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ABSTRACT

In this paper a novel approach to the problem of impulsive
noise reduction in color images based on the nonparametric
density estimation is presented. The basic idea behind the
new image filtering technique is the maximization of the
similarities between pixels in a predefined filtering window.
The new method is faster than the standard vector median
filter (VMF) and preserves better edges and fine image de-
tails. Simulation resulis show that the proposed method out-
performs standard algorithms of the reduction of impulsive
noise in color images.

1. NOISE REMOVAL IN COLOR IMAGES

A number of nonlinear, multichannel filters, which utilize
correlation among multivariate vectors using various dis-
tance measures, have been proposed [1-7]. The most popu-
lar nonlincar, multichannel filters are based on the ordering
of vectors in a predefined moving window. The output of
these filters is defined as the lowest ranked vector according
to a specific vector ordering technique.

Let F(z) represents a multichannel image and let W
be a window of finite size n + 1, (filter length), The noisy
image vectors inside the filtering window W are denoted
as F;, 5 = 0,1,...,n. If the distance between two vec-
tors F;, F'; is denoted as p{F;, F';) then the scalar quantity
R, = Z;;O p(F;, F;) is the distance associated with the
noisy vector Fy . The ordering of the Ry ’s: Hepy < By <
.. < Ryy), implies the same ordering to the corresponding
vectors F; @ Fpy < Fy € ... £ Fiyy. Nonlinear ranked
type multichannel e¢stimators define the vector Fygy as the
filter output. However, the concept of input ordering, ini-
tially applied to scalar quantities is not easily extended to
multichannel data, since there is no universal way to define
ordering in veclor spaces. To overcome this problem, dis-
tance functions are often utilized to order vectors, [1,2].

The majority of standard filters detect and replace well
noisy pixels, but their property of preserving pixels which
were not corrupted hy the noise process is far from the ideal.
In this paper we show the construction of a simple, efficient
and fast filter which removes noisy pixels, but has the ability
of preserving original image pixel values.
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2. PROPOSED ALGORITHM
2.1. Gray-scale Images

Let us assume a filtering window W containing n+ 1 image
pixels, { Fo, F1, ..., F,}, where r is the number of neigh-
bors of the central pixel Fy, (see Fig. 2a} and let us de-
fine the similarity function ¢ : [0;00) — R which is non-
ascending in [0; c0), convex in [0; oc) and satisfies p(0) =
1, (o) = 0. The similarity between two pixels of the
same intensity should be 1, and the similarity between pix-
els with far distant gray scale values should be very close to
0. The function p(F;, F;) defined as p(F;, F;) = p(JF; —
F;]) satisfies the three above conditions.

Let us additionally define the cumulated sum M of sim-
ilarities between the pixel Fy and all its neighbors. For the
central pixel and its neighbors we define Mo and M, as

n

Mo=3 p(Fo,Fy), Mi= 3 wlFiFy), (1)
i=1 F=13k

which means that for Fj, which are neighbors of Fy we
do not take into account the similarity between I}, and Fop,
which is the main idea behind the new algorithm. The omis-
sion of the similarity p(Fy, Fy) privileges the central pixel,
as in the calculation of Mg we have » similarities .( Fo, F}.),
k=1,2,... nand for M, & > 0 we have only n — 1 sim-
ilarity values, as the central pixel Fy is excluded from Ay

In the construction of the new filter the reference pixel
Fy in the window W is reptaced by one of its neighbors
if Mg < My, k= 1,...,n If this is the case, then Fy
is replaced by that Fy for which & = argmax M;, i =
1,...,n Inother words Fo is detected as being corrupted
if My < My, k=1,...,nand is replaced by its neighbors
F; which maximizes the sum of similarities A1 between al
its neighbors excluding the central pixel. This is illustrated
in Figs. 2 and 5.

The basic assumption is that a new pixel must be taken
from the window W, (introducing pixels which do not occur
in the image is prohibited like in VMF). For this purpose p
must be convex, which means that in order to find a maxi-
mum of the sum of similarity functions A it is sufficient to
calculate the values of M only in poimts Fy, ..., Fy, [7].
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2.2, Color lmages
The presented approach can be applied in a straightforward
way to ¢color images. We use the similarity function defined
by p{F:,F;} = p([|F: —F;)|| where ||- || denotes the spe-
cific vector norm. Now, in exactly the same way we maxi-
mize the total similarity function M for the vector case.
We have checked several convex functions in order to
compare our approach with the standard filters used in color
image processing presented in Tab. 1 and we have obtained
very good results {Tab. 2), when applying the following
similarity functions, which can be treated as kernels of non-
parametric density estimation, [7-9], (see Fig. 4).

ry\2 T 1
po=exp = (7) [ =ep {3} 0=

1 2 T 2
H3 = (1~|>—.’E)h’ {eq = ]—; arctan (-I-;) s s — W.
1 l—z/h if z<h
He= T 1= { 0 if 2> h,

Fig, 1. Tllustration of the efficiency of the new algorithm of
impulsive noise reduction in color images: a) test image, h}
image corrupted by 4% impulsive sqlf & pepper noise, ¢}
new filter output, d) effect of median filtering (3 x 3 mask).

