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Abstract

This paper proposes an uncorrelated multilinear discriminant analysis (UMLDA) framework for the

recognition of multidimensional objects, known as tensor objects. Uncorrelated features are desirable

in recognition tasks since they contain minimum redundancy and ensure independence of features. The

UMLDA aims to extract uncorrelated discriminative features directly from tensorial data through solving a

tensor-to-vector projection. The solution consists of sequential iterative processes based on the alternating

projection method, and an adaptive regularization procedure is incorporated to enhance the performance

in the small sample size scenario. A simple nearest neighbor classifier is employed for classification. Fur-

thermore, exploiting the complementary information from differently initialized and regularized UMLDA

recognizers, an aggregation scheme is adopted to combine them at the matching score level, resulting in

enhanced generalization performance while alleviating the regularization parameter selection problem.

The UMLDA-based recognition algorithm is then empirically shown on face and gait recognition tasks

to outperform four multilinear subspace solutions (MPCA, DATER, GTDA, TR1DA) and three linear

subspace solutions (LDA, ULDA, R-JD-LDA).

Index Terms

Multilinear discriminant analysis (MLDA), tensor objects, dimensionality reduction, feature extrac-

tion, face recognition, gait recognition, regularization, fusion.

This paper was presented in part at Biometrics Symposium 2007, Baltimore, Maryland, September 11-13, 2007.
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I. INTRODUCTION

Nowadays, there are growing interests in the processing of multidimensional objects, formally known

as tensor objects, in a large number of emerging applications. Tensors are considered to be the extensions

of vectors and matrices. The elements of a tensor are to be addressed by a number of indices [1], where

the number of indices used in the description defines the order of the tensor object and each index defines

one “mode”. By this definition, vectors are first-order tensors and matrices are second-order tensors. For

example, gray-level images are naturally second-order tensors with the column and row modes [2] and

color images are three-dimensional objects (third-order tensors) with the column, row and color modes

[3]. Three-dimensional gray-level objects [4], such as 3-D gray-level faces [5], [6], are naturally third-

order tensors with the column, row and depth modes, while the popular Gabor representation of gray-level

images [7] are third-order tensors with the column, row and Gabor modes. Many sequential (space-time)

signals, such as surveillance video sequences [8], are naturally higher-order tensors. Gray-level video

sequences can be viewed as third-order tensors with the column, row and time modes and color video

sequences are fourth-order tensors with an additional color mode. Among the wide range of applications

involving tensor objects [9], feature extraction for recognition purposes is an arguably most important

one. Therefore, this paper focuses on feature extraction for tensor object recognition.

In pattern recognition applications, the tensor space where a typical tensor object is specified is often

high-dimensional, and recognition methods operating directly on this space suffer from the so-called

curse of dimensionality [10]. On the other hand, the entries of a tensor object are often highly correlated

with surrounding entries, and the samples from a particular tensor object class, such as face images, are

usually highly constrained and belong to a subspace, a manifold of intrinsically low dimension [10], [11].

Feature extraction or dimensionality reduction is thus an attempt to transform a high-dimensional data set

into a low-dimensional space of equivalent representation while retaining most of the underlying structure

[12]. Traditional feature extraction algorithms, such as the classical principal component analysis (PCA)

and linear discriminant analysis (LDA), are linear algorithms that operate on one-dimensional objects,

i.e., first-order tensors (vectors). To apply these linear algorithms to higher-order (greater than one) tensor

objects, such as images and videos, these tensor objects have to be reshaped (vectorized) into vectors

first. However, it is well understood that such reshaping (vectorization) breaks the natural structure and

correlation in the original data, reducing redundancies and/or higher order dependencies present in the

original data set, and losing potentially more compact or useful representations that can be obtained in the

original tensorial forms [9]. Thus, dimensionality reduction algorithms operating directly on the tensor

December 22, 2007 DRAFT



3

objects rather than their vectorized versions are desirable.

Recently, multilinear subspace feature extraction algorithms [2], [9], [13], [14] operating directly

on the tensorial representations rather than their vectorized versions are emerging, especially in the

popular area of biometrics-based human recognition, e.g. face and gait recognition. The multilinear

principal component analysis (MPCA) framework [9], a multilinear extension of the PCA, determines a

multilinear projection that projects the original tensor objects into a lower-dimensional tensor subspace

while preserving the variation in the original data. Similar to PCA, MPCA is an unsupervised method

too and the feature extraction process does not make use of the class information. On the other hand,

supervised multilinear feature extraction algorithms have also been developed. Since LDA is a classical

algorithm that has been very successful and applied widely in various applications, there have been several

variants of its multilinear extension proposed, named as multilinear discriminant analysis (MLDA) in

general in this paper. The two-dimensional LDA (2DLDA) firstly introduced in [15] was later extended

to perform discriminant analysis on more general tensorial inputs [2]. In this so-called discriminant

analysis with tensor representation (DATER)1 approach of [2], a tensor-based scatter ratio criterion is

maximized. A so-called general tensor discriminant analysis (GTDA) algorithm is proposed in [14] where

a scatter difference criterion is maximized [14]. DATER and GTDA are both based on the tensor-to-tensor

projection (TTP) [16]. In contrast, the tensor rank-one discriminant analysis (TR1DA) algorithm [17],

[18] obtains a number of rank-one projections with the scatter difference criterion from the repeatedly-

calculated residues of the original tensor data, which is in fact the heuristic method in [19] for tensor

approximation, and it can be viewed to be based on the tensor-to-vector projection (TVP) [16]. The

multilinear extensions of linear graph-embedding algorithms were introduced similarly in [20]–[24].

In the existing MLDA variants [2], [14], [17], [18], the attention focused mainly on the objective

criterion in terms of (either the ratio of or the difference between) the between-class scatter and the within-

class scatter since it is well-known that the classical LDA aims to maximize the Fisher’s discrimination

criterion (FDC). However, they did not take the correlations among features into account. In other words,

an important property of the classical LDA is ignored in these developments: the classical LDA derives

uncorrelated features, as proved in [25], [26], where the uncorrelated LDA (ULDA) introduced in [27]

is shown to be equivalent to the classical LDA. Uncorrelated features contain minimum redundancy and

ensure independence of features so they are highly desirable in many applications [26].

Motivated by the discussions above, this paper aims to develop a new MLDA solution that extracts

1Here, we use the name given when the algorithm was first proposed, which is more commonly refereed to in the literature.
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uncorrelated features, named as the uncorrelated MLDA (UMLDA). The proposed UMLDA extracts

discriminative features directly from tensorial data through solving a TVP so that the traditional FDC is

maximized in each elementary projection, while the features extracted are constrained to be uncorrelated.

The solution is iterative, based on the alternating projection method (APM), and an adaptive regularization

factor is incorporated to enhance the performance in practical applications where the input dimensionality

is very hight but the sample size per class is often limited, such as face or gait recognition [28], [29].

The extracted features are classified through a simple classifier. Furthermore, as different initialization

or regularization of UMLDA results in different features, an aggregation scheme that combines these

features at the matching score level using the simple sum rule is adopted to enhance the recognition

performance, with the regularization parameter selection problem alleviated at the same time.

The main contributions of this work are:

1) The introduction of a UMLDA algorithm for uncorrelated discriminative feature extraction from

tensors. As a multilinear extension of LDA, the algorithm not only obtains discriminative features

through maximizing the traditional scatter-ratio-based criterion, but also enforces a constraint so that

the features derived are uncorrelated. This contrasts to the traditional approach of linear learning

algorithms [28], [30], [31], where vector rather than tensor representation is used and thus the natural

structural information is destroyed. It also differs from the MLDA variants in [2], [14], [17], [18],

where there are correlations among extracted features. Another difference from the works in [2],

[14] is that a TVP rather than a TTP is used here and this work takes a systematic approach to

solve such an TVP, in contrast with the heuristic approach in [17], [18]. Furthermore, it provides

a new approach with constraint enforcement in developing multilinear learning algorithms.

2) The incorporation of an adaptive regularization procedure where the within-class scatter estimation

is increased through a data-independent regularization parameter. This takes into account of the

practical small sample size (SSS) problem, which often arises in biometrics applications, and the

iterative nature of UMLDA, different from the scatter estimation without regularization in [2], [14],

[17], [18].

3) The adoption of an aggregation scheme that combines several differently initialized and differently

regularized UMLDA feature extractors, which produce different features, at the matching score

level to achieve enhanced recognition performance while alleviating the regularization parameter

selection problem faced in most regularization methods.

