
A Multi-Model Filter for Mobile Terminal Location
Tracking

M. McGuire , K.N. Plataniotis
The Edward S. Rogers Sr. Department of Electrical and Computer Engineering,

University of Toronto, 10 King’s College Road, Toronto, Ontario, M5S 3G4, email: mmcguire@dsp.toronto.edu

Abstract— Mobile terminal location is an important area of re-
search because of its application in location-sensitive browsing and
resource allocation. This paper presents a method for reducing the
error in mobile terminal location estimation. A model-based dy-
namic filter is presented which uses an accurate model of mobile
terminal motion to combine information from location measure-
ments made at different time instances together to create an im-
proved location estimate. The model of mobile terminal motion has
a kinematic state space model describing the physical rules govern-
ing terminal motion and a control model that describes the human
control input into the motion process. The dependency between the
terminal location and the control decisions is used to derive a new
dynamic filter. This filter provides better accuracy than previously
known location techniques and is robust to variations in the mobile
terminal motion.

I. INTRODUCTION

Much research has been performed on mobile terminal loca-
tion in wireless cellular networks. Terminal location can be used
for emergency communications and resource allocation assis-
tance. For next generation networks, location methods based on
Time of Arrival (ToA) and Time Difference of Arrival (TDoA)
measurements are the subject of the most research since the pro-
posed access and modulation schemes make accurate time mea-
surements possible[1], [2]. No matter what the form of the mea-
surements used to locate the mobile terminal, there are errors in
the position estimates resulting from noise in the measurement
data.

It has been shown that filtering of the location estimates can
reduce the location errors[3]. The filtering algorithm improves
the estimation of mobile terminal location by combining the in-
formation from measurements made at several sampling time pe-
riods together into an improved location estimate. A filter’s error
reduction performance is highly dependent on the relationship
between the filter’s structure and the properties of the random
processes that compose the motion and measurement generation
processes for the mobile terminals. For the filters presented in
previous work, the relationship between the parameters of the
filters and the real world attributes of mobile terminal motion
were not well described.

This paper presents a location system with a filter based on an
accurate model of mobile terminal motion. The mobile terminal
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motion model consists of a kinematic model, which describes
the physical rules controlling the motion of mobile terminal mo-
tion, and a user control input decision model, which describes
the user decisions concerning the motions of the mobile. The
parameters of the models are easily computed from field mea-
surements. The presented method is a network-based location
solution since only the cellular network can have access to the
necessary information about the local propagation and physical
environment around the mobile terminal that is required by the
location estimate filters.

Section II describes the measurement model. The radio prop-
agation environment used to evaluate the location procedure is
discussed and how the radio measurements are preprocessed be-
fore the filtering procedure is outlined. Section III describes the
motion model for the mobile terminals. The kinematic and user
control input models which dictate mobile terminal motion be-
havior are described. The model-based filter and control input
estimator are described in Section IV. The results of simulations
used to evaluate the filter are presented within Section V. Our
conclusions are summarized in Section VI.

II. PROPAGATION AND MEASUREMENT MODEL

The measurements used to estimate mobile terminal location
are propagation distance measurements based on ToA measure-
ments. The entries of the propagation distance measurement
vector, Z(k), are given by

Zj(k) = dj(k) + εj(k), (1)

where j denotes the base station, Zj(k) is the measurement of
base station j at sample interval k, dj(k) is the propagation dis-
tance from base station j to the mobile terminal at sample inter-
val k and εj(k) is a random variable representing measurement
noise for base station j. The measurement noise is Gaussian with
a mean and a standard deviation, σd, of 16.0 meters. The param-
eters of the noise density are taken from [1], which simulated
multipath propagation based on the COST 207 urban power de-
lay profile. It is assumed that the measurement noise terms for
different base stations are independent.

A. Zero Memory Estimation

For a given time interval k, the zero memory estimator cal-
culates an estimate of the mobile terminal position ,Y (k), from
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Fig. 1. Zero Memory Estimator for ToA location estimation

the measurement vector, Z(k). The so-called zero memory es-
timator is a preprocessor for the location estimation system. It
allows the model-based location estimation filter to operate with-
out knowledge of the non-linearities in the propagation environ-
ment. The conceptual model of the system is shown in Figure 1.

