
model used in the experiment is the same two- 
dimensional state-space model used in the previous one. 
The following two estimators / predictors are compared: 

Statistical predictor: Kalman Jilter 

Two Kalman filters are used in this simulation 
experiment. The first one is matched to the actual 
dynamic model. All the quantities of the dynamic 
model is supposed to be known to the designer. The 
second Kalman filter docs not know the exact dynamic 
model. More specifically in its design another variation 
of the wave excitation has bcen assumed. Both the filters 
assume that the measurement noise is gaussian, zero 
mean, with variance, R = 0.1. The initial state is 
assumed to be gaussian, with the initial estimate, 
a(O/O) =0, and initial covariance, P(O/O) = 100. The 
objective for each of them is the prediction of the ship 
position two seconds ahead. 

Neural predictor: recurrtmt multilayer network 

- network topology: 
five input nodcs: the current and the four 
previous measurlm” are used as input 
signals 

one output node: the prediction of the next 
measurement value 
three hidden layers with 10-10-10 hidden 
nodes respectively 

-learning parameters: 

learning rate: 0.001, momentum: 0.1 
- Training procedure: 

backpropagation training algorithm 
the network does not know the actual states 

of the model during the training phase. 
The target vector is again a measurement 
value 

the network tries to minimize the square 
error between the current output and the 
target vector 

the test data record consists of a sequence 
of data points produced separately from 
the training record 

the training procedure is terminated if the 
training error tolerance is less than 0.01 
or if the number of iterations is more than 
5000 

Observations: 

As was expected, the neural predictor performs better 
than the mismatched Kalman predictor, despite the 
minimal information required for its training. The 
prediction of the network, is shown in Fig. 4. However 
when the model that describes the wave excitation is 
completely known, the Kalman filter provides the 
optimal predictions. The perfomance of the two 
Kalman predictors and the corrcsponding errors over 
100 Monte Carlo runs are given in Figs. 5-8. These 
results lead us to the following conclusions: 

the neural predictor requires very little 
information about the nature of the 
model, and provides best predictions, 
with total ignorance of the actual dynamic 
and statistical model. 

the statistical predictor (Kalman filler) does 
not perform as well, and provides 
suboptimal solutions when a mismatch 
between the actual model and the one 
used in the design exist. The comparative 
graphical representations, shown in Figs. 
7 and 8 confirm the above conclusions. 
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IK CONCLUSIONS 

The real time ship motion estimation and prediction was 
considered in this paper. The approach taken, was to 
design a neural network based estimator, that can handle 
more realistic scenarios about the underlying physical 
model. A comparison with the most widely used 
statistical Kalman filter estimator, was made. 
Simulation experiments were carried out in order to 
assess the performance. In the ship motion prediction 
problem, the neural network predictor shows excellent 
performance, though it was derived using minimal 
information about the dynamics of the model. 
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Fig. 3 

Fig. 1 Ship position estimation: ncuml estimator 
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Abstrod-A six degree of freedom buoy design and analysis 
program is given. The buoy program extends original work 
published by the Woods Hole Oceanographic Institution for 
roll and heave response of free floating axisymetric bodies. 

The program predicts the probable amplitude of buoy 
displacement, velocity, acceleration, and jerk for heave, surge, 
and sway, motions and probable amplitude of roll, pitch, and 
yaw angular displacements, velocities, and accelerations. 
Given is an overview of the equations of motion, simplifying 
assumptions, and a description of the computational method. 

The paper contributes limited verification of the 
computational method with a summary of computer 
predictions and experimentally obtained data on buoy motion. 
The data 011 motionn is obtained from buoys designed with 
specific buoy motion requirements. Experimental data is 
given for various sea states and buoy types . 

I. INTRODUCTION 

Modern oceanographic measurement techniques often 
require highly stable platforms with predictable levels of 
motion[1,2]. Modem air sea interaction studies depend on 
at-sea experimental model verifications to test and evaluate 
emerging theories in a wide variety of Ocean sciences. 
Experiments range from global heat flux, including 
prediction of momentum exchange in the presence of 
waves, to the understanding of radio wave propagation over 
the sea. 

The advent of the personal computer (PC) provided design 
engineers with a computational machine that allows for 
rapid and convenient solution of many classical engineering 
problems. Off the shelf software is available to solve many 
of the typical problems encountered in fluid mechanics, 
solid mechanics and dynarmcs. Ocean engineers seeking to 
solve complex problems related to the ocean environment 
are developing their own personal computer based s o h a r e  
to satisfy system requirements and solve design conflicts[3]. 
Typical programs include static and dynamic cable, buoy, 
and towed systems problem solvers. With an increasing 
number and variety of computer models available it is now 
more important than ever to have applicable, high quality, 
well understood data for validating emerging computer 
codes. 

Accurate computer aided tools for the design and analysis of 
moored and free floating buoy systems require full scale 
validation and refinements until the user has confidence the 
program is generating realistic output. 

Ocean Systems Development Corporation (OSDC) was 
founded to provide high quality ocean engineering products 
and services to the maritime industry. OSDC supports 
theoretical design studies leading to innovative 
oceanographic instrumentation and stabilized instrument 
platfoms while providing experienced technical support 
personnel for the solution of practical problems related to 
the ocean environment 

The OSDC six degree of freedom (6DOF) computer 
solution for free floating buoys presented here was 
developed over the past twelve years from ideas given in 
original work published by The Woods Hole Oceanographic 
Institution (WHOI)[4]. The WHO1 reports present an 
analysis method and FORTRAN computational code 
designed to run on a main frame computer for the heave, 
roll, and pitch response of free floating bodies of cylindrical 
shape. We extended the work to include surge, sway, and 
yaw and now have a working code written in Microsoft 
QBasic for a PC. The program predicts the probable 
amplitude of displacement, velocity, acceleration, and jerk 
for heave, surge, and sway, motions and probable 
amplitude of roll, pitch, and yaw angular displacements, 
velocities, and accelerations. 

We compare the output of the code to the response of 
three buoys built using the code as a design tool. The data 
we draw on is separate deployments. The deployments are; 
a 10 m spar at Lock Linnie, Scotland, a 27 m spar off 
Kauai, Hawaii ,and a 2 m diameter tomdal buoy off Fort 
Pierce, Florida. The 6DOF buoy design and analysis 
program was used in each case to predict motions in the 
design cycle. In each case the buoy motion data was 
obtained from a strap down motion monitoring package 
onboard the buoy. Sea state spectral data corresponding to 
each set of buoy motion data was experimentally obtained 
from either a wave staff, a wave rider, or a subsurface 
pressurdwater velocity sensor. To increasing extents, the 
predicted and measured buoy response is given. 

1-390 0-7803-1385-2l93/$3.00 @ 1993 IEEE 