The rest of this paper is organized as follows: Section II introduces the notations and basic multilinear
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algebra operations, as well as the TVP. In Section III, the problem of UMLDA is formulated and an

iterative solution is derived, with an adaptive regularization procedure introduced for better generalization

in the SSS scenario. Next, the classifier employed is described and issues regarding the initialization

method, projection order, termination criteria, and convergence issue are addressed in this section, fol-

lowed by a brief discussion on the connections to LDA and other MLDA variants. Section IV presents the

matching score level aggregation of multiple UMLDA feature extractors that are differently initialized and

regularized to enhance the recognition performance. In Section V, experiments on two face databases and

one gait database are reported. The properties of the proposed UMLDA solutions are first illustrated, and

detailed recognition results are then compared against competing linear solutions as well as multilinear

solutions. Finally, Section VI draws the conclusion of this work.

II. MULTILINEAR BASICS AND THE TENSOR-TO-VECTOR PROJECTION

This section introduces the foundations that are fundamentally important for the flow of this paper.

Firstly, we review the notations and some basic multilinear operations that are necessary in presenting

the proposed MLDA solution. Secondly, the TVP used in the proposed algorithm is described in detail.

Table I summarizes the important symbols used in this paper for quick reference.

A. Notations and basic multilinear algebra concepts

The notations in this paper follow the conventions in the multilinear algebra, pattern recognition and

adaptive learning literature. In this paper, we denote vectors by lowercase boldface letters, e.g., x; matrices

by uppercase boldface, e.g., U; and tensors by calligraphic letters, e.g., A. Their elements are denoted

with indices in parentheses. Indices are denoted by lowercase letters and span the range from 1 to the

uppercase letter of the index, e.g., n = 1, 2, ..., N . Throughout this paper, the discussion is focused on

real-valued vectors, matrices and tensors only and the extension to complex-valued data is left for future

work.

An N th-order tensor is denoted as: A ∈ RI1×I2×...×IN . It is addressed by N indices in, n = 1, ..., N ,

and each in addresses the n-mode of A. The n-mode product of a tensor A by a matrix U ∈ RJn×In ,

denoted by A×n U, is a tensor with entries:

(A×n U)(i1, ..., in−1, jn, in+1, ..., iN ) =
∑
in

A(i1, ..., iN ) ·U(jn, in). (1)

The scalar product of two tensors A,B ∈ RI1×I2×...×IN is defined as:

< A,B >=
∑
i1

∑
i2

...
∑
iN

A(i1, i2, ..., iN ) · B(i1, i2, ..., iN ). (2)
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The “n-mode vectors” of A are defined as the In-dimensional vectors obtained from A by varying the

index in while keeping all the other indices fixed. A rank-one tensor A equals to the outer product of N

vectors: A = u(1)◦u(2)◦...◦u(N), which means that A(i1, i2, ..., iN ) = u(1)(i1)·u(2)(i2)·...·u(N)(iN ) for

all values of indices. Unfolding A along the n-mode is denoted as A(n) ∈ RIn×(I1×...×In−1×In+1×...×IN ),

and the column vectors of A(n) are the n-mode vectors of A. An example of the 1-mode vectors of a

tensor A ∈ R10×8×6 can be found in Fig. 1(a).

TABLE I

LIST OF SYMBOLS

Xm the mth input tensor sample, m = 1, ...,M

u(n) the n-mode projection vector, n = 1, ..., N

p = 1, ..., P the index of the EMP

P the number of EMPs in TVP

{u(n)T

p , n = 1, ..., N} the pth EMP

ym the projection of Xm on the TVP {u(n)T

p , n = 1, ..., N}Pp=1

ym(p) = ymp = gp(m) the projection of the mth sample Xm on the pth EMP {u(n)T

p , n = 1, ..., N}

Sy
Bp

the between-class scatter of the pth projected features {ymp ,m = 1, ...,M}

Sy
Wp

the within-class scatter of the pth projected features {ymp ,m = 1, ...,M}

gp the pth coordinate vector

Fy
p =

S
y
Bp

S
y
Wp

, the Fisher’s discrimination criterion for the pth EMP

k the iteration step index in the UMLDA algorithm

K the maximum number of iterations in UMLDA

γ the regularization parameter

a = 1, ..., A the index of the feature extractor in aggregation

A the number of feature extractors to be aggregated

cm the class label for the mth training sample

vec(A) the vectorized representation of the tensor A

L the number of training samples for each class (subject)

C the number of classes (subjects) in training

B. Tensor-to-Vector Projection

The UMLDA framework developed in this paper takes a multilinear subspace (or tensor subspace) [20]

approach of feature extraction, where tensorial data is projected into a subspace for better discrimination.

As discussed in Sec. I, there are two general forms of multilinear projection: the TTP [2], [9], [14] and

the TVP [17], [18]. Since the projections obtained by TTP can be viewed as a set of interdependent
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(a)

(b)

Fig. 1. Illustration of (a) an elementary multilinear projection (EMP), (b) a tensor-to-vector projection (TVP).

projections [16], the features extracted through TTP are likely to be correlated rather than uncorrelated.

Therefore, we choose to develop the UMLDA by determining a subspace of tensor objects through TVP

rather than TTP.

The TVP projects a tensor to a vector and it can be viewed as multiple projections from a tensor

to a scalar, as illustrated in Fig. 1(b), where a TVP of a tensor A ∈ R10×8×6 to a P × 1 vector

consists of P projections from A to a scalar. Thus, the projection from a tensor to a scalar is considered

first. A tensor X ∈ RI1×I2×...×IN can be projected to a point y through N unit projection vectors

{u(1)T

,u(2)T

, ...,u(N)T } as: y = X ×1 u(1)T ×2 u(2)T

... ×N u(N)T

, ‖ u(n) ‖= 1 for n = 1, ..., N ,

where ‖ · ‖ is the Euclidean norm for vectors. It can be written in the scalar product (2) as: y =<

X ,u(1) ◦u(2) ◦ ...◦u(N) >. Denote U = u(1) ◦u(2) ◦ ...◦u(N), then we have y =< X ,U >. We name this

multilinear projection {u(1)T

,u(2)T

, ...,u(N)T } as an elementary multilinear projection (EMP), which is

the projection of a tensor on a single line (resulting a scalar) and it consists of one projection vector in
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each mode. Figure 1(a) illustrates an EMP of a tensor A ∈ R10×8×6. As pointed out in [16], an EMP can

be viewed as a constrained linear projection since < X ,U >=< vec(X ), vec(U) >= [vec(U)]T vec(X ),

where vec(A) denotes the vectorized representation of the tensor A [32].

Thus, the TVP of a tensor object X to a vector y ∈ RP in a P -dimensional vector space consists of P

EMPs {u(1)T

p ,u(2)T

p , ...,u(N)T

p }, p = 1, ..., P , which can be written concisely as {u(n)T

p , n = 1, ..., N}Pp=1.

The TVP from X to y is then written as y = X ×N
n=1{u

(n)T

p , n = 1, ..., N}Pp=1, where the pth component

of y is obtained from the pth EMP as: y(p) = X ×1 u(1)T

p ×2 u(2)T

p ...×N u(N)T

p .

III. UNCORRELATED MLDA WITH REGULARIZATION FOR TENSOR OBJECT RECOGNITION

This section proposes the UMLDA-based tensor object recognition system, which is a typical recog-

nition system as shown in Fig. 2. The normalization step is a standard processing to ensure all input

tensors having the same size [9]. At the core of this system is the UMLDA framework for feature

extraction to be presented in this section: the UMLDA with regularization (R-UMLDA). The R-UMLDA

produces vector features that can be fed into standard classifiers for classification. Besides the description

of the fundamental units in Fig. 2, implementation issues and the connections with other algorithms are

discussed in this section as well.

Fig. 2. UMLDA-based tensor object recognition.

A. The uncorrelated multilinear discriminant analysis with regularization (R-UMLDA)

In the presentation, for the convenience of discussion, the training samples are assumed to be zero-

mean2 so that the constraint of uncorrelated features is the same as orthogonal features3. Before formally

stating the objective of the UMLDA, a number of definitions are needed.

