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ABSTRACT 

Linear Discriminant Analysis (LDA) is derived from the 
optimal Bayes classifier when classes are assumed to be 
Gaussian with identical covariance matrices. However, it 
is well known that the distribution of face images under a 
perceivable variation in viewpoint, illumination or facial ex- 
pression, is highly nonlinear and complex. The Quadratic 
Discriminant Analysis (QDA) which relaxes the identical 
covariance assumption and allows for nonlinear discrimi- 
nant boundaries to be formed, seems to be a better choice'. 
However, the applicability of QDA to problems, such as 
face recognition, where the number of training samples is 
much smaller than the dimensionality of the sample space 
is problematic due to the increased number of parameters 
to be learned. In this paper, we propose a new regularized 
discriminant analysis method that effectively solves the s* 
called "small sample size" problem in very high-dimensional 
face image space. Extensive experimentation performed on 
the FERET database indicates that the proposed method- 
ology outperforms traditional methods such as Eigenfaccs, 
QDA and Direct LDA in a number of application scenarios. 

1 .  INTRODUCTION 

Face recognition (FR) systems, utilizing Linear Discrimi- 
nant Analysis (LDA) techniques have been shown to  he very 
successful [ I ,  2, 3, 41. However, the sc+called "plug-in" CD 

variance matrix estimates widely used in these LDA-based 
approaches often suffer from the so-called "small sample 
size" (SSS) problem which exists in high-dimensional pat- 
tern recognition tasks where the number of available train- 
ing samples is smaller than the dimensionality of the sam- 
ples. The traditional solotion to  the SSS problem is to 
utilize principal component analysis (PCA) in conjunction 
with LDA (PCA+LDA) as it was done for example in Fish- 
erfaces [l]. Recently, more effective solutions, called Direct 
LDA (D-LDA) methods, have been presented [Z, 3, 41. 

Although successful in many cases, LDA-based methods 
often fail to deliver good performance when face patterns 
are subject to large variations in viewpoints, illumination 
or facial expression, which result in a highly nonlinear and 
complex distribution. The limited success of these meth- 
ods should he attributed to  their linear nature [5, 61. LDA 
can be considered as a special case of the optimal Bayes 
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classifier when each class is subjected to a Gaussian dis- 
tribution with identical covariance structure. Obviously, 
the assumption behind LDA is highly incorrect in practical 
FR tasks. As a result, it is reasonable to assume that a 
better solution to this inherent complex problem could he 
achieved using quadratic methods, such as the Quadratic 
Discriminant Analysis (QDA), which allows for complex 
discriminant boundaries to  be formed. However, the SSS 
problem affects QDA more than LDA, since QDA requires 
much more training than LDA due to  the increased num- 
ber of parameters. To deal with such a situation, Friedman 
proposed a regularization technique of discriminant anal- 
ysis (RDA) in the Gaussian framework [7]. The purpose 
of the regularization is to reduce the variance related to  
the sample-based estimates at the expense of potentially 
increased bias. Although RDA relieves to a great extent 
the SSS problem and performs well even when the number 
of training samples per class ( L )  is comparable to  the di- 
mensionality of the samples ( D ) ,  it still fails when L << D ,  
which is the case in most FR applications. For example, if 
only L t [2,71 samples per subject are available for training 
while the dimensionality of the space is up to D = 17154, 
the RDA cannot be successfully implemented. 

In the paper, we propose a new regularized discrimi- 
nant analysis method called RD-LDA hy incorporating the 
D-LDA technique into the RDA framework. The RD-LDA 
provides a comprehensive solution to  the SSS problem ham- 
pering both LDA and QDA. It will he shown that, ad- 
justing the parameters of the RD-LDA, we can obtain a 
number of new/traditional discriminant analysis methods 
such as Yang's D-LDA (YD-LDA) [3], Juwei's D-LDA (JD- 
LDA) [4], direct QDA (D-QDA), nearest center (NC) and 
weighted nearest center (WNC) classifiers. 

2. METHODS 

2.1. Determining the optimal discriminant features 

Given a training set containing C classes {Z,}y=l, with each 
class consisting of a number of face images: Z, = {z,j}:L1, 
a total of N = Cg, C, face images are available in the 
set. Each image is represented as a column vector of length 
D(= I ,  x I h ) ,  i.e. zij E WD, where I,,, x I ,  is the image 
size, and RD denotes the D-dimensional real space. 