We propose the use of zero memory estimator which uses a
survey of propagation measurements, {Z1,Z2, ...,Zn} taken at
known locations, {θ1,θ2, ...,θn}, in the network environment
to estimate the mobile terminal’s location from its measure-
ment vector. This survey data can be obtained from field mea-
surements or generated using computer ray-tracing propagation
models. These ray-tracing models and survey measurements are
often employed to predict and check network performance[4],
[5].

The zero memory estimated location is calculated using [6]:

Y (k) = θ̂(k) =
n∑

j=1

θjwj(Z(k)) (2)

where

wj(Z(k)) =
Kz

(
Z(k)−Zj

hz

)
∑n

i=1Kz

(
Z(k)−Zi

hz

) , (3)

where n is the number of survey points, m is the length of the
measurement vector Z(k), hz = 2σd and

Kz (Z) = (2π)
m
2 exp

(
−ZT Z

2

)
. (4)

An estimate of the covariance of the zero memory estimated
location can be calculated using R(k) = Cov(θ(k)|Z(k)) =
E

[
θ(k)θ(k)T |Z(k)

] − E [θ(k)|Z(k)] E [θ(k)|Z(k)]T . It has
been shown that Y (k) from (2) calculates an estimate of
E[θ(k)|Z(k)] [6]. The other component of the covariance es-
timate can be calculated using

E
[
θ(k)θ(k)T |Z(k)

] ≈
n∑

j=1

θjθj
Twj(Z(k)). (5)

III. MOTION MODEL

This section describes a state space model for describing the
motion of a mobile terminal located in a road vehicle. A state
space model describes the time evolution of the location state
of the mobile terminal in terms of differential equations in con-
tinuous time, or time difference equations in discrete time. The
true location of a mobile terminal is described in three dimen-
sions. In this paper we estimate the two dimensional location of
the mobile terminal which is suitable for vehicle mobile terminal
location. The work is easily extended to three dimensions.

A vehicle is subject to several friction and drag forces which
oppose the acceleration of the vehicle as the vehicle’s velocity
increases. The result of this is that if the vehicle is subject to
constant driving force, the acceleration of the vehicle will de-
crease as the velocity increases.

A kinematic model with a proportional negative feedback
term to model the effects of air and rolling resistance is proposed.
[px(t), py(t)]T is the location vector of the mobile terminal, and
[vx(t), vy(t)]T is the velocity vector of the mobile terminal. A

state vector is defined as X(t) =
[
px(t) vx(t) py(t) vy(t)

]T
. In

continuous time, the state space model of vehicular motion can
be given by

Ẋ(t) = AX(t) + B{W (t) + U(t)}

=




0 1 0 0
0 −α 0 0
0 0 0 1
0 0 0 −α


X(t)+




0 0
1 0
0 0
0 1




{[
Wx(t)
Wy(t)

]
+

[
Ux(t)
Uy(t)

]}
. (6)

The terms Wx(t) and Wy(t) represent zero mean white
Gaussian noise processes with variances of E

[
Wx(0)2

]
=

E
[
Wy(0)2

]
= σ2 which are the process noise terms for the

continuous time dynamic model. The process noise models ran-
dom effects such as noise in the control system of the vehicle,
variations between drivers, and random road conditions. The de-
terministic inputs, representing driver control input in the x and
y directions are given by Ux(t) and Uy(t). The control inputs
are the drivers input into the system which controls the direction
the vehicle is moving, in which direction it will accelerate, and
so on. The constant α is a drag coefficient that models the var-
ious friction and resistance forces acting on the vehicle. If the
control inputs change, the mobile terminal motion will smoothly
change to the new direction of motion as the drag term forces the
velocity functions to remain continuous. For maneuvering vehi-
cles in North American urban environments a value of α = 1

6 ,
σ2 = 1

3 (meters/second2)2, and |U(t)| = 2.5 meters/second2

gives a good match to observed vehicular behavior for straight
line acceleration[7].

In practice, we can only sample measurements of the state of
the system at discrete times. We will assume that the state is
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sampled with a sampling period of T seconds. The discrete state
vector is given by X(k) =

[
px(kT ) vx(kT ) py(kT ) vy(kT )

]T
.