The classical FDC in LDA [30] is defined as the scatter ratio for vector samples. Here, we adapt it

to scalar samples, which can be viewed as the degenerated version. The pth projected (scalar) features

2When the training sample mean is not zero, it can be subtracted to make the training samples to be zero-mean.
3Let x and y be vector observations of the variables x and y. Then, x and y are orthogonal iff xT y = 0, and x and y

are uncorrelated iff (x − x̄)T (y − ȳ) = 0, where x̄ and ȳ are the means of x and y, respectively [33]. Thus, two zero-mean

(centered) vectors are uncorrelated when they are orthogonal [34].
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are {ymp
,m = 1, ...,M}, where M is the number of training samples and ymp

is the projection of the

mth sample Xm by the pth EMP {u(n)T

p , n = 1, ..., N}: ymp
= Xm ×N

n=1 {u
(n)T

p , n = 1, ..., N}. Their

corresponding between-class scatter Sy
Bp

and the within-class scatter Sy
Wp

are

Sy
Bp

=
C∑

c=1

Nc(ȳcp
− ȳp)2, Sy

Wp
=

M∑
m=1

(ymp
− ȳcmp

)2, (3)

where C is the number of classes, Nc is the number of samples for class c, cm is the class label for

the mth training sample, ȳp = 1
M

∑
m ymp

= 0 and ȳcp
= 1

Nc

∑
m,cm=c ymp

. Thus, the FDC for the pth

scalar samples is Fy
p =

Sy
Bp

Sy
Wp

. In addition, let gp denote the pth coordinate vector, with its mth component

gp(m) = ymp
.

A formal definition of the multilinear feature extraction problem to be solved in UMLDA is then given

in the following.

A set of M training tensor object samples {X1, X2, ..., XM} (with zero-mean) is available for training.

Each tensor object Xm ∈ RI1×I2×...×IN assumes values in the tensor space RI1
⊗

RI2 ...
⊗

RIN , where In

is the n-mode dimension of the tensor. The objective of the UMLDA is to find a TVP, which consists of

P EMPs {u(n)
p ∈ RIn×1, n = 1, ..., N}Pp=1, mapping from the original tensor space RI1

⊗
RI2 ...

⊗
RIN

into a vector subspace RP (with P <
∏N

n=1 In):

ym = Xm ×N
n=1 {u(n)T

p , n = 1, ..., N}Pp=1,m = 1, ...,M, (4)

such that the FDC Fy
p is maximized in each EMP direction, subject to the constraint that the P coordinate

vectors {gp ∈ RM , p = 1, ..., P} are uncorrelated.

In other words, the UMLDA objective is to determine a set of P EMPs {u(n)T

p , n = 1, ..., N}Pp=1 that

maximize the scatter ratio while producing features with zero-correlation. Thus, the objective function

for the pth EMP is

{u(n)T

p , n = 1, ..., N} = arg maxFy
p , subject to

gT
p gq

‖ gp ‖ ‖ gq ‖
= δpq, p, q = 1, ..., P, (5)

where δpq is the Kronecker delta (defined as 1 for p = q and as 0 otherwise). To solve this problem,

we follow the successive determination approach in the derivation of the ULDA in [27]. The P EMPs

{u(n)T

p , n = 1, ..., N}Pp=1 are determined sequentially (one by one) in P steps, with the pth step obtaining

the pth EMP. This stepwise process proceeds as:

Step 1: Determine the first EMP {u(n)T

1 , n = 1, ..., N} by maximizing Fy
1 without any constraint.

Step 2: Determine the second EMP {u(n)T

2 , n = 1, ..., N} by maximizing Fy
2 subject to the constraint

that gT
2 g1 = 0.
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Step 3: Determine the third EMP {u(n)T

3 , n = 1, ..., N} by maximizing Fy
3 subject to the constraint

that gT
3 g1 = 0 and gT

3 g2 = 0.

Step p(p = 4, ..., P ): Determine the pth EMP {u(n)T

p , n = 1, ..., N} by maximizing Fy
p subject to the

constraint that gT
p gq = 0 for q = 1, ..., p− 1.

In the following, the algorithm to compute these EMPs is presented in detail, which is summarized in

the pseudo-code in Fig. 3. In the figure, the stepwise process described above corresponds to the loop

indexed by p.

Input: A set of zero-mean tensor samples {Xm ∈ RI1×I2×...×IN ,m = 1, ...,M} with class labels c ∈ RM , the desired

feature vector length P , the regularization parameter γ, the maximum number of iterations K and a small number

ε for testing convergence.

Output: The P EMPs {u(n)T

p , n = 1, ..., N}Pp=1 that best separate classes in the projected space.

R-UMLDA algorithm:

For p = 1 : P (step p: determine the pth EMPs)

If p > 1, calculate the coordinate vector gp−1: gp−1(m) = Xm ×1 u
(1)T

p−1 ×2 u
(2)T

p−1 ...×N u
(N)T

p−1 .

• For n = 1, ..., N , initialize u
(n)
p(0) ∈ RIn .

• For k = 1 : K

– For n = 1 : N

∗ Calculate ỹ
(n)
mp = Xm×1 u

(1)T

p(k) ...×n−1 u
(n−1)T

p(k) ×n+1 u
(n+1)T

p(k−1) ...×N u
(N)T

p(k−1) , for m = 1, ...,M.

∗ Calculate R
(n)
p , S̃

(n)
Bp

and S̃
(n)
Wp

. Set u
(n)
p(k) to be the (unit) eigenvector of

(
S̃

(n)
Wp

)−1

R
(n)
p S̃

(n)
Bp

associated with the largest eigenvalue.

– If k = K or dist
(
u

(n)
p(k) ,u

(n)
p(k−1)

)
< ε for all n, set u

(n)
p = u

(n)
pk for all n, break.

• Output {u(n)
p }. Go the step p+ 1 if p < P . Stop if p = P .

Fig. 3. The pseudo-code implementation of the R-UMLDA algorithm for feature extraction from tensor objects.

To solve for the pth EMP {u(n)T

p , n = 1, ..., N}, there are N sets of parameters corresponding to

N projection vectors to be determined, u(1)
p ,u(2)

p , ...u(N)
p , one in each mode. Obviously, we would like

to determine these N sets of parameters (N projection vectors) in all modes simultaneously so that

Fy
p is (globally) maximized, subject to the zero-correlation constraint. Unfortunately, this is a rather

complicated non-linear problem without an existing optimal solution, except when N = 1, which is the

classical linear case where only one projection vector is to be solved. Therefore, we solve this typical

multilinear problem by following the principle of the alternating least square (ALS) algorithm [35]–[37],

where a multilinear (least-square) optimization problem is reduced into smaller conditional subproblems
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that can be solved through simple established methods employed in the linear case. Thus, for each EMP

to be determined, the parameters of the projection vector u(n∗)
p for each mode n∗ are estimated one by

one separately, conditioned on {u(n)
p , n 6= n∗}, the parameter values of the projection vectors for the other

modes. Thus, by fixing {u(n)
p , n 6= n∗}, a new objective function depending only on u(n∗)

p is formulated

and this conditional subproblem is linear and much simpler. The parameter estimations for each mode

are obtained in this way sequentially (the n loop) and iteratively (the k loop) until a stopping criterion

is met. We name this iterative method the alternating projection method (APM). It corresponds to the

loop indexed by k in Fig. 3, and in each iteration k, the loop indexed by n in Fig. 3 consists of the N

conditional subproblems.

To solve for u(n∗)
p in the n∗-mode, assuming that {u(n)

p , n 6= n∗} is given, the tensor samples are

projected in these (N − 1) modes {n 6= n∗} first to obtain (vectors)

ỹ(n∗)
mp

= Xm ×1 u(1)T

p ...×n∗−1 u(n∗−1)T

p ×n∗+1 u(n∗+1)T

p ...×N u(N)T

p , (6)

ỹ(n∗)
mp ∈ RIn∗ . This conditional subproblem then becomes to determine u(n∗)

p that projects the vector

samples {ỹ(n∗)
mp ,m = 1, ...,M} onto a line so that the scatter ratio is maximized, subject to the zero-

correlation constraint. This is a (linear and simpler) ULDA problem with the input samples {ỹ(n∗)
mp ,m =

1, ...,M}. The corresponding between-class scatter matrix S̃(n∗)
Bp

and the (regularized) within-class scatter

matrix S̃(n∗)
Wp

are then defined as

S̃(n∗)
Bp

=
C∑

c=1

Nc(¯̃y(n∗)
cp
− ¯̃y(n∗)

p )(¯̃y(n∗)
cp
− ¯̃y(n∗)

p )T , (7)

S̃(n∗)
Wp

=
M∑

m=1

(ỹ(n∗)
mp
− ¯̃y(n∗)

cmp
)(ỹ(n∗)

m1
− ¯̃y(n∗)

cmp
)T + γ · λmax(S̆(n∗)

W ) · IIn∗ , (8)

where ¯̃y(n∗)
cp = 1

Nc

∑
m,cm=c ỹ(n∗)

mp , ¯̃y(n∗)
p = 1

M

∑
m ỹ(n∗)

mp = 0, γ ≥ 0 is a regularization parameter, IIn∗

is an identity matrix of size In∗ × In∗ and λmax(S̆(n∗)
W ) is the maximum eigenvalue of S̆(n∗)

W , which is

the within-class scatter matrix for the n-mode vectors of the training samples, defined as

S̆(n∗)
W =

M∑
m=1

(
Xm(n∗) − X̄cm(n∗)

) (
Xm(n∗) − X̄cm(n∗)

)T
, (9)

where X̄c(n∗) is the n∗-mode unfolded matrix of the class mean tensor X̄c = 1
Nc

∑
m,cm=cXm. In the

following, the motivation for introducing the regularization factor is explained.

