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ABSTRACT

In this paper, a new zooming algorithm suitable for single-
sensor digital cameras is introduced. The proposed method
is capable of zooming and enlarging Bayer data acquired
by single-sensor cameras. The approach allows for oper-
ations on noise-free data at the hardware level. Complex-
ity and cost implementation are thus greatly reduced. The
proposed method utilizes a color difference model and an
adaptive edge sensing mechanism capable of tracking the
underlying structural content of the Bayer data. Simulation
studies indicate that the new method yields excellent per-
formance, in terms of both subjective and objective image
quality measure.

1. INTRODUCTION

The commercial proliferation of single-sensor digital cam-
eras and their use in novel applications such as wireless
phones, sensor networks, and pocket devices has increased
the demand for new algorithmic and technical developments
in the area of color array (CFA) filtering, interpolation and
zooming. The Bayer pattern (Fig.1), the most widely used
CFA, provides an array or mosaic of Red (R), Green (G) and
Blue (B) colors in which only one color element is avail-
able at each spatial location. By allocating twice more spa-
tial samples to the Green plane, the Bayer pattern improves
the perceived sharpness of the digital image since it is well-
known that the human visual system (HVS) is more sen-
sitive to luminance which is composed primarily of green
light. The missing color components are recovered from
the adjacent Bayer data using the so-called CFA interpola-
tion or demosaicing process [7].

Conventional single-sensor digital cameras have enhan-
ced optical/digital zooming capabilities providing the end-
user with a variety of options, including recording modes,
pre-determined lighting scenarios, storing formats and ba-
sic color image processing functions. Increasing the spatial
resolution of the image is one of the most commonly per-
formed re-processing operations. Since the cost of digital
cameras rapidly increases with optical zooming and Mega-
pixel capturing capabilities, to keep cost at a reasonable

Fig. 1. Bayer CFA pattern.

level, camera manufacturers produce cameras capable of
performing digital zooming.

It has to be said that the spatial resolution of the ac-
quired, displayed and transmitted color images is conven-
tionally performed in the RGB domain [3]. However, image
zooming approaches [3],[6] as well as other image process-
ing steps such as filtering [4] and compression [5], are more
computationally efficient when applying to the CFA data. It
is not difficult to see that by performing zooming, or pro-
cessing in general, in the scalar values of the Bayer pattern
rather than in the RGB vector space additional savings in
terms of computational cost and power can occur [5]. As the
result of CFA zooming, the enlarged CFA mosaic serves as
the input to the demosaicing process producing a full color
output image of increased spatial resolution.

2. PROPOSED METHOD

Let us consider a K1/k×K2/k Bayer image z′ depicted in
Fig.1, with the spatial coordinates p, q denoting the image
row and column. The Bayer image z′ represents the input
data acquired using a single-sensor digital camera. Zoom-
ing the Bayer data z′ with a factor of k, this process results
in a K1 × K2 zoomed Bayer image z. The zooming factor
k ∈ Z can be an arbitrary positive integer. The proposed
method works for every k > 1, however the value k = 2 is
selected here to facilitate the discussion.

Conventional zooming by a factor of 2, proceeds first
by enlarging the original image size and then incorporating
new rows and columns (e.g. of zeros) into the original im-
age. Operating on the Bayer data in this way destroys the
structure of the Bayer pattern, since original values of z′ oc-



Fig. 2. The first Bayer image zooming step performed
by: (a) conventional zooming approach, (b) the proposed
method.

cupy spatial positions corresponding to other color channels
of the enlarged image z. For example, as it can be seen in
Fig.2a the conventional approach of Fig.2a stores R and B
components in positions reserved for G samples.

To zoom the Bayer data and preserve the Bayer pattern
structure, the original CFA data should be assigned unique
positions, which correspond to the CFA color structure of
the enlarged image as shown in Fig.2b. Using the proposed
approach, the original z′ values are filled into the zoomed
image z as follows:

z(2p−1,2q)

z(2p,2q−1)

z(2p−1,2q−1)

⎫⎬
⎭ = z′(p,q)

for p odd and q even
for p even and q odd
otherwise

(1)

where p and q denotes the coordinates in the original (small)
Bayer image z′.