In field implementations, a location estimator works with
measurements sampled at discrete times. A discrete time model
for mobile terminal motion is thus required. The discrete version
of the dynamic model can be obtained from the continuous time
model[8]. We make the simplifying assumption that the input
vector U(t) changes only at the sample times. Obviously, the
inputs can change at any time instant not just at the sampling in-
stants. The error introduced by this mismatch between the mod-
eling assumptions and real model will be negligible provided the
sampling period is small compared to the time constant of the
continuous system, α−1. The sampling period is set at T = 0.5
seconds which is less than the time constant of the system of
1/α = 6.0 seconds which justifies the assumption made to dis-
cretize the continuous state space model. The resulting discrete
time dynamic model is given by

X(k + 1) = ΦX(k) + ΓU(k) + W (k), (7)

where

Φ =




1 (1−exp(−αT ))
α 0 0

0 exp(−αT ) 0 0
0 0 1 (1−exp(−αT ))

α
0 0 0 exp(−αT )


 ,

Γ =




exp(−αT )−1+αT
α2 0

1−exp(−αT )
α 0
0 exp(−αT )−1+αT

α2

0 1−exp(−αT )
α


 ,

and

Q = E[W (k)W (k)T ] =



r11 r12 0 0
r12 r22 0 0
0 0 r11 r12
0 0 r12 r22


 . (8)

The components of the process noise covariance Q are given by

r11 =
σ2(2αT − 3 + 4 exp(−αT ) − exp(−2αT ))

2α3
,

r12 =
σ2(1 − exp(−αT ))2

2α2
, and

r22 =
σ2(1 − exp(−2αT ))

2α
.

For hand off measurements, mobile terminals make measure-
ments of the signal for the base stations they are using for pri-
mary communications but also of the signal from other base sta-
tions. It is likely to be these measurements that will be extended
for mobile terminal location purposes. Therefore, the sampling
period was set to the approximate the time between measure-
ments in support of the hand off algorithm in GSM. Other net-
works standards, e.g. IS-95, have different sampling intervals
for hand off but the hand off sampling periods are of the same
order of magnitude so the results are still valid.

Fig. 2. Interactive Multiple Model Filter Structure

The control input ,U(k), is usually equal to a member of a
discrete set of vectors each matching motion along the direction
of the streets, U(k) ∈ {U1,U2, ...,UN}. For a Manhattan street
layout such as shown in Figure 3, N = 5 with one control input
for each of the cardinal directions plus one additional vector for
an all zero control input vector. The control input in most cases
changes only when the mobile terminal is located in an intersec-
tion, otherwise U(k) = U(k − 1).

The performance of a Kalman filter based on the above dy-
namic model is compared with a Simple Kalman filter based on
the following dynamic model from [3]. For this filter:

Φ =




1 T 0 0
0 1 0 0
0 0 1 T
0 0 0 1


 and Q =




0 0 0 0
0 c 0 0
0 0 0 0
0 0 0 c


 , (9)

where c is a value optimized for minimum expected squared er-
ror. This model does not include the effects control input so Γ,
for this model, is a matrix of all zeros.

IV. FILTERING AND STATE ESTIMATION

The Zero Memory Estimator provides the filter with an esti-
mate of mobile terminal position, Y (k). This estimated position
is a linear function of the mobile terminal state X(k):

Y (k) = HX(k) + V (k), (10)

where H =
[
1 0 0 0
0 0 1 0

]
and V (k) is the error of the zero memory

estimator. The covariance of V (k), R(k), is estimated by the
Zero Memory estimator as described in Section II-A.

If the control input vector, U(k), is known, the optimal esti-
mation algorithm for X(k) is the well known Kalman Filter[9].
Unfortunately, the control input must be estimated in parallel
with the mobile terminal location and velocity.

A Bayesian estimator that makes use of the discrete nature of
the control inputs is proposed in this paper. The location system
state of the mobile terminal is estimated using a multi-model fil-
ter as shown in Figure 2. Multiple Kalman filters, each matched
to one of the possible control inputs, are run in parallel. These
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Pr(U(k + 1) = Ui|U(k) = Uj ,X(k) = X̂(k|k)
X̂(k|k) i = j i �= j

Not in Intersection 0.9999 1−0.9999
4

In Intersection Pr(TOSELF ) 1−Pr(TOSELF )
4

TABLE I
TRANSITION PROBABILITIES

filters interact as the control input can switch from one possible
input vector to another. The final state estimate for time interval
k is given by X̂(k|k) =