In the targeted biometrics applications (and many other applications as well), the dimensionality of the

input data is very high while at the same time, the number of training samples for each class is often too

small to represent the true characteristics of their classes, resulting in the well-known SSS problem [28].
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Furthermore, our empirical study of the iterative UMLDA algorithm (i.e., γ = 0) under the SSS scenario

indicates that the iterations tend to minimize the within-class scatter towards zero in order to maximize

the scatter ratio (since the scatter ratio reaches maximum of infinity when the within-class scatter is zero

and the between-class scatter is non-zero). However, the estimated within-class scatter on the training

data is usually much smaller than the real within-class scatter, due to limited number of samples for each

class. Therefore, regularization [38], which has been used for combatting the singularity problem4 in

LDA-based algorithms under the SSS scenario [28], [39], is adopted here to improve the generalization

capability of UMLDA under the SSS scenario, leading to the R-UMLDA. The regularization term is

introduced in (8) so that during the iteration, less focus is put on shrinking the within-class scatter.

Moreover, the regularization introduced is adaptive since γ is the only regularization parameter and the

regularization term in the n∗-mode is scaled by λmax(S̆(n∗)
W ), which is an approximate estimate of the

n∗-mode within-class scatter in the training data. The basic UMLDA is obtained by setting γ = 0.

With (7) and (8), we are ready to solve the P EMPs. For p = 1, the u(n∗)
1 that maximizes the FDC

u
(n∗)T

1 S̃
(n∗)
B1

u
(n∗)
1

u
(n∗)T

1 S̃
(n∗)
W1

u
(n∗)
1

in the projected space is obtained as the unit eigenvector of
(
S̃(n∗)

W1

)−1
S̃(n∗)

B1
associated

with the largest eigenvalue. Next, we show how to determine the pth (p > 1) EMP given the first

(p − 1) EMPs. Given the first (p − 1) EMPs, the pth EMP aims to maximize the scatter ratio Fy
p ,

subject to the constraint that features projected by the pth EMP is uncorrelated with those projected

by the first (p − 1) EMPs. Let Ỹ(n∗)
p ∈ RIn∗×M be a matrix with its mth column to be ỹ(n∗)

mp , i.e.,

Ỹ(n∗)
p =

[
ỹ(n∗)

1p
, ỹ(n∗)

2p
, ..., ỹ(n∗)

Mp

]
, then the pth coordinate vector is obtained as gp = Ỹ(n∗)T

p u(n∗)
p . The

constraint that gp is uncorrelated with {gq, q = 1, ..., p− 1} can be written as

gT
p gq = u(n∗)T

p Ỹ(n∗)
p gq = 0, q = 1, ..., p− 1. (10)

Thus, u(n∗)
p (p > 1) can be determined by solving the following constrained optimization problem:

u(n∗)
p = arg max

u(n∗)T

p S̃(n∗)
Bp

u(n∗)
p

u(n∗)T

p S̃(n∗)
Wp

u(n∗)
p

, subject to u(n∗)T

p Ỹ(n∗)
p gq = 0, q = 1, ..., p− 1, (11)

The solution is given by the following theorem:

Theorem 1: The solution to the problem (11) is the (unit-length) generalized eigenvector corresponding

to the largest generalized eigenvalue of the following generalized eigenvalue problem:

R(n∗)
p S̃(n∗)

Bp
u = λS̃(n∗)

Wp
u, (12)

4While the numerical singularity problem is common for LDA-based algorithms, as pointed out in [2], this is not the case

for MLDA. Therefore, the motivation of using regularization here is different from the linear case in this aspect.
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where

R(n∗)
p = IIn∗ − Ỹ(n∗)

p Gp−1

(
GT

p−1Ỹ
(n∗)T

p S̃(n∗)−1

Wp
Ỹ(n∗)

p Gp−1

)−1

GT
p−1Ỹ

(n∗)T

p S̃(n∗)−1

Wp
, (13)

Gp−1 = [g1 g2 ...gp−1] ∈ RM×(p−1). (14)

Proof: The proof of Theorem 1 is given in Appendix A.

By setting R(n∗)
1 = IIn∗ and from Theorem 1, we have a unified solution for R-UMLDA: for p = 1, ..., P ,

u(n∗)
p is obtained as the unit eigenvector of

(
S̃(n∗)

Wp

)−1
R(n∗)

p S̃(n∗)
Bp

associated with the largest eigenvalue.

Next, we will describe the classification of R-UMLDA features and then give detailed discussions on

implementation issues and connections to other algorithms.

B. Classification of R-UMLDA features

Despite working directly on tensorial data, the proposed R-UMLDA algorithm is a feature extraction

algorithm that produces feature vectors like traditional linear algorithms (through TVP). For recognition

tasks, the features extracted are to be fed into a classifier to get the class label, as shown in Fig. 2. In

this work, the feature vectors obtained through R-UMLDA are fed into the nearest neighbor classifier

(NNC) with the Euclidean distance measure for classification. It should be noted at this point that, since

this paper focuses on multilinear feature extraction, a simple classifier is preferred so that the recognition

performance is mainly contributed by the feature extraction algorithms rather than the classifier. The

classification accuracy of the proposed method (and other methods compared in Section V) is expected

to improve if a more sophisticated classifier such as the support vector machine (SVM) is used instead

of the NNC. However, such an experiment is out of the scope of this paper.

To classify a test sample X using NNC, X is first projected to a feature vector y through the TVP

obtained by R-UMLDA: y = X ×N
n=1 {u

(n)T

p , n = 1, ..., N}Pp=1. The nearest neighbor is then found as

m∗ = arg minm ‖ y−ym ‖, where ym is the feature vector for the mth training sample. The class label

of the m∗th training sample cm∗ is then assigned to the test sample X .

C. Initialization, projection order, termination and convergence

In this subsection, we discuss the various implementation issues of R-UMLDA, in the order of the

algorithm flow in Fig. 3: initialization, projection order, termination and convergence.

As the determination of each EMP {u(n)
p , n = 1, ..., N} is an iterative procedure due to the nature

of the R-UMLDA, like in other multilinear learning algorithms [1], [2], [14], initial estimations for the
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projection vectors {u(n)
p } are necessary. However, there is no guidance from either the algorithm or

the data on the best initialization that could result in the best separation of the classes in the feature

space. Thus, the determination of the optimal initialization in R-UMLDA is still an open problem,

as in most iterative algorithms including other multilinear learning algorithms [2], [14], [17], [18]. In

this work, we empirically study two simple and commonly used initialization methods [16]: uniform

initialization and random initialization [17], [18], which do not depend on the data. In the uniform

initialization, all n-mode projection vectors are initialized to have unit length and the same value along

the In dimensions in n-mode, which is equivalent to the all ones vector 1 with proper normalization. In

random initialization, each element of the n-mode projection vectors is drawn from a zero-mean uniform

distribution between [−0.5, 0.5] and the initialized projection vectors are normalized to have unit length.

Our empirical studies in Sec. V-C indicate that the results of R-UMLDA are affected by initialization,

and the uniform initialization gives better results.

The mode ordering (the inner-most for loop in Fig. 3, indexed by n) in computing the projection

vectors, named as the projection order in this work, affects the solution as well. Similar to initialization,

there is no way to determine the optimal projection order and it is considered to be an open problem

too. Empirical studies on the effects of the projection order indicate that with all the other algorithm

settings fixed, altering the projection order does result in some small performance differences, but there

is no guidance from either the data or the algorithm on what projection order is the best in the iteration.