It is interesting to note, that the best results were achieved
for the simplest similarity function p{:x), which allows to
construct a fast noise reduction algorithm. Tn the multichan-
nel case, we have

kg
> WFLFy), ()

J=1, ik

My=Y u(Fo,Fy), M=
j=1

where p{F;. ¥} = ||[Fy, — Fy)}| and || - || is the Ly norm.

Applying the linear similarity function 7 we obtain

1—p(F, FO/R for p(FLF <l
0 otherwise.

wW(Fy, Fy) = {

Then we have from (2), My =n -~ 3 3" p(Fy, F;), and
=1

- p(FeFy)Y _ g
ﬂ[k = Z (1 - ————,'-;—-—- —714—1—77-. le(Fk,FJ)
J=

i=lLi#k

In this way the difference between My and M, is

1« _
AI{J_A'IFczl—"; ;[P(Fost)—ﬂ(FkaFj)], (3)
and

n
My= My >0 if h> 3 |p(Fo.Fy) = p(Fa, Bl 14)
=1

If this condition is satisfied, then the central pixel is con-
sidered as not disturbed by the noise process, otherwise the
pixel F; for which the cumulative similarity valuc achieves
maximurm, replaces the central noisy pixel. In this way the
filter replaces the central pixcl only when it {s really noisy
and preserves the original undistorted image structures.
The parameter b can be sct experimentally or can be
determined adaptively using the technique described in [7].

PR Fi|Fz | Fs

Fs|Fol|Fy Fx Fy

| Fs| Fs Fr | Fs| F5s
a) b)

Fig. 2. Illustration of the construction of the new filtering
technigue. First the cumulative similarity value Af; between
the central pixel I and its neighbors is calculated (a}, then
the pixel Iy is rejected from the flter window and the cu-
mulative similarity values My, & = 1, ..., n of the pixels
Fy, ..., F, are determined, (b).

Notation Filtering Technique

AMF Arithmetic Mean Filter
VMF Vector Median Filter

ANNF Adaptive Neatest Neighbor Filter

BVDF Basic Vector Directional Filter
HDE Hybnd Dhirectional Filler

AHDF | Adaptive Hybrid Directional Filter
DDF hrectional-Distance Filter
FVDF Fuzzy Vector Directional Filter

Table 1. FFilters taken for comparisons, [1-3].
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METHOD NMSE [10—%] | RMSE | PSNR [dB]
NONE 514.95 32.165 17.983
AMF 82.863 12.903 25917
VMEF 23.304 6.842 31.427
ANNF 31.271 7.926 30.149
BVDF 29.074 7.643 30.466
HD¥F 22.845 6.775 31.513
AHDF 22,603 6,739 31.559
DDF 24.003 6.944 31.288
FVDF 26.753 7.331 30.827
FILTERING KERNELS

To(z) 505 3163 38137
) 1959 3157 I%.145
2 (x) 5398 3.294 37.776
usle) 0.574 4.387 35.288
E) 3.064 3.190 38054
fes () 4.777 3.099 38.307
5(7) 11024 3.707 34675
7 (X) 4693 3.072 38384

Fable 2. Comparison of the new algorithm based on differ-
enl kernel functions with the standard techniques, using the
LENA color image contaminated by 5% of impulsive noise.

3. RESULTS AND CONCLUSION

The new algorithm presented in this paper can be seen as
a modification and improvement of the Vector Median Fil-
ter. The comparison with standard color image processing
filters, (Tab. 2, Fig. 1 and 3) shows that the new filter out-
performs the standard procedures used in color image pro-
cessing, when the impulse noise is to be eliminated. The
new filter class based on the similarity functions and ker-
nel density estimation is significantly faster than VMF and
therefore it can be applied in various applications, in which
the computational speed plays a crucial role.
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Fig. 3. a) Dependence of PSNR on the h parameter for
LENA image with 12% of corrupted pixels, b) efficiency of
the new algorithm in terms of PSNR in comparison with
standard filters. LENA image was contaminated by impul-
sive noise with p from 1% to 20% and independently on
each channel, p from 1% to 10%, ¢).
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Fig. 4. Cumulative similarity values dependence on the pixel gray scale value for a windew containing a set of pixels with
intensities {15, 24, 33, 41, 45, 55, 72, 90, 95} using the z function (a) and z; function {b). Plot (¢) shows the comparison of
the tolal similarity functions Af; when using two ditferent kernels.

i

h)

Fig. 5. Illustration of the new filter construction. The supporting window W of size 3 x 3 contains 9 pixels of intensities
{15,24, 33, 41,45,55,72,90, 95}, (Fig.4). Each of the graphs from-a) to i) shows the dependence of Mo and M a, (Mo <
Mpy), where M ;g denctes the camulative similarity value with rejected central pixel F on the pixel gray scale value. Graph
a) shows the plot of My and M, for Iy = 15, plot b) for Fy = 24 and so on till plot plot i) which shows the graphs of M,
and Ay, for Fo = 95. The arrangement of pixels surrounding the central pixel Fy is not relevant. The cemtral pixel will be
replaced in cases: (a), (b), (f) - (i), as in those cases there exists a pixel F; for which My < A,
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