∑N
j=1 Dj(k)Xj(k|k), where Xj(k|k)

is the output of the jth Kalman filter and Dj(k) is the weight
vector defined as the probability of model j being the true model
given the observed measurements[10]. The probabilities are cal-
culated using

Di(k + 1) =
f(Y (k + 1)|U(k) = Ui,Y (k),Y (k − 1), ...,Y (1))

f (Y (k + 1)|Y (k),Y (k − 1), ...,Y (1))
N∑

j=1

Θ̂ij(k)Dj(k), (11)

where Θ̂(k) is a matrix specifying the transition probabilities
between the different control inputs given the current estimated
location of the terminal, Θ̂ij(k) = Pr[U(k + 1) = Ui|U(k) =
Uj ,X(k) = X̂(k|k)]. The density value in the numerator
can be calculated using outputs from the Kalman filter and zero
memory estimator. The value of Y (k + 1) given all past mea-
surement values assuming that the control input U(k) = Ui is
Gaussian with mean Xi(k+1|k) = ΦXi(k|k)+ΓUi, and vari-
ance HPi(k+ 1|k)HT + R(k) where Xi(k|k) is the output of
the ith Kalman filter for sample interval k, and Pi(k + 1|k) is
the variance of Xi(k+ 1|k)[10]. The denominator value in (11)
is a constant for all the filters and does not need to be computed.

An innovation introduced in this paper is using the the fact that
the transition probabilities are a function of location to improve
the accuracy of the estimation algorithm. The control input tran-
sition probabilities are calculated using knowledge of the envi-
ronment. At intersections, the control input is likely to change.
When the mobile terminal is between intersections, the proba-
bility is high that the control input will remain the same. The
filtering algorithm incorporates this knowledge into the estima-
tion algorithm. The transition probabilities used in this paper are
given in Table I where Pr(TOSELF ) is a user selected con-
stant proportional to the probability the user will turn at each
intersection.

If the input vector changes after the control input has remained
unchanged for several sample intervals, it takes the Kalman fil-
ter which is matched to the new input several sampling intervals
to converge to the system state of mobile terminal. The newly
matched Kalman filter must first remove the errors from its loca-
tion estimate. Meanwhile, the Kalman filter which matches the

previous input vector will generate state estimates with asymp-
totically increasing errors as the effects of the new mismatch
build up. The effect of these transition effects is that the control
input estimation algorithm requires several sampling periods to
properly identify the new input vector.

One method to increase the rate at which the Kalman Filters
adjust to input vector changes is to elevate the assumed covari-
ance of the process noise over the value given in the mobility
model[10]. This increased covariance reflects uncertainty in the
knowledge of the input vectors. The process noise covariance, a
design parameter in the setting of Kalman filters, is set to

Q = Qmodel + ΓQuIΓT , (12)

where Qmodel is the process noise in the Kinematic model of the
mobility model, I is an appropriately sized identity matrix, and
Qu is a positive scalar constant.

The optimal value is Qu is a trade off between the perfor-
mance of the Kalman filter with the correct input vector, and the
performance of the filters with mismatched input vectors. Low
values of Qu will give asymptotically better performance if the
input vector remains constant for a long period of time at the cost
of longer convergence times after the input vector changes. The
range of values for Qu which give reasonable estimator perfor-
mance is from 0 to the variance of the control input in one of the
coordinate axis directions. In this application, the control input
for either the x or y directions can go from −2.5 to 2.5 where
2.5 meters/second2 is the maximum acceleration of the mobile.
Since the mean of the control inputs is 0, it can be easily shown
that the variance of the control input along one axis in this appli-
cation is less than 2.52, therefore 0 ≤ Qu < 6.25.

V. RESULTS

The estimation method is applied to a mobile terminal moving
through a simulated dense urban environment shown in Figure 3
with block lengths of 300 meters and street widths of 20 me-
ters. As the terminal moves, it encounters Line of Sight and Non
Line of Sight propagation. A realistic turning behavior model
is used where the mobile terminal slows down before making
a turn at an intersection. At each sampling interval, ToA mea-
surements from the closest base stations and the two other base
stations with the lowest distance measurements are used by the
Zero Memory estimation algorithm to calculate the input to the
filtering algorithm.