Let Ssrw and S W T H  denote the between- and within- 
class scatter matrices of the training image set respectively. 
LDA determines a set of optimal discriminant basis vec- 
tors, denoted by so that the ratio of the between- 
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C, 

,=I 

C 

s, = (Yi) - Y i ) ( Y i j  - Yi)T (5) 

S = Si = N .  H T S u , ~ ~ H  (6 )  

(A,?) is a pair of regularization parameters, and yi is the 
projection of the mean of class i in 71. 

In the FR procedure, any input query image z is firstly 
projected into the subspace H: y = H T a .  its class la- 
bel i' then can be inferred through i' = argmindi(y) 

based on QDA, where d ; (y )  is the well-known Mahalanobis 
(quadratic) distance between y and class yi, and has the 
following expression, 

. = I  

d,(y) = ( y - ~ ~ ) ~ k ; ' ( ~ , y ) ( y  -pi)  ++i(X,y)( -21nrr, 

(7)  
where rrI = C,/N is the prior probability of class i. 

The regularization parameter X (0 5 X 5 1) controls the 
amount that the Si are shrunk toward S. The other param- 
eter y (0 5 y 5 1) controls shrinkage of the class covariance 
matrix estimates toward a multiple of the identity matrix. 
Under the regularization scheme, a QDA can be performed 
without suffering the high variance of the plug-in estimates 
even when the dimensionality of the subspace H is compa- 
rable to the number of available training samples. We refer 
to  the approach as regularized D-LDA, hereafter RD-LDA. 

Since the RD-LDA is derived from the D-LDA and RDA, 
it has close relationship with a series of traditional discrimi- 
nant analysis methods. Firstly, the four corners defining the 
extremes of the (A,?) plane represent four well-known clas- 
sification algorithms, as summarized in Table 1, where the 
prefix 'D-' means that all these methods are developed in 
the subspace 31 derived from the D-LDA technique. Due to  
the criterion of Eq.1 used in YD-LDA [3], it is obvious that 
YD-LDA is actually a standard LDA implemented in H. 
Also, we have C, = a (g + I )  = a ( H T S W T H H  + 1) when 

In this situation, it is not difficult to see that RD-LDA is 
equivalent to JD-LDA 141. In addition, a set of intermediate 
discriminant classifiers between the five traditional ones can 
be obtained when we smoothly slip the two regularization 
parameters in their domains. The purpose of RD-LDA is to 
find the (X',y') that give the best correct recognition rate 
for a particular FR task. 

A4 
( A  = l , y  = v), wherea = ( tF;%%<) and 7 = i+3,N)+*f' 

and within-claqs scatters is maximized [B]. Assuming P = 
[ i l , .  . . , $ M I >  the maximization can be achieved by solving 
the following eigenvalue problem, 

Assuming that SWTH is non-singular, the basis vectors 
P correspond to the first M eigenvectors with the largest 
eigenvalues of (S&:,,SBTW). Due to the SSS problem, a 
degenerated S W T H  may be generated in FR tasks. Tra- 
ditional methods, for example Fisherfaces [I], attempt to 
solve the SSS problem by using a PCA step to remove the 
null space of SWTX. However, it has been shown that the 
null space may contain the most significant discriminant 
information 12, 31. 

Recently, the so-called direct LDA (D-LDA) approach 
have been introduced to  avoid the shortcomings existing in 
traditional solutions to  the SSS problem 12, 3, 41. The ba- 
sic premise behind the approach is that the null space of 
S W T H  may contain significant discriminant information if 
the projection of SBTW is not zero in that direction, and 
that no significant information will be lost if the null space 
of SBTW is discarded. Based on the finding, it can be con- 
cluded that the optimal discriminant features exist in the 
complement space of the null space of S E T W ,  which has 
a dimensionality M = C - 1. In 13, 41, the subspace d e  
noted as H is scaled to have ' H r S ~ ~ w H  = I, where I is 
the ( M  x M )  identity matrix. The projection of SWTH 
in H, ' H T S t ~ ~ ~ H H ,  is then estimated using sample analogs. 
However, when training sample number per class is small 
enough, even the projection ' H T S w ~ ~ H  is ill- or poorly- 
posed. To this end, a modified optimization criterion repre- 

sented as P = arg max IwTSJTW*+*TSWT,,~I~ is proposed 

to use in JD-LDA [4] instead of Eq.1 used in YD-LDA [3]. 
The modified criterion introduced a considerable degree of 
regularization to reduce the variance of the plug-in estimate 
in ill- or poorly-posed situations. I t  will be shown later that 
such a regularization is only a special case of the proposed 
RD-LDA. 

