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ABSTRACT 

This paper discusses the problem of Adaptive heave 
compensation. A new estimator based on dynamic 
recurrent neural networks is applied to this problem. It 
is shown that the new algorithm is well suited for on- 
line implementation and has excellent performance. 
Computational results via extensive simulations are pro- 
vided to illustrate the effectiveness of the algorithm. A 
comparative evaluation with conventional methods is 
also provided. 

I .  INTRODUCTION 

Dynamic heave compensation arises in many sea-related 
problems such as seismic experiments for oil explora- 
tion [l], control of autonomous underwater vehicles [2], 
underwater target tracking, and float wave data analysis 
[3]. The physical models of the heave process can be 
found in [4]. Frequency methods have been used in the 
past to identify models of source heave. The model is 
based on the frequency content of the heave record and 
it is used as the basis to formulate the heave extraction 

1 problem as one of optimal linear estimation. 

A lot of studies have been reported €or the solution to 
this problem, most of them utilizing Kalman Filter 
based approach. The state-space formulation of heave 
dynamics make the Kalman Filter an obvious first 
choice. The design of the Kalman estimator is based on 
the assumption of the complete structural knowledge of 
the model which describes the heave dynamics. Its 
recursive form is based on the gaussian assumption of 
the state space noise statistics. It is well known that 
there is a degradation of the estimate quality, when a 
mismatch between the structure and noise statistics used 
to design the Kalman Filter, and the actual model exists 
[5]. In order to overcome such drawbacks, another 
approach was followed in [51. Based on the Lainiotis 

Multimodel Partitioning Approach [61, [7], the highly 
parallel, Adaptive Lainiotis Filter was used to provide 
adaptability in a changing environment and reduced 
processing time. 

It is obvious, an estimator that can handle more realistic 
assumptions about the dynamic model, can provide 
more meaningful estimates of the desired states in real 
time situations. On the other hand, the emphasis on par- 
allel processing capabilities in the new estimator 
designs, and the availability of powerful parallel com- 
puters, indicates the importance of a parallel, decoupled 
structure, like that of the ALF [8]. Taking all these into 
consideration, a neural estimator is proposed, that can 
also take advantage of the new hardware capabilities. 

Specifically this paper is organized as follows: In Sec- 
tion I1 the structure of the proposed neural estimator, the 
details of the construction of the network, the training 
method used, and a comparison with conventional tech- 
niques via extensive simulations are given. Finally Sec- 
tion III summarizes the conclusions. 

II .  NEURAL NETWORKS FOR HEAVE 
COMPENSATION 

Recently, neural networks have been used to estimate 
states of dynamic systems [SI, [IO], [13]. Recurrent 
neural networks seem to be an answer to these estima- 
tion problems, where the applicability of other statistical 
estimators, like the Kalman filter, are limited. The neu- 
ral estimators provide improved performance, especially 
when the system model violates the assumptions about 
the structure and the statistics, upon which the Kalman 
filter is based. 

In this work, a recurrent multilayer network trained via 
the back-propagation method [12], has been used as 
neural estimator. The neural estimator is an input recur- 
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rent dynamic network that allows information to flow 
from the output nodes to theinput nodes [9], 1113, [141. 

Neural and conventional estimators have been used here 
in order to estimate the states of the heave compensation 
state space model. The heave compensation model had 
been obtained from field data records off the coast of 
Newfoundland and discussed in [4J. The heave com- 
pensation process involves two steps. In the first a 
mathematical model is obtained from the available 
heave data, and then a filtering method is applied to esti- 
mate the heave state. 

A second order transfer function model which had been 
obtained in [4] is used here 

12566.375 T ( s )  = 
s2 + 12566.375 . s + 6.3 16547 x lo8 

(1) 
The model is based on an oscillatory system with center 
frequency, Fp=4 KHz and Q,=2. A time scaling is used 
in order to avoid aliasing in the Fourier Transform oper- 
ation. The overall dynamics is converted from the s- 
domain transfer function to a stable z-domain transfer 
function using a zero-order hold device and a sampling 
period [4]. 

The equivalent time domain representation [6] ,  in a state 
space observable canonical form is: 

x(k+1) = [la559 '1 . x ( k )  + p-O;;-J . w ( k )  
-0.777 0 

(3) 
where, 
w(k) is assumed to be zero-mean gaussian noise with 
covariance Q=lO.O 
v(k) is assumed to be zero-mean gaussian observation 
noise with covariance 10.0 
The initial state vector, x(0) is assumed to be a gaussian 
vector with known mean, x(O/o), and error covariance 
matrix, P(O/O). The initial state is also assumed inde- 
pendent of the noise. 

Statistical or neural estimators can be used to generate 
estimates of the heave record from data observed 
through the above model. In most of the cases, the filter 
estimates are based on data records gathered together 
from different sensors, or the same sensors recording at 

different time intervals. These measurements are 
obtained using mechanical or electronic instruments. It 
is well known that the environment around the measure- 
ment sensors might introduce unknown bias tenns in the 
measurement sequence. Moreover fai1ure.s in instru- 
mentation may randomly occur. Therefore the assump- 
tion that the filter designer has a complete knowledge of 
the measurement equation dynamics and statistics is not 
always true in real situations. The above measurement 
biases can be modeled either as unknown constant 
parameters, or as additive measurement noise with 
unknown characteristics. 

In an ideal situation where the above model is com- 
pletely known, the Kalman filter is the optimal estimator 
in the mean square sense. However when the dynamics 
of the measurement equation or the statistics of the mea- 
surement noise are not available the Kalman filter fails 
to provide accurate estimates. More powerful statistical 
estimators like ALF [6], [7] that can handle model 
uncertainties must be used. 

