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AbstmcI-"be location of mobile terminals in cellular net- 
works is an important problem with aPPlifations in resoume 
allocation, lofation sensitive browsing, and emergency commu- 
nications. A hey problem in mobile terminal location is the 

of sight ( ~ 0 s )  
propagation, measurement quantization, and measurement noise 
and also bas a reasanable implementation cost. This paper pro. 

propagation [Z], [3]. These algorithms are based on the use of 
non-parametric estimation techniques using survey data taken 
from the propagation environment. 

This paper proposes data fusion to exploit the independence 
of the measurement noise between RSS and TDoA mea- 
surements to combine the measurements' resoective estimates 

of a method that is to p~~~ 

poses a technique that fuses together location estimates obtained 
from propagation power Ims measurements and propagation 
time measurements together to obtain a higher accuracy location 
estimate. "be technique uses non-parametric estimation metbods 
to estimate the covariance of each of the individual location errors 
to  optimally fuse the location esiimates together. It is shown 
how the data fusion location estimator is robust and bas low 
implementation COSL 

I. INTRODUCTION 
Mobile terminal location is an important problem for mod- 

em cellular networks with applications to resource allocation, 
location-sensitive information browsing, and emergency com- 
munications. The characteristics of the radio channel between 
the mobile terminal and fixed location base stations are depen- 
dent on the location of the mobile terminal. This allows for 
the location of the mobile terminal to be estimated from mea- 
surements made of the radio propagation channels. The most 
popular proposed measurements are Received Signal Strength 
(RSS), l ime of Arrival (Ton), and Time Difference of Amval 
(TDoA) [I]. For RSS measurements, the signal power at the 
receiver is measured. For ToA measurements, the propagation 
times from multiple base stations to the mobile terminal is 
measured. For TDoA measurements, the differences between 
the propagation times to the mobile terminal for sets of two 
base stations are measured. 

To obtain ToA measurements, the receivers need the times 
of transmission of the radio signals. To obtain this knowledge 
with the high accuracy is expensive [I]. RSS and TDoA 
measurements, however, can be obtained cheaply in digital 
cellular networks. 

Accurate mobile terminal location estimation is trivial when 
the radio propagation is the shortest distance straight line paths 
between the mobile terminal and base stations is unobstructed, 
so called LOS propagation, and the measurement noise is 
negligible. In the urban areas of greatest interest to cellular 
network operators, Non Line of Sight (NLOS) propagation, 
when obstructions block the shortest distance propagation 
paths, is common. RSS and TDoA measurements made in 
real cellular networks are affected by noise. 

The authors have previously demonstrated location esti- 
mation algorithms for both RSS and TDoA measurements 
that are robust to additive measurement noise and NLOS 

together to create a fused estimate with lower error. The 
robusmess of this data fusion estimator is demonstrated. 
In Section n, the signal model used to evaluate the location 

procedures is explained. A realistic simulated urban radio 
propagation environment with NLOS propagation is described. 
In Section III, the new estimation methods are outlined. Data 
fusion methods of the path loss and TDoA location estimates 
using on-line computation of the error covariances are shown. 
Section IV includes results that demonstrate that these methods 
are robust to quantization and variations in the measurement 
noise. Section V provides the conclusions of this work. 

11. SIGNAL MODEL 

The true location of the mobile terminal is denoted 0 = 
(s,y) where (s,y) is the location of the mobile terminal. 
This paper will only consider two dimensional location but 
the methods are easily extended. For a given mobile terminal 
location 0, the generated signal vectors are ( p , t ,  b) where p 
is the vector of RSS path loss measurements, t is the vector 
of TDoA measurements, and b is a vector of the indices 
of the base stations that are the sources of measurements. 
Path loss measurements are obtained by subtracting the RSS 
measurements from the known transmit power in the decibel 
domain. Only measurements from the three base stations with 
the lowest path loss measurements taken out of the set of nine 
base stations closest to the mobile terminal are included in 
( p , t ,  b) with the first entry of b indicating the base station 
with the lowest path loss measurement. This truncation is a 
good approximation to actual field measurement practice. 

We denote as [ i l k  the kth entry of vector x. The unquan- 
tized measurement vectors for a mobile terminal at location 0 
are p = p(0, b) + E ~ ,  and t = G (d(0, b) + q). p(0, b) is a 
function giving the deterministic path loss values from the base 
stations indicated in b such that [p(0, b)lk is the deterministic 
portion of the path loss from the base station indicated by [blk. 
and d(0, b) is a similar function giving the the lengths of the 
shortest propagation paths from the mobile terminal to the 
measuring base stations indicated in b. sp and st are random 
variables representing measurement noise. G is a difference 
matrix. In our simulations, TDoA measurements are calculated 
with respect to the time measurement for the base station [bIl: 
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TABLE I 
PROPAGATION MODELS FOR. SIMULATIONS 

G = [ i1 -4 1 The simulated measurement error 
values are independent etween different base stations. 