Upon completion of this step, the enlarged Bayer image
z, shown in Fig.2b, contains all the original CFA data of z′.
The zooming process continues by interpolating the missing
CFA data corresponding to the empty positions of z shown
in Fig.2b. Considering an arbitrary spatial location (p, q)
in the image z we can observe that the missing G compo-
nents are surrounded by four original G components which
form a diamond-shape mask on the image lattice. On the
other hand, the four original R (or B) components create the
square-shape mask on the image lattice. Since the missing
component and its four surrounding corresponding original
color components form a unique spatial arrangement, it is
reasonable to interpolate the missing center using its corre-
sponding color neighbors.

Let us consider the enlarged Bayer image z of Fig.2b
with the spatial coordinates (p, q). The missing color com-
ponent z(p,q) is positioned in the center of the four sur-
rounding color components W(p,q) = {z1, z2, z3, z4}. In
the case of the G components, the quantities z1, z2, z3 and
z4 are equivalent to corners z(p−2,q), z(p,q−2), z(p,q+2) and
z(p+2,q), respectively, of a diamond-shape shown in Fig.3a.
In the case of the R (or B) components, z1, z2, z3 and z4 are

Fig. 3. Geometrical shapes determined by the Bayer pattern
structure: (a) a diamond-shape, (b) a square-shape.
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Fig. 4. Component and distance arrangement: (a) a
diamond-shape, (b) a square-shape.

equivalent to components z(p−2,q−2), z(p−2,q+2), z(p+2,q−2)

and z(p+2,q+2), respectively, which create the square-shape
masks depicted in Fig.3b.

In real images, color components z1, z2, z3, z4 vary in
values, therefore it is necessary to differentiate their influ-
ence interpolating the missing component z(p,q). Therefore,
the difference between any zi ∈ W(p,q) and zj ∈ W(p,q) is
calculated as follows:

di,j =
1

1 + |zi − zj | (2)

Since each zi, for i = 1, 2, ..., 4, relates to other three
components of W(p,q), shown in Fig.4, the associated weight-
ing coefficient wi is given by

wi =
∑4

j=1,j �=i
di,j (3)

Thus, the weighting coefficients wi, for i = 1, 2, ..., 4,
reflect the accuracy of the input components zi in terms of
structural content of the Bayer data. When di,j used in
defining the weighting coefficients wi is small, no edge is
positioned across the considered direction and the compo-
nent zi is not penalized. If zi and zj are located across an
edge, the corresponding absolute difference increases di,j

and the corresponding zi is penalized via wi appropriately.
Thus, the weighting coefficients can be used to regulate the
influence of z1, z2, ..., z4, on the estimated value z(p,q) as
follows:

z(p,q) =
∑4

i=1 wizi∑4
i=1 wi

=
∑4

i=1
w′

izi (4)

where z1, z2, ..., z4 are corners of the used shape masks and
w′

i = wi/
∑4

j=1 wj , for i = 1, 2, ..., 4, are the normalized
weighting coefficients.



Fig. 5. Bayer images achieved using: (a) the first interpola-
tion step, (b) the second interpolation step.

Based on a small corresponding weighting coefficient
wi, the missing G components z(p,q), or generally said miss-
ing components of the enlarged Bayer image z are consti-
tuted with a small portion of zi.

In (4), the normalized weight w′
i provides the degree to

which a component zi contributes to the output. Through
the normalization procedure, two constraints necessary to
ensure that the output z(p,q) is an unbiased solution are sat-
isfied. Namely,

1. Each weight is a positive number, w′
i ≥ 0.

2. The summation of all the weights is equal to unity∑4
i=1 w′

i = 1.

Performing the interpolation step of (4), the enlarged
Bayer image results in the pattern depicted in Fig.5a. This
however, does not produce all the needed values and one
more interpolation of the missing G components is neces-
sary. This interpolation step produces the G components
positioned in the center of the square-shape mask moved
over the z image domain and R (or B) components in the
center of the diamond-shape mask. Note that z1, z2, z3, z4

are equivalent to the G components z(p−1,q−1), z(p−1,q+1),
z(p+1,q−1) and z(p+1,q+1), whereas the R (or B) compo-
nents are interpolating using z(p−2,q), z(p,q−2), z(p,q+2) and
z(p+2,q). This interpolation step completes the enlarged Ba-
yer image z shown in Fig.5b.