* T S B T W * l  

2.2. Regularized D-LDA (RD-LDA) 

The number of face classes C is usually a small value, and 
comparable to the number of training samples N in most 
FR tasks, e.g. C = 49 and N t 198,3431 in the experiments 
reported here. Thus, it becomes appropriate to  perform 
a RDA [7] in the low-dimensional subspace H, where the 
most significant discriminant information are remained. 

To this end, we firstly project the original face images 
into H, obtaining a representation y,, = HTz,, where i = 
1,.  . . , C ,  j = 1 , .  . . , Cg. The regularized sample covariance 
matrix estimate of class i in 'H, ki(X,y), can be expressed 
as, 

k&y) = (1 -y)%(A) + &tT[C. (A) l I  (2) 

[(I - X)Si +AS] (3) &(A) = ~ 

G(4 
(4) 

where 
1 

C;(X) = (1 - X)Ci +AN 

Table 1. A series of algorithms derived from RD-LDA. 

I Algs. I D-NC I D-WNC I D-QDA 1 YD-LDA I JD-LDA I 
X I  1 1  0 ( 0 1  1 1 
7 1  1 1  1 I O /  0 I 7 

3. EXPERIMENTAL RESULTS 

3.1. The FR Evaluation Design 

A set of experiments are included in the paper to assess the 
performance of the proposed RD-LDA method. To show 
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the high complexity of the face patterns' distribution, a 
middlesize subset of the FERET database [9] is used in the 
experiments. The subset consists of 606 gray-scale images 
of 49 people, each one having more than 10 samples. These 
images cover a wide range of variations in illumination, fa- 
cial expression/details, acquisition time; races and others. 
We follow the preprocessing sequence recommended in 191, 
which includes Sour steps: (1) images are translated, rotated 
and scaled so that the centers of thc eyes are placed on spe- 
cific pixels, (2) a standard mask is applied to remove the 
nonface portions, (3) histogram equalization is performed 
in the non masked facial pixels, (4) face data are further 
normalized to have zero mean and unit standard deviation. 
Fig.1 depicts some sample images after the preprocessing 
sequence is applied. For computational convenience, each 
image is finally represented as a column vector of length 
D = 17154 prior to the recognition stage. 

The number of available training samples per subject, L,  
has a significant influence on the plug-in covariance matrix 
estimates used in all these discriminant analysis methods. 
To study the sensitivity of the performance, in ternis of cor- 
rect recognition rate (CRR), to L,  6 tests were performed 
with various L values ranging from L = 2 to  L = 7. For 
a particular L,  the FERET subset is randomly partitioned 
into two datasets: a training set and a test set. The training 
set is composed of ( L  x 49) samples: L images per person 
were randomly chosen. The remaining (606- L x49) images 
are used to form the test set. There is no overlapping be- 
tween the two. To enhance the accuracy of the assessment, 
5 runs of such a partition weIe executed, and all of the 
CRRs reported later have been averaged over the 5 runs. 

Table 1, and RD-LDA with corresponding parameters, is 
summarized in Table 2. 

Fig. 2. CRRs obtained by RD-LDA as functions of (A,  y) 
Top: L = 2,3,4;  Bottom: L = 5,6,7.  

Fig, 3. CRRs as a function of y with fixed A. 

Fig. 1. Some samples of six people from the normalized 
FERET subset. 