The simulated radio signal model used to evaluate the 
estimation algorithm is based on an urban radio propagation 
model used to evaluate other radio location methods with 
additional modeling information for propagation into buildings 
[I], [4]. The layout for a single base station's cell in this 
simulated urban environment is shown in Figure 1, where the 
shaded areas represent buildings. 

a 

a 

Fig. I. Manham Rapagation Modcl (Single Cell) 

The calculation of p(B, b) and d(0, b) for a given location 
and base station in the simulated environment is given in 
Table I. For propagation to street locations the distances d, 
dc, and d, are shown in Figure 1. Distances S, d l ,  and d; 
for NLOS propagation into a building are shown in Figure 2. 
The values for the other constants used in the propagation 
equations are listed in Table II. It is assumed that a base 
station cannot provide a high quality radio signal to distant 
mobile terminals located in buildings. The propagation model 
in Table I reflects this. 

The random portion of the path loss for urban radio propa- 
gation, E,. has been shown to be well modeled as a Gaussian 
random variable [5] .  In our simulations, we use a zero mean 
Gaussian random variable with standard deviation U,. The 
random portion of the propagation time measurements, E,, 

is the sum of two random processes: synchronization error, 
and excess delay caused by NLOS propagation from mobile 

Constant Value constant Valve 
D 2.0 01 0.6 dB/m 
6 2.0 UP 2.0 - 8.0 dB 

W. 10 dB PP 1.0 dB 
9 150 m 0, 10.0 - 20.0 m 

Wc. 20dB Pl W.0 m 
x 35.0 m 

TABLE II 
PROPAGATION CONSTANTS 

scatterers. Synchronization error for CDh4A receivers, which 
are likely to be used in next generation cellular systems, bas 
been shown to be well modeled as a Gaussian random variable 
[6], it is simulated as a zero mean Gaussian random variable 
with a standard deviation U,. The simulated synchronization 
noise variance is the same for all base stations, justified by 
simulations studies that show the synchronization variance is 
nearly constant for a large range of receiver signal to noise 
ratios in urban micro-cell propagation [I]. We simulate the 
effects of NLOS on the time measurements as an exponential 
random variable with a mean value of X [7]. 

The measurements are quantized making the observed mea- 
surement vectors: p = rnd(p/q,)q,. and t = rnd(f/qt)qt. 
The constants qp and qt are the quantization constants, and 
y = r n d ( r )  is a vector function such that [& is the closest 
integer to [ i l k .  The quantization in the simulations are listed 
in Table II. 
Of primary consideration for the application of data fusion 

of RSS path loss and TDoA measurements is the independence 
of E, and E,. If these vectors are perfectly dependent then 
data fusion of RSS and TDoA would give no improvement in 
accuracy as both measurements contain identical information. 
A radio propagation path loss measurement is determined by 
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the sum of the received signal power over all propagation 
paths between a base station and the mobile terminal. A TDoA 
measurement is determined by the propagation delays of the 
shortest propagation paths from the involved base stations to 
the mobile terminal. Discrepancies between the aspects of 
propagation engaged in each measurement type ensure there 
is some independence of the measurement noise for each 
measurement type. 

111. ESTIMATION METHODS 
The main focus of this paper is on data fusion of estimates 

of mobile terminal location from path loss and TDoA mea- 
surements. Estimation methods for calculating estimates of 
mobile terminal location using either path loss measurements 
or TDoA measurements alone is a fairly mature field. In this 
paper, we use single measurement types estimates calculated 
using non-parametric techniques, survey data, and prior knowl- 
edge of mobile terminal location available from the hand off 
algorithm. These methods will only be briefly described here 
since a full analysis has been performed in the literature [2], 

The single measurement estimation method described here 
are based upon the existence of survey data for the radio 
propagation environment. The survey data of consists of a set 
of locations with three measurement vectors for each location. 
The location of the j t h  survey point is denoted 0,. The 
measurement vectors of survey point j are (b j , p j , t j ) .  bj is 
a vector of base station indices which indicates which base 
stations made the measurements at the j t h  survey point. pj is 
the vector of path loss measurements for the j t h  survey point. 
t j  is the TDoA measurement vector for the j th  survey point. 
The measurement process for the survey points are identical 
to measurement process used for the location measurement 
( b , p , t )  described in Section II. In the cell for each base 
station are located N = 500 survey points. The locations of 
these survey points are uniformly distributed over the cell area 
Techniques on estimation of methods for bounding the number 
of required survey points is presented in [21. 

The first step of non-parametric location estimation &go- 
rithms is to use the base station index vector, b, to identify 
the general area in which the mobile terminal is likely to be 
located. Using the measurement protocol defined in Section II, 
[bIl identifies the base station with the lowest path loss 
measurement to the mobile terminal. We assume that the 
mobile terminal is located either in the cell associated with 
base station [bIl or in one of the cells adjacent to it. Using 
this prior location assumption, we collect the survey data for 
all survey points located in the cell for base station [b]l and 
the immediately adjacent cells where bj matches b are kept 
for the location algorithm. 