However, based on the CFA interpolation methodology,
the R and B components can be interpolated more accu-
rately using a difference color model of [1], which is fre-
quently utilized in the CFA interpolation schemes [7]. Com-
pleting the G components, it can be observed that the miss-
ing R components z(p,q) occupy positions directly neigh-
boring with the G components z(p,q−1) and the missing B
components are neighbors of z(p−1,q). Similarly, the orig-
inal R components z1, z2, z3, z4 corresponding to the sam-
ples z(p−2,q−2), z(p−2,q+2), z(p+2,q−2) and z(p+2,q+2) are
directly neighboring with the G components z′1, z

′
2, z

′
3, z

′
4

given by z(p−2,q−3), z(p−2,q+1), z(p+2,q−3), z(p+2,q+1). In
the case of the B components, the quantities z′1, z

′
2, z

′
3, z

′
4

Fig. 6. Test color images: (a) Parrots, (b) Window.

denote the G components z(p−3,q−2), z(p−3,q+2), z(p+1,q−2),
and z(p+1,q+2).

Assuming that the RGB color components are highly
correlated, the normalized weighted sum of (4) is calculated
using the differences between R and G (or B and G) com-
ponents. The result of this operation has to be added to G
components z′0 normalizing the interpolation output to the
useful range:

z(p,q) = z′0 +
∑6

i=1 wi(zi − z′i)∑6
i=1 wi

(5)

where z′0 = z(p,q−1) and z′0 = z(p−1,q) are used interpolat-
ing the R and B components, respectively.

Since this step produces the R and B components de-
picted in Fig.5a, the missing R and B components posi-
tioned in the centers of diamond-shape mask are again inter-
polated using the color-difference based interpolation pro-
cedure of (5). Note that z1, z2, z3, z4 correspond to z(p−2,q),
z(p,q−2), z(p,q+2), and z(p+2,q). Interpolating the R compo-
nents, the G components z′1, z

′
2, z

′
3, z

′
4 relate to z(p−2,q−1),

z(p,q−3), z(p,q+1) and z(p+2,q−1), whereas interpolating the
B components, the G quantities z′1, z

′
2, z

′
3, z

′
4 correspond to

z(p−3,q), z(p−1,q−2), z(p−1,q+2), and z(p+1,q). This interpo-
lation step results in the enlarged Bayer image z shown in
Fig.5b.

3. EXPERIMENTAL RESULTS

The proposed zooming method is tested using the color im-
ages shown in Fig.6. These images have been captured us-
ing highly professional three-sensor cameras or color scan-
ners. In order to facilitate comparisons, the test images have
been normalized to the standard 512×512, 8-bit per channel
RGB representation.

To measure the efficiency of the zooming methods ob-
jectively, we used the following approach. The process starts
with the K1 × K2 original color image o, down-sampled
to the K1/2 × K2/2 color image o′. This image is trans-
formed into the K1/2×K2/2 Bayer image z′. The K1×K2

zoomed Bayer image z is constituted using the CFA zoom-
ing technique. Applying the CFA interpolation scheme, the



Table 1. Comparison of the presented zooming algorithms
using the BI CFA interpolation scheme.

Image Parrots Window
Method MAE MSE NCD MAE MSE NCD
LAZ 5.82 158.9 0.0481 8.29 204.1 0.0908
CCZ 4.91 124.6 0.0388 7.02 149.9 0.0739

Proposed 4.98 113.0 0.0396 6.50 127.9 0.0747

K1 × K2 output color image y is achieved. The similarity
between o and y is measured via the mean absolute error
(MAE), the mean square error (MSE) and the normalized
difference criterion (NCD) [8].

The proposed method is compared to the locally adap-
tive CFA zooming (LAZ) of [3]. The output of these CFA
zooming methods has been restored using well-known bi-
linear CFA interpolation. The proposed method is com-
pared, in terms of efficiency with the conventional color
image zooming (CCZ) approach (the BI CFA interpolation
followed by the bicubic RGB zooming scheme).

Excellent design characteristics of the proposed CFA
zooming scheme result in the best values of objective cri-
teria (Table 1) among the tested zooming methods. On this
place it has to be emphasized that the CFA zooming schemes
employ a three-times less amount of data to be processed
compared to the CCZ. Fig.7 presents zoomed parts of the
restored images. These results allow the subjective evalu-
ation of the restored images. Inaccurate zooming perfor-
mance significantly affects the restored image quality and
leads to strong color artifacts and blurred image edges.

4. CONCLUSIONS

A new zooming method operating on Bayer CFA data was
introduced. The method employed edge sensing mechanism
and difference color model. Combining their advantages,
the proposed method enlarges Bayer images, while preserv-
ing edges and structural contents. Applying the CFA in-
terpolation method, the introduced zooming algorithm pro-
duces enlarged color images pleasurable for viewing. At the
same time it yields excellent results in terms of commonly
used objective image quality criteria.
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