Therefore, we have no preference on a particular projection order and in practice, we solve the projection

vectors sequentially (from 1-mode to N -mode), as in other multilinear algorithms [1], [2], [14], [18].

Remark 1: Although we are not able to determine the optimal initialization and the optimal projection

order, the aggregation scheme suggested in Sec. IV reduces the significance of their optimal determination.

As seen from Fig. 3, the termination criterion can be simply set to a maximum number of iterations K

or it can be set by examining the convergence of the projection vectors: dist
(
u(n)

p(k) ,u
(n)
p(k−1)

)
< ε, where

ε is a user-defined small number threshold (e.g., ε = 10−3), and this distance is defined as

dist
(
u(n)

p(k)
,u(n)

p(k−1)

)
= min

(
‖ u(n)

p(k)
+ u(n)

p(k−1)
‖, ‖ u(n)

p(k)
− u(n)

p(k−1)
‖
)

(15)

since eigenvectors are unique up to sign. As to be shown in Sec. V-C, the recognition performance

increases slowly after the first a few iterations. Therefore, the iteration can be terminated by setting K

in practice for convenience, especially when computational cost is a concern.

Remark 2: As a sequential iterative solution, R-UMLDA may have a higher cost in memory and com-

putation than typical linear subspace algorithms, which are usually non-iterative solutions. Nevertheless,
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since solving for the EMPs using R-UMLDA is only in the training phase of the targeted recognition

tasks, it can be done offline and the additional I/O and computational cost due to iterations are not

considered a disadvantage of the proposed R-UMLDA solution.

D. Connections to DATER, GTDA, TR1DA and LDA

Detailed discussions on the relationships between UMLDA, DATER, GTDA, TR1DA and LDA are

presented in [16], which are summarized in Appendix B for completeness. Briefly, the UMLDA is an

MLDA variant that maximizes the scatter ratio through a TVP. LDA is the special case of UMLDA with

N = 1. DATER is an MLDA variant also based on scatter ratio but it solves a TTP rather than TVP.

GTDA is an MLDA variant that maximizes the scatter difference through a TTP. TR1DA also solves for

TVP as UMLDA, however, it maximizes scatter difference and it is a heuristic approach with residue

calculation, originally proposed for tensor approximation.

IV. AGGREGATION OF R-UMLDA RECOGNIZERS

This section proposes the aggregation of a number of differently initialized and regularized UMLDA

recognizers for enhanced performance, which is motivated from two properties of the basic R-UMLDA

recognizer in Fig. 2. On one hand, as to be shown in Sec. V-C, the number of useful discriminative features

that can be extracted by a single R-UMLDA is limited, partly due to the fact that EMPs to be solved in

R-UMLDA correspond to very constrained situations in the linear case. On the other hand, since the R-

UMLDA is affected by initialization and regularization, which cannot be optimally determined, different

initialization or regularization could result in different discriminative features (also see Sec. V-C). From

the generalization theory explaining the success of random subspace method [40], bagging and boosting

[41]–[43], the sensitivity of the R-UMLDA to initialization and regularization suggests that R-UMLDA

is not a very stable learner (feature extractor) and it is good for ensemble-based learning. Therefore,

we propose the aggregation of several differently initialized and regularized UMLDA feature extractors

to get the regularized UMLDA with aggregation (R-UMLDA-A) recognition system so that multiple

R-UMLDA recognizers can work together to achieve better performance on tensor object recognition.

Remark 3: Different projection order also could result in different features so R-UMLDA with different

projection orders could be aggregated as well. However, since the effects of different projection orders

are similar to those of different initializations and the number of possible projection orders (which is N !)

is much less than the number of possible initializations (which is infinite), we fix the projection order

and vary the initialization and regularization only in this work.
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There are various ways to combine (or fuse) several extracted features, including the feature level

fusion [44], fusion at the matching score level [45], [46], and more advanced ensemble-based learning

such as boosting [41], [47], [48]. For similar argument of the choice of a simple classifier, the simple

sum rule in combining matching scores is used in this work since the focus here is on the feature

extraction. Although more sophisticated method such as boosting is expected to achieve better results,

the investigation of alternative combination methods, such as other combination rules and feature-level

fusion, are beyond the scope of this paper and will be the topic of a forthcoming paper.

Since high diversity of the learners to be combined is preferred in ensemble-based learning [47],

we choose to use both uniform and random initializations in R-UMLDA-A for more diversity. Thus,

although we are not able to determine the best initialization, we aggregate several R-UMLDA with

different initializations to make complementary discriminative features working together to separate

classes better. Furthermore, to introduce even more diversity and alleviate the problem of regularization

parameter selection at the same time, we propose to sample the regularization parameter γa from an

interval [10−7, 10−2], which is empirically chosen to cover a wide range of γ, uniformly in log scale so

that each feature extractor is differently regularized, where a = 1, ..., A is the index of the individual

R-UMLDA feature extractor and A is the number of R-UMLDA feature extractors to be aggregated.

Figure 4 provides the pseudo-code implementation for the R-UMLDA-A for tensor object recognition.

The input training samples {Xm} are fed into A differently initialized and regularized UMLDA feature

extractors described in Fig. 3 with parameters P , K and γa to obtain a set of A TVPs {u(n)T

p , n =

1, ..., N}Pp=1(a)
, a = 1, ..., A. The training samples {Xm} are then projected to R-UMLDA feature vectors

{ym(a)} using the obtained TVPs. To classify a test sample X , it is projected to A feature vectors {y(a)}

using the A TVPs first. Next, for the ath R-UMLDA feature extractor, we calculate the nearest-neighbor

distance of the test sample X to each candidate class c as:

d(X , c, a) = min
m,cm=c

‖ y(a) − ym(a) ‖ . (16)

The range of d(X , c, a) is then matched to the interval [0, 1] as:

d̃(X , c, a) =
d(X , c, a)−minc d(X , c, a)

maxc d(X , c, a)−minc d(X , c, a)
. (17)

Finally, the aggregated nearest-neighbor distance is obtained employing the simple sum rule as:

d(X , c) =
A∑

a=1

d̃(X , c, a), (18)

and the test sample X is assigned the label: c∗ = arg minc d(X , c).
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Input: A set of zero-mean tensor samples {Xm ∈ RI1×I2×...×IN ,m = 1, ...,M} with class labels c ∈ RM , a test tensor

sample X , the desired feature vector length P , the R-UMLDA feature extractor (Fig. 3), the maximum number of

iterations K, the number of R-UMLDA to be aggregated A.

Output:The class label for X .

R-UMLDA-A algorithm:

Step 1. Feature extraction

• For a = 1 : A

– Obtain the ath TVP {u(n)T

p , n = 1, ..., N}Pp=1(a)
from the ath R-UMLDA (Fig. 3) with the input:

{Xm}, P , K, γa, using random or uniform initialization.

– Project {Xm} and X to {ym(a)} and y(a), respectively, using {u(n)T

p , n = 1, ..., N}Pp=1(a)
.

Step 2. Aggregation at the matching score level for classification

• For a = 1 : A

– For c = 1 : C

∗ Obtain the nearest-neighbor distance d(X , c, a).

– Normalize d(X , c, a) to [0, 1] to get d̃(X , c, a).

• Obtain the aggregated distance d(X , c).

• Output c∗ = arg minc d(X , c) as the class label for the test sample.

Fig. 4. The pseudo-code implementation of the R-UMLDA-A algorithm for tensor object recognition.

V. EXPERIMENTAL EVALUATION

In this section, a number of experiments are carried out on two biometrics applications in support of

the following two objectives:

1) Investigate the various properties of the R-UMLDA algorithm.

2) Evaluate the R-UMLDA and R-UMLDA-A algorithms on two tensor object recognition problems,

face recognition (FR) and gait recognition (GR), by comparing their performance with that of

competing mutlilinear learning algorithms as well as linear learning algorithms.

Before presenting the experimental results, the experimental data and algorithms to be compared are

described first.

A. Experimental data

Three popular public databases are used in the experiments: the Pose, Illumination, and Expres-

sion (PIE) database from Carnegie Mellon University (CMU) [49], the Facial Recognition Technology

December 22, 2007 DRAFT



18

(FERET) database [50] and the HumanID gait challenge data set version 1.7 (V1.7) from the University

of South Florida (USF).

The CMU PIE database contains 68 individuals with face images captured under varying pose, illumi-

nation and expression. We choose the seven poses (C05, C07, C09, C27, C29, C37, C11) with at most

45 degrees of pose variation, under the 21 illumination conditions (02 to 22). Thus, there are about 147

(7×21) samples per subject and there are a total number of 9,987 face images (with nine faces missing).