For the first set of simulations, the mobile has a 2
3 probability

of turning when it encounters an intersection. We compare our
filter results with those obtained using the filter in [3]. The filter
parameters were set to Pr(TOSELF ) = 0.80 and Qu = 3.15,
the values that were empirically found to give the lowest errors
for Pr(TURN) = 2

3 . The parameters of the simple Kalman
Filter were also optimized to c = 1.5, the optimal value also
found empirically. It was also tried to calculate the value of
c for the simple Kalman Filter using the method described in
[3], the resulting error curve labeled as ‘Simple Kalman Fil-
ter(Hellebrandt).’. This optimization method does not work well
as it does not give sufficient weight to the rapid maneuvers in

0-7803-7467-3/02/$17.00 ©2002 IEEE. 1200



Fig. 3. Manhattan street layout
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Fig. 4. Filtering Location Accuracy Results
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intersections. Figure 4 shows that the new filter provides better
location accuracy with less transient behavior when tracking is
started.

The second set of simulations demonstrates the robustness of
the new filtering algorithm. The probability of the mobile turn-
ing at each intersection was varied and the mean squared location
error averaged over the first 100 seconds of the mobile terminal
run is reported. The results for the multi-model filter optimized
for different turning probabilities are compared with using only
the Zero Memory Estimator. It can be seen that using a filter
optimized for a turning probability of 2

3 is robust to a wide range
of true turning probabilities.

VI. CONCLUSIONS

This paper presents a dynamic filter for the mobile terminal
location problem. This filter is based upon a realistic motion
model based on observations of vehicular motion. A zero mem-
ory estimator preprocesses the raw measurement data creating
a pseudo-measurement that is linear with respect to the termi-
nal location vector. A multi-model algorithm is then used to
filter the mobile terminal location estimates. This filter uses the
knowledge that the control inputs transition probabilities are a
function of mobile terminal location to improve estimation ac-
curacy. It is demonstrated that the new filter provides better ac-
curacy than previously presented filters and is robust to changes
in the motion parameters.
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[2] M.A. Spirito, S. Pöykkö, and O. Knuuttila, “Experimental performance
of methods to estimate the location of legacy handsets in GSM,” in Fall
Vehicular Technology Conference, October 2001, pp. 2716–2720.

[3] M. Hellebrandt and R. Mathar, “Location tracking of mobiles in cellular
radio networks,” IEEE Transactions on Vehicular Technology, vol. 48, no.
5, pp. 1558–1562, September 1999.

[4] P. Bernadin, M.F. Yee, and T. Ellis, “Cell radius inaccuracy: A new mea-
sure of coverage reliability,” IEEE Transactions on Vehicular Technology,
vol. 47, no. 4, pp. 1215–1226, November 1998.

[5] R.R. Collman, “Evaluation of methods for determining the mobile traffic
distribution in cellular radio networks,” IEEE Transactions on Vehicular
Technology, vol. 50, no. 6, pp. 1629–1635, November 2001.

[6] M. McGuire, K.N. Plataniotis, and A.N. Venetsanopoulos, “Location of
mobile terminals using time measurements and survey points,” Submitted
to IEEE Transactions on Vehicular Technology, June 2001.

[7] W.D. Glauz and D.W Harwood, “Chapter 3: Vehicles,” in Traffic Engi-
neering Handbook, J.L. Pline, Ed. Institution of Transportation Engineers,
Washington, D.C., 5th edition, 1999.

[8] K. Ogata, Discrete-Time Control Systems, Prentice Hall, Englewood Cliffs,
N.J., 1995.

[9] E. Brookner, Tracking and Kalman Filtering Made Easy, John Wiley &
Sons, Inc., Toronto, Ontario, Canada, 1998.

[10] R.L. Moose, H.F. VanLandingham, and D.H. McCabe, “Modeling and
estimation for tracking maneuvering targets,” IEEE Transactions on
Aerospace and Electronic Systems, vol. AES-15, no. 3, pp. 448–456, May
1979.

0-7803-7467-3/02/$17.00 ©2002 IEEE. 1201


	Index: 
	CCC: 0-7803-5957-7/00/$10.00 © 2000 IEEE
	ccc: 0-7803-5957-7/00/$10.00 © 2000 IEEE
	cce: 0-7803-5957-7/00/$10.00 © 2000 IEEE
	index: 
	INDEX: 
	ind: 
	Intentional blank: This page is intentionally blank