In this paper a similar situation is introduced. The state 
equation that describes the heave phenomenon is 
known. However unknown measurement bias exists. 
The objective of the different estimators is to estimate 
the system state with partial knowledge of the measure- 
ment equation. The above two statistical estimators are 
compared in terms of performance, with a neural esti- 
mator which is derived without any specific assumption 
about the statistics and the dynamics of the measure- 
ment model. The experimental set -up is given below: 

System model: 

The structural model that describes the heave phenome- 
non is linear and time-invariant, but the measurement 
dynamics, and the statistics of the measurement noise 
are not completely hown. In this experiment the fol- 
lowing model is assumed: 

x ( k +  1) = [ 1,559 'I . x ( k )  + [-;;;J. w ( k )  
-0.777 0 

(4) 

z ( k )  = [1 iJ * x ( k )  + b ( k )  + v W  

( 5 )  
where, b(k) is unknown measurement bias, uniformly 
distributed over the interval [-2.5,2.5]. The statistics of 
the bias term is unknown to the filters designer. In order 
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to overcome the uncertainty, the designer has assumed 
that different models represent the physical phenome- 
non. Since the unknown parameter is the bias term the 
following assumptions are made about its statistics. 

Model I 
The bias term is white gaussian noise with Rb = 2.083 

ModelII 
The bias term is white gaussian noise with R b  = 3.12 

The bias term is white gaussian noise with Rb = 4.51 

In the experiment it is assumed that the real data are 
generated using the Eqs. (4),(5). The Kalman filter, the 
Adaptive Lainiotis filter, and a dynamic recurrent neural 
network are used to estimate the states of the above state 
space model. More specific the different filter configu- 
rations are summarized below: 

ModelIII 

--Statistical estimator: Kalman Filter (KF) 

In this simulation two Kalman filters are used. The first 
one is matched to the Model I. In other words it is a Kal- 
man filter that knows the exact dynamics of the model 
and assumes that the bias term is gaussian with variance 
the actual variance of the uniform noise. The second 
Kalman filter does not know the statistics of the bias 
term. It assumes that the bias is gaussian with mean the 
actual sample mean, and covariance the actual sample 
covariance. Both the recursive algorithm start with ini- 
tial state estimate, i(O/O)=O and initial covariance, P(O/ 
0)=100. 

-Statistical Estimator: Adaptive Lainiotis filter (ALF) 

The Adaptive Lainiotis Filter (ALV [6], [7], is used to 
provide state estimates. The ALF filter employs two 
different Kalman filters. The first one is matched to 
Model 11, and the other uses the assumptions of Model 
111. In this way each of the filters in the ALF's bank is an 
optimal estimator. The nonlinear filter combines their 
estimates in an adaptive sense, providing the overall 
estimates [71. The same initial conditions as above have 
been used to initialize the filter. 

--Neural Estimators: Input recurrent neural networks 

The dynamic recurrent neural estimator has the follow- 
ing structure. 
- Network topology: 

2 input nodes: the current and the previous 

measurements are used as input signals. 
3 hidden layers with 4-4-2 nodes respec- 
tively. 

2 output linear nodes: the number of output 
nodes depends on the dimensionality of 
the state vector. The output nodes pro- 
vide the desired estimates of the system's 
states. 

-learning parameters: 
learning rate: 0.05, momentum term: 0.2 

-Training method: 
the network knows the actual states of the 
model during the training phase. The tar- 
get vector is the actual state vector. 

the network tries to minimize the square 
error between the current output and the 
target vector. 

The training data set is produced by run- 
ning the system equations. The training 
set consists from 100 input/output pairs 
(x(k), z(k)). The test set consists also of a 
sequence of 100 data points. The test 
record is produced separately from the 
training. 

the training procedure is terminated if the 
training error tolerance is less than 0.01 
or if the number of iterations of the train- 
ing set is more than 50000. 

Figl. Input recurrent Neural Network 

In order to assess the performance of the above estima- 
tors, the mean square error, averaged over 50 Monte 
Carlo runs, is used: 

(6) 
The simulation results are shown in Figs. 2-12. From 
the graphs the following can be concluded 
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. The Kalman Filter is the optimal estimator 
for a linear stateapace model with gauss- 
ian noises. In Model I with the additive 
non gaussian noise its estimates are no 
more optimal. However since it knows 
the exact statistic of the bias term it pro- 
vides reliable estimates. On the other 
hand the second Kalman filter provides 
suboptimal estimates of the system states, 
due to the uncertainty regarding the statis- 
tics of the additive bias term. 

case, with a p e r f m e  similar to this of 
a r ecmnt  neural estimator 

In conclusion, the ability of the neural nehvork based 
estimator to provide accurate solutions to the heave 
compensation problem under more practical conditions, 
and its massively parallel structure and high speed, 
makes it the preferable choice for real time signal pro- 
cessing applications. 
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Fig. 2 Heave compensation: state X1, neural estimator 

Fig. 3 Heave compensation: state X1. ALF filter 
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Fig. 4 Heave compensation: state X1, matched Kalman filter 
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Fig. 5 Heave compensation: state XI, mismatched Kalman filter 
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Fig. 6 Neural estimator, state XI: Mean square emr. 50 MCR 

Fig. 7 ALF filter, state X1: Mean square error, 50 MCR 

Fig. 10 Comparative evaluation State X1: Mean Square Error, 50 MCR 

Fig. 11 Comparative evaluation State X2: Mean Square Error, 50 MCR 
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Fig. 8 Kalman filter (matched), state X1: Mean s q m  error, 50 M a  Fig- l2 Heave compensation : ALF model selection 

Fig. 9 Kalman filter (mismatched), state X1: Mean square error, 50 MCR 
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