This face database has a large number of samples for each subject, therefore, it is used to study the

properties of the proposed algorithm and the FR performance under varying number of training samples

per subject, denoted by L.

The FERET database is a standard testing database for FR performance evaluation, including 14,126

images from 1,199 individuals with views ranging from frontal to left and right profiles. The common

practice is to use portions of the database for specific studies. Here, we select a subset composed of those

subjects with each subject having at least six images with at most 45 degrees of pose variation, resulting

in 2,803 face images from 335 subjects. The studies on the FR performance under varying number of

subjects C are carried out on this face database since there are a large number of subjects available. Face

images from the PIE and FERET databases are manually aligned, cropped and normalized to 32 × 32

pixels, with 256 gray levels per pixel.

The USF gait challenge data set V1.7 consists of 452 sequences from 74 subjects walking in elliptical

paths in front of the camera, with two viewpoints (left or right), two shoe types (A or B) and two surface

types (grass or concrete). Here, we choose those sequences on grass surface only: the gallery set, and

the probe sets A, B and C, with detailed information listed in Table II. The capturing condition for

each set is summarized in the parentheses after the set name in the Table, where G, A, B, L, and R

stand for grass surface, shoe type A, shoe type B, left view, and right view, respectively. Each set has

only one sequence for a subject. Subjects are unique in the gallery and each probe set and there are no

common sequences between the gallery set and any of the probe sets. In addition, all the probe sets are

distinct. These gait data sets are employed to demonstrate the performance on third-order tensors since

gait silhouette sequences are naturally 3-D data [9]. We follow the procedures in [9] to get gait samples

from gait silhouette sequences and each gait sample is resized to a third-order tensor of 32 × 22 × 10.

The number of samples for each set is indicated in the parentheses following the number of sequences

in Table II.
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TABLE II

THE CHARACTERISTICS OF THE GAIT DATA FROM THE USF GAIT CHALLENGE DATA SET.

Gait data set Gallery(GAR) Probe A(GAL) Probe B(GBR) Probe C(GBL)

Number of sequences (samples) 71 (731) 71 (727) 41 (423) 41 (420)

Difference from the gallery - View Shoe Shoe, view

B. Performance Comparison Design

In the FR and GR experiments, we compare the performance of the proposed algorithms against four

multilinear learning algorithms and three linear learning algorithms listed in Table III5, where the LDA

algorithm takes the Fisherface approach [30].

TABLE III

LIST OF ALGORITHMS TO BE COMPARED

Acronym Full name Linear/Multilinear Reference

LDA linear discriminant analysis Linear [30]

ULDA uncorrelated linear discriminant analysis Linear [31]

R-JD-LDA regularized version of the revised direct LDA Linear [28], [51]

MPCA multilinear principal component analysis Multilinear [9]

DATER discriminant analysis with tensor representation Multilinear [2]

GTDA general tensor discriminant analysis Multilinear [14]

TR1DA tensor rank-one discriminant analysis Multilinear [17], [18]

For classification of extracted features, we use the NNC with Euclidean distance measure. The MPCA,

DATER and GTDA algorithms produce features in tensor representation, which cannot be handled directly

by the selected classifier. Since from [16], the commonly used tensor distance measure, the Frobenius

norm, is equivalent to the Euclidean distance between vectorized representations, the tensor features from

MPCA, DATER and GTDA are rearranged to vectors for direct comparison. They obtain the highest-

dimension projection (Pn = In for n = 1, ..., N ) first and then the TTP is viewed as
∏N

n=1 In EMPs.

The discriminability of each such EMP is calculated on the training set and the EMPs are arranged in

descending discriminability so that a feature vector is obtained, as in [9].

In the experiments, for fair comparison and computational concerns, we set the number of iterations in

the four MLDA algorithms to be 10, unless otherwise stated. For MPCA, DATER, GTDA and TR1DA,

5Note that the ULDA compared here is different from the ULDA in [27]. Therefore, it is different from the classical LDA.
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up to 600 features were tested. The maximum number of features tested for LDA and ULDA is C − 1.

For the TR1DA algorithm, we tested several values of the tuning parameter ζ for each L, and the best

one for each L was used: ζ = 2 for L ≤ 7, ζ = 0.8 for 8 ≤ L ≤ 15, ζ = 0.6 for L ≥ 16. For the

R-JD-LDA, we use the default maximum number of features and regularization parameter suggested by

the authors.

For the recognition experiments of only one R-UMLDA, uniform initialization is used and we empir-

ically set γ = 10−3, with up to 30 features tested. For R-UMLDA-A, up to 20 differently initialized and

regularized versions of UMLDA feature extractors are combined with each producing up to 30 features,

also resulting in a total number of 600 features. Uniform initialization is used for a = 1, 5, 9, 13, 17 with

corresponding γa = 10−2, 10−3, 10−4, 10−5, 10−6, and random initialization is used for the rest values of

a. In computing the matrix inverse of
(

GT
p−1Ỹ

(n∗)T

p S̃(n∗)−1

Wp
Ỹ(n∗)

p Gp−1

)
in (13), a small term (κ · Ip−1)

is added, where κ = 10−3, in order to get better conditioned matrix for the inverse computation.

The recognition performance is measured in correct recognition rate (CRR). The best recognition results

reported are obtained by varying the number of features used and the number of R-UMDLA recognizers

aggregated for the R-UMLDA-A algorithm. For all the other algorithms, the best results are obtained

by varying the number of features used. For fair comparison, there is no further fine tuning of other

parameters (such as the regularization parameter) for optimal performance on the testing data, including

the proposed method. For better viewing, the top two recognition results in each experiment are shown

in bold in tables.

C. Empirical studies of the R-UMLDA properties on the PIE database

First, various properties of the R-UMLDA are studied on the PIE database: the effects of initialization

and regularization, the convergence, the number of useful features and the effects of aggregation. These

experiments are performed on one random split of the database into training and testing samples.

1) the effects of initialization and regularization: Figure 5 illustrates the effects of initialization and

regularization on two FR experiments: one with L = 2 and one with L = 20, corresponding to the SSS

scenario and the scenario when a large number of samples (per subject) are available for training. The

CRRs for various γs are depicted in Figs. 5(a) (L = 2) and 5(b) (L = 20) for the uniform initialization,

and in Figs. 5(c) (L = 2) and 5(d) (L = 20) for the random initialization (averaged over 20 repeated

trials). Figures 5(e) and 5(f) show the plots for the CRRs from eight repetitions of the random initialization

with γ = 10−3. They demonstrate that the recognition results are affected by initialization and different

initialization results in different results. By comparing Fig. 5(f) against Fig. 5(e), it can be seen that the
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(a) (b)

(c) (d)

(e) (f)

Fig. 5. Illustration of the effects of initialization and regularization on recognition performance: Uniform initialization with

various γs for (a) L = 2 and (b) L = 20; Random initialization with various γs averaged over 20 repetitions for (c) L = 2 and

(d) L = 20; Eight repetitions of random initialization with γ = 10−3 for (e) L = 2 and (f) L = 20.
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sensitivity to initialization is smaller for a larger L. Furthermore, by comparing Fig. 5(a) against Fig.

5(c), and Fig. 5(b) against Fig. 5(d), we observe that the uniform initialization outperforms the random

initialization for both a small L and a large L. Therefore, we use the uniform initialization when only

one R-UMLDA feature extractor is employed. In the following discussions, we show the convergence

and the number of useful features using the uniform initialization.

Besides, the effects of regularization are also observed in Figs. 5(a), 5(b), 5(c) and 5(d). For a small

L, UMLDA with a strong regularization (larger γ) can outperform that without regularization (γ = 0),

while for a large L, a too strong regularization may results in poorer performance, as observed in other

regularization algorithms [28].

(a) (b)

(c) (d)

Fig. 6. Illustration of the convergence for L = 5: the evolution of dist
(
u

(1)
p(k) ,u

(1)
p(k−1)

)
over 50 iterations for (a) p = 1 and

(b) p = 8; the CRRs for various Ks (the maximum number of iterations) for (c) γ = 0 and (d) γ = 10−3.
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2) Convergence: The convergence is illustrated in Fig. 6. Figures 6(a) and 6(b) depict two examples

of the evolution of dist
(
u(n)

p(k) ,u
(n)
p(k−1)

)
for p = 1 and p = 8, with various γs, up to 50 iterations. As

seen in the figure, in the worst scenarios, the projection vector converges around k = 15 for p = 1 and

around k = 30 for p = 8. In addition, a stronger regularization (larger γ) is more likely to result in faster

convergence. Furthermore, the recognition performance is examined for various Ks, as shown in Figs.