3.2. The FR Performance Comparison 

Besides RD-LDA and its special casscs summarized in Ta- 
ble l, the most well-known FR algorithm, the so-called 
Eigenfaccs method [IO], was aiso implemented to provide 
a performance baseline. The testing grid of (A,?) values 
was defined hy the outer product of X = [le - 4 : 0.01 : 11 
and y = [le - 4 : 0.01 : 11, where both of X and y started 
from l e  - 4 instead of zero in case S, is singular. The 
CRRs obtained by R.D-LDA in the grid are depicted in 
Fig.2. Since most peaks or valleys occur around t,he four 
corners, Sour 2D side faces of Fig2 (only four representative 
cases L = 2,3,4,6 are selected) arc shown in Figs.3-4 for 
a clearer view. Also, a quantitative comparison of t,he best 
CRRs ohtained by Eigenfaces, t,hose methods depicted in 

Bs 

81 

Fig. 4. CRRs as a function of X with fixed y 

The parameter X controls the degree of shrinkage of 
the individual class covariance matrix estimates S, toward 
the within-class scatter matrix of the whole training set 
( ' H T ' S w ~ ~ X ) .  Varying the values of X within [0, I ]  leads 
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Table 2. Comparison of best CRRs (%). 
L 1 1  2 1 3  1 4  1 5  1 6  1 7  I 

(7) 11 0.84 I 0.75 1 0.69 I 0.65 1 0.61 0.59 
RD-LDA 73.2 81.6 88.5 90.4 93.2 94.4 

0.93 0.93 0.35 0.11 0.26 0.07 

to  a set of intermediate classifiers between D-QDA and 
YD-LDA. In theory, D-QDA should be the best performer 
among the methods evaluated here if sufficient training Sam- 
ples are available. I t  can be observed a t  this point from 
Fig.2 and Table 2 that the CRR peaks gradually moved to- 
ward the corner (01 0) that is the case of D-QDA from the 
central area as L increases. Small values of X have been 
good enough for the regularization requirement in many 
cases ( L  2 3) as shown in Fig.4:Left. 

However, it is also can be seen from Fig.3:Right and 
Table 2 that both of D-QDA and D-LDA performed poorly 
when L = 2. This should be attributed to the high variance 
in estimates of Si and S due to  insufficient training sam- 
ples. In these cases, Si and even S are singular or close to 
singular, and the resulting effect is to dramatically exagger- 
ate the importance associated with the eigenvectors corre- 
sponding to  the smallest eigenvalues. Against the effect, the 
introduction of another parameter y helps to decrease the 
larger eigenvalues and increase the smaller ones, thereby 
counteracting for some extent the bias. This is also why 
JD-LDA outperforms YD-LDA when L is small. Although 
JD-LDA seems to  he a little over-regularized compared with 
the optimal ( A * , T * ) ,  the method almost guarantees a stable 
suboptimal solution, 4.5% CRR difference in average over 
L = 2 - 7 from the hest one found by RD-LDA. Therefore, 
JD-LDA could be the first choice when insufficient prior in- 
formation about the training samples is available and a cost 
effective processing solution is sought. Although RD-LDA 
is the top performer amongst all methods compared here, 
the determination of its optimal parameter values is compu- 
tationally demanding as it is based on exhaustive searches. 
A fast and cost effective RD-LDA parameter optimization 
method will be the focus of future research. 

4. CONCLUSION 

A new method for face recognition has been introduced in 
this paper. The proposed method combines the D-LDA 
technique with regularization strategies to  effectively ad- 
dress the SSS problem commonly encountered in F R  tasks. 
The D-LDA technique is utilized to map the original face 
patterns to a low-dimensional discriminant feature space, 
where the regularization strategy becomes applicable. The 
regularization strategy provides a balance between the vari- 
ance and the bias in samplebased estimates addressing 

the SSS problem. It also has been shown that a series of 
traditional discriminant analysis methods including the r e  
cently introduced YD-LDA and JD-LDA can be derived 
from the proposed RD-LDA framework by adjusting the 
regularization parameters. Experimental results indicate 
that the RD-LDA method outperforms the commonly used 
Eigenfaces method as well as other discriminant analysis 
approaches across various SSS settings. 

RD-LDA can be seen as a general pattern recognition 
method capable to  address with nonlinear and SSS prob- 
lems. We expect that in addition to  FR,  RD-LDA will 
provide excellent performance in applications, such as im- 
agelvideo indexing, retrieval, and classification. 
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