The single measurement type estimation equation, where z 
is the measurement type, 2: is the measurement vector: and 
zj is the measurement vector for survey point j ,  is 8, = 
En O . w . ( z )  with tuj(.) = K,(z - z ~ ) / ( C ; = ~ K ~ ( ~  - 
Z k  . K ,  . IS called the kernel function for measurement type 
z. z is replaced by p for path loss measurements and 1 for 

t31. 

jj" '(i 

TDoA measurements with similar substitutions for z and z'. It 
3: has been previously shown that a Gaussian probability density 

function is a good choice for the kernel function: 

The constants are m, = 3 and rnt = 2. The covariance 
matrices are C, = h,2u:I3, where I,,, is an (rn x m) identity 
matrix, and Ct = h?u2GGT. The constants h, and ht are 
defined as the kernel width constants. The effects of varying 
values of the constants will examined in Section IV where it 
will be shown that the estimators are robust to variations of 
the constants' values. 

Using the kernel functions above and the survey points, esti- 
mates of the covariances for the estimate-errors are calculated 
using R, = 

We now discuss data fusion of 8, and et to obtain a lower 
error estimate 8. We propose the application of a standard 
approach in data fusion of linearly combining the estimated 
values of mobile terminal location obtained from different 
measurements to *is problem. We define the dual estimate 
vector as = [e: and the dual location vector as 

= [e? eTlT. The estimate fusion calculation is given by 
8 = WO* where W is a weight matrix. The optimal weight 
for each component estimate is based on its covariance with 
an estimate given a higher weight if its covariance is low. The 
optimal W ,  which gives the lowest fused covariance is given 

e,e,Twj(z)) - e,e,T. 

by (81: 
w = c ~ - ~ A T  (AC;IAT)-' (2) 

with 

C k = E (  [ 8 k - 8 k ] [ s k - 8 k ] T l p , t } = [  RPtT % RPt % d  
I 

, ~ I  

and A = [I2 Iz ] .  RPt is the cross covariance of the path loss 
and TDoA measurement estimates. This method is robust in 
that linear combination using W calculated using (2) with the 
rme covariance matrices will always result in a fused estimator 
with lower covariance than the individual estimators. 

In practice, the covariances ELp. & and st can only be 
estimated and the effectiveness of this approach in reducing the 
covariance of the final estimate is dependent on the accuracy of 
the covariance estimates. Also, to calculate .Rpt, the estimators 
for each measurement type cannot be run in parallel as they 
must exchange information to calculate the cross covariance 
matrix estimate. For the results on estimate fusion, we explore 
parallel estimation, and thus assume that the location estimate 
error for each measurement type is independent in the data 
fusion calculation. To this end, the covariance matrix in the 
weight calculation (2) is calculated using the assumption 

The main advantage of parallel estimation for each measure- 
ment type is the independence of the data fusion method from 
the location estimate calculation for each measurement type. 
The estimation calculations can be replaced with another lo- 

%t = 0. 
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cation estimate calculation with an associated error'covariance 
estimate and the data fusion technique can still be applied. 

IV. RESULTS 
The estimators are evaluated in the simulated urban environ- 

ment described in Section II. For each single set of parameter 
values, we simulate loo00 Monte Carlo trials with a new sur- 
vey set for every 100 trials. The true mobile terminal position 
is sampled from a uniform distribution over a single cell. The 
figure of merit used to evaluate the location estimators is the 
Root Mean Square Error (RMSE), the square root of mean 
squared distance from the m e  mobile terminal location and 
the estimated location. 

The first set of simulation are performed to calculate the 
optimal values of the kernel width constants ht and h, and 
to test estimator performance if suboptimal values are used. 
The result is shown in the contour plot in Figure 3 of the 
RMSE for different kernel width constants for specific values 
of measurement noise standard deviations. The plot shows 
that data fusion methods is robust to variations of the kemel 
width parameters with a large region in the plots having RMSE 
values almost as low as the to the optimal value. The optimal 
kernel width values are found to be h, = 1.2 and ht = 1.0 

Fig. 3. h l  Widths for Ertimate Fusion (up = 6 dB.0, = 15.0 m) 

Fig. 4. RMSE of Best of RSS and TDoA Estimators (h, = 1.2 and ht = 
1.0) 

The next set of simulations were performed to find the per- 
formance of location estimators using only one measurement 
type. The optimal kernel width values described above are 

used. A contour plot of the lowest RMSE of either the path 
loss or TDoA location estimator for a range of measurement 
noise standard deviations is shown in Figure 4. Note that the 
estimators give good performance even with large magnitude 
measurement noise and despite quantization. 

The improvement of the data fusion estimators over estima- 
tors using only one single measurement type are demonstrated 
in the next set of simulation results. For fixed values of up 
and uT, the RMSE of the results for the data fusion method 
is subuacted from the lowest RMSE of the estimators using 
either path loss or TDoA measurements only. The resulting 
value is the improvement of the data fusion method over 
estimation using a single measurement type. Figure 5 shows 
the improvement of the data fusion method. 

Fig. 5. RMSE Improvement for Data Fusion (h ,  = 1.2, ht = 1.0) 

V. CONCLUSIONS 
This paper demonstrates a method of data fusion for path 

loss and TDoA measurements. It was shown that this method 
improves location accuracy, is. robust to different levels of 
measurement noise, and has low computational cost. 
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