6(c) and 6(d) with L = 5 for γ = 0 and γ = 10−3, respectively. It indicates that the first a few iterations

improve the recognition performance the most, and more iterations afterwards give slow improvement

in the recognition rate, especially for a larger γ. Therefore, we set K to a fixed number, K = 10, to

terminate the iteration in practice. When computational efficiency is important, K can be further reduced

to improve processing speed, while sacrificing some recognition performance.

(a) (b)

Fig. 7. Demonstration of (a) the recognition performance for L = 5 as P increases for various γs, and (b) the effectiveness

of aggregation.

3) The number of useful features and the effects of aggregation: The R-UMLDA is limited in the

number of extracted features (P ) useful for recognition, as depicted in Fig. 7(a), where the CRRs are

shown for up to 60 features for L = 5 and with various γs. In particular, the first a few features are very

powerful, while beyond a certain number (e.g. 20), the performance varies very slowly with an increased

P . Fortunately, from the study of the effects of initialization and regularization, we find that different

initialization or regularization produces different results (Fig. 5). Thus, the proposed aggregation scheme

makes use of this property and combines differently initialized and regularized R-UMLDA recognizers to

achieve enhanced results. At the same time, the problem of regularization parameter selection is alleviated.

December 22, 2007 DRAFT



24

The results of aggregation are shown in Fig. 7(b) for L = 5 and up to 20 R-UMLDA recognizers to be

combined, by the R-UMLDA-A described in Sec. V-B. The figure demonstrates that the aggregation is

an effective procedure and there are indeed complementary discriminative information from differently

initialized and regularized R-UMLDA recognizers.

D. Face recognition results

In FR experiments, face images are input directly as second-order tensors to the multilinear algorithms,

while for the linear algorithms, they are vectorized to 1024× 1 vectors as input. For each subject in an

FR experiment, L samples are randomly selected for training and the rest are used for testing. We report

the results, including the mean and standard deviation (Std), averaged over 20 random splits.

TABLE IV

FACE RECOGNITION RESULTS ON PIE DATABASE: THE TOP CRRS (MEAN±STD%).

L LDA ULDA R-JD-LDA MPCA DATER GTDA TR1DA R-UMLDA R-UMLDA-A

2 35.0±1.6 44.1±1.3 38.0±1.9 34.9±4.3 44.3±2.2 37.8±2.5 32.7±2.6 40.2±1.8 44.7±1.8

3 47.6±1.8 55.7±1.3 53.5±1.4 46.0±2.4 58.3±1.8 48.0±2.2 51.1±1.3 50.8±1.7 58.4±1.7

4 59.0±2.0 63.4±1.4 62.0±1.6 52.2±1.7 65.9±1.8 54.4± 1.7 61.9±1.9 58.2±1.3 69.0±2.1

5 66.7±1.4 67.8±1.1 67.9±1.3 56.4±1.8 70.3±1.4 59.0± 1.9 67.1±1.6 63.2±1.5 74.9±1.5

6 71.2±1.3 70.7±0.9 72.0±1.3 59.9±1.6 74.3±1.3 62.7± 1.3 69.7±1.5 67.0±1.1 78.7±1.4

8 76.6±1.1 74.5±1.0 78.5±1.1 66.6±1.0 79.9±1.0 69.2± 1.4 74.6±1.1 72.5±1.0 84.7±1.0

10 79.3±1.2 75.2±1.1 82.8±1.2 71.3±0.9 83.5±0.9 74.0±1.0 79.4±1.4 76.7±1.4 87.8±1.2

20 86.4±1.1 83.6±1.0 92.5±0.5 84.2±0.7 92.0±0.4 86.2±0.9 88.1±0.7 87.2±0.7 94.6±0.5

40 98.6±0.2 97.7±0.3 97.7±0.3 94.8±0.5 97.4±0.3 95.2±0.4 94.8±0.4 94.7±0.4 98.3±0.3

1) FR results on the PIE database: In order to study the recognition performance with different Ls, we

perform nine FR experiments on the PIE database with L = 2, 3, 4, 5, 6, 8, 10, 20, 40. The top CRRs are

listed in Table IV, where our R-UMLDA-A performs the best except for L = 40. The detailed results for

L = 2, 5, 20 and 40 are depicted in Fig. 8. From the figure, the first a few features (around 10) extracted

by the R-UMLDA are the most powerful features in recognition in all cases except when L = 40, where

the LDA and ULDA features are the most discriminative ones.

In addition, it should be noted that in each experiment, if we tune the regularization parameter for R-

JD-LDA and R-UMLDA, and the range of γ for R-UMLDA-A, improved performance can be obtained

since stronger regularization results in better performance for a small L and weaker regularization is
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(a) (b)

(c) (d)

Fig. 8. Face recognition results on the PIE database: correct recognition rate against the number of features used for (a) L = 2,

(b) L = 5, (c) L = 20 and (d) L = 40.

better for a larger L [28]. Nonetheless, with fixed range of γ, our R-UMLDA-A still outperforms all the

other algorithms for L ranging from 2 to 20.

2) FR results on the FERET database: It is argued in [47] that the learning capacity of any LDA-

like algorithm is directly proportional to L, and reciprocally proportional to C. Thus, to evaluate the

recognition performance with different Cs, we carry out four experiments on the FERET database with

C = 80, 160, 240, 320 and fix L = 4 so that no more than half of the face images are used for training.

The numbers of training and testing faces for each experiment are detailed in Table V. Table VI lists

the top CRRs, where R-UMLDA-A outperforms all the other methods in all cases. Moreover, we can
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(a) (b)

(c) (d)

Fig. 9. Face recognition results on the FERET database: correct recognition rate against the number of features used for (a)

C = 80, (b) C = 160, (c) C = 240 and (d) C = 320.

observe that the recognition performance of R-UMLDA-A and R-JD-LDA are just slightly affected by

C. In contrast, LDA and ULDA are affected significantly by C. Detailed recognition results are shown

in Fig. 9, where in all cases, the first a few (around 10) features extracted by R-UMLDA are the most

discriminative ones again.

E. Gait recognition results

After two sets of experiments to evaluate the performance on 2-D face images under varying L and

C, we test the performance on 3-D gait data. In GR experiments, gait samples are input directly as
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TABLE V

DETAILS OF THE FOUR EXPERIMENTS ON THE FERET DATABASE.

C number of training faces number of testing faces

80 320 825

160 640 1113

240 960 1273

320 1280 1433

TABLE VI

FACE RECOGNITION RESULTS ON THE FERET DATABASE: THE TOP CRRS (MEAN±STD%).

C LDA ULDA R-JD-LDA MPCA DATER GTDA TR1DA R-UMLDA R-UMLDA-A

80 60.8±2.0 58.9±1.5 68.1±2.0 54.7±3.4 71.0±1.6 61.8±2.3 71.0±1.6 62.1±1.4 75.1±1.8

160 51.0±1.8 40.2±1.3 70.5±1.6 50.7±3.4 68.8±1.6 58.6±2.3 68.3±2.0 60.3±1.6 75.1±1.7

240 41.8±1.4 10.8±0.8 68.7±1.0 51.2±2.6 64.0±1.3 54.5±2.0 62.7±1.3 58.6±1.3 73.2±1.0

320 29.1±1.1 20.9±0.9 66.4±1.1 48.9±1.6 62.0±1.6 52.6±1.8 60.4±1.6 56.9±1.4 72.5±1.6

third-order tensors to the multilinear algorithms, while for the linear algorithms, they are vectorized to

7040×1 vectors as input. We follow the standard testing procedures in GR, where the gallery set is used

for training and the probe sets (A, B and C) are used for testing. Since R-UMLDA-A involves random

initialization, we report the results (mean and standard deviation) averaged over 20 repeated experiments.

In addition to the CRRs of the gait samples, the CRRs of gait sequences are also reported. The calculation

of matching scores between two gait sequences follows that in [9].

Tables VII and VIII present the top CRRs for individual gait samples and gait sequences, respectively,

for probes A, B, C and their average. R-UMLDA-A and R-JD-LDA achieve the best performance on

recognizing individual gait samples, indicating that regularization is indeed effective for the challenging

GR problem as well. Regarding the performance on recognizing gait sequences, R-UMLDA-A achieves

the best results on average, showing that the proposed multilinear solution is indeed more powerful than

other solutions in recognizing tensorial signals. Figures 10(a) and 10(b) plot the detailed CRRs averaged

over the three probes for individual gait samples and gait sequences, respectively. Figure 10(a) shows

that the first a few features (around 20) produced by R-UMLDA are again the most discriminative ones

in classifying gait samples, while Fig. 10(b) illustrates that R-UMLDA still has the best performance

when recognizing gait sequences using 3 to 20 features only.
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(a) (b)

Fig. 10. Gait recognition results on the USF gait challenge data sets (average over probes A, B and C): correct recognition

rate against the number of features used for (a) individual gait samples, and (b) gait sequences.

TABLE VII

GAIT RECOGNITION RESULTS ON THE USF GAIT CHALLENGE DATA SETS: THE TOP CRRS (%) FOR INDIVIDUAL GAIT

SAMPLES.

Probe LDA ULDA R-JD-LDA MPCA DATER GTDA TR1DA R-UMLDA R-UMLDA-A

A 65.7 60.8 71.0 54.7 61.2 58.7 63.5 51.9 69.8±1.3

B 49.2 43.3 55.8 50.4 51.8 54.1 50.8 45.9 59.4±1.0

C 31.7 30.0 40.0 34.3 33.6 38.8 35.7 25.2 36.7±1.0

Average 51.8 47.6 58.3 46.9 49.7 51.7 52.5 43.0 57.9±0.8

F. Discussions

We have performed a large number of experiments on face and gait recognition to evaluate our proposed

algorithms. From the results presented above, there are three important observations:

1) The first a few features extracted by the proposed R-UMLDA, obtained with fixed parameters, are

the most discriminative ones in various scenarios, excepted FR with a large number of training

samples (L = 40). This demonstrates that extracting features directly from tensorial signals by

R-UMLDA is indeed beneficial for recognition, especially in the SSS scenario.

2) The proposed R-UMLDA-A, without tuning the regularization parameter, achieves the best overall

performance in recognition of face and gait signals under various settings, except in FR with L = 40

where it is slightly outperformed by LDA, indicating that it is a robust and effective recognition
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TABLE VIII

GAIT RECOGNITION RESULTS ON THE USF GAIT CHALLENGE DATA SETS: THE TOP CRRS (%) FOR GAIT SEQUENCES.

Probe LDA ULDA R-JD-LDA MPCA DATER GTDA TR1DA R-UMLDA R-UMLDA-A

A 87.3 85.9 88.7 84.5 87.3 85.9 83.1 85.9 95.6±1.5

B 63.4 61.0 68.3 80.5 65.9 78.0 73.2 68.3 77.1±1.8

C 51.2 48.8 56.1 61.0 58.5 63.4 61.0 43.9 58.0±1.9

Average 70.6 66.6 73.2 75.2 72.5 76.5 74.5 69.9 80.3±1.0

algorithm for tensor objects.

3) Although random initialization is employed in R-UMLDA-A, from the standard deviations based

on 20 repeated trials reported in Tables IV, VI, VII and VIII, the recognition results obtained by

R-UMLDA-A have low variances, showing that it is competitive in terms of stability as well.

VI. CONCLUSIONS

In this paper, a novel UMLDA algorithm is proposed to extract uncorrelated discriminative features

directly from tensorial data using the TVP of tensor objects, and a regularization term is incorporated

to tackle the SSS problem, resulting in the regularized UMLDA. Furthermore, since the recognition

performance is affected by initialization and regularization, an aggregation scheme is proposed to combine

several differently initialized and regularized UMLDA feature extractors to achieve better recognition

performance while mitigating the problem of regularization parameter selection. Experiments on biometric

applications, tested on the PIE and FERET face databases and the USF gait database, demonstrate that

the UMLDA-based recognizer achieves the best overall results compared with recognizers based on other

multilinear subspace solutions as well as linear subspace algorithms.

ACKNOWLEDGMENTS

This work is partially supported by the Ontario Centres of Excellence through the Communications

and Information Technology Ontario Partnership Program and the Bell University Labs - at the University

of Toronto. The authors would like to thank Dr. Jie Wang for her help in the experimental design. The

authors would also like to thank the providers of the PIE, FERET and USF gait databases.

December 22, 2007 DRAFT



30

APPENDIX A

PROOF OF THEOREM 1

Proof: For a non-singular S̃(n∗)
Wp

, any u(n∗)
p can be normalized such that u(n∗)T

p S̃(n∗)
Wp

u(n∗)
p = 1

and the ratio
u

(n∗)T

p S̃
(n∗)
Bp

u
(n∗)
p

u
(n∗)T

p S̃
(n∗)
Wp

u
(n∗)
p

keeps unchanged. Therefore, the maximization of this ratio is equivalent

to the maximization of u(n∗)T

p S̃(n∗)
Bp

u(n∗)
p with the constraint that u(n∗)T

p S̃(n∗)
Wp

u(n∗)
p = 1 and Lagrange

multipliers can be used to transform the problem (11) to the following to include all the constraints:

F (u(n∗)
p ) = u(n∗)T

p S̃(n∗)
Bp

u(n∗)
p − ν

(
u(n∗)T

p S̃(n∗)
Wp

u(n∗)
p − 1

)
−

p−1∑
q=1

µqu(n∗)T

p Ỹ(n∗)
p gq, (19)

where ν and {µq, q = 1, ..., p− 1} are Lagrange multipliers.

The optimization is performed by setting the partial derivative of F (u(n∗)
p ) with respect to u(n∗)

p to

zero:

∂F (u(n∗)
p )

∂u(n∗)
p

= 2S̃(n∗)
Bp

u(n∗)
p − 2νS̃(n∗)

Wp
u(n∗)

p −
p−1∑
q=1

µqỸ(n∗)
p gq = 0. (20)

Multiplying (20) by u(n∗)T

p results in

2u(n∗)T

p S̃(n∗)
Bp

u(n∗)
p − 2νu(n∗)T

p S̃(n∗)
Wp

u(n∗)
p = 0⇒ ν =

u(n∗)T

p S̃(n∗)
Bp

u(n∗)
p

u(n∗)T

p S̃(n∗)
Wp

u(n∗)
p

, (21)

which indicates that ν is exactly the criterion to be maximized.

Next, a set of (p−1) equations are obtained by multiplying (20) by gT
q Ỹ(n∗)T

p S̃(n∗)−1

Wp
, q = 1, ..., p−1,

respectively:

2gT
q Ỹ(n∗)T

p S̃(n∗)−1

Wp
S̃(n∗)

Bp
u(n∗)

p −
p−1∑
q=1

µqgT
q Ỹ(n∗)T

p · S̃(n∗)−1

Wp
Ỹ(n∗)

p gq = 0. (22)

Let

µp−1 = [µ1 µ2 ... µp−1]T (23)

and use (14), then the (p−1) equations of (22) can be represented in a single matrix equation as following:

2GT
p−1Ỹ

(n∗)T

p S̃(n∗)−1

Wp
S̃(n∗)

Bp
u(n∗)

p −GT
p−1Ỹ

(n∗)T

p · S̃(n∗)−1

Wp
Ỹ(n∗)

p Gp−1µp−1 = 0. (24)

Thus,

µp−1 = 2
(
GT

p−1Ỹ
(n∗)T

p S̃(n∗)−1

Wp
Ỹ(n∗)

p Gp−1

)−1
·GT

p−1Ỹ
(n∗)T

p S̃(n∗)−1

Wp
S̃(n∗)

Bp
u(n∗)

p . (25)

Since from (14) and (23),
p−1∑
q=1

µqỸ(n∗)
p gq = Ỹ(n∗)

p Gp−1µp−1, (26)
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the equation (20) can be written as

2S̃(n∗)
Bp

u(n∗)
p − 2νS̃(n∗)

Wp
u(n∗)

p − Ỹ(n∗)
p Gp−1µp−1 = 0

⇒ νS̃(n∗)
Wp

u(n∗)
p = S̃(n∗)

Bp
u(n∗)

p − Ỹ(n∗)
p Gp−1

µp−1

2

= S̃(n∗)
Bp

u(n∗)
p − Ỹ(n∗)

p Gp−1

(
GT

p−1Ỹ
(n∗)T

p S̃(n∗)−1

Wp
Ỹ(n∗)

p Gp−1

)−1

GT
p−1Ỹ

(n∗)T
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Wp
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Bp
u(n∗)

p

=
[
IIn∗ − Ỹ(n∗)

p Gp−1

(
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p−1Ỹ
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p S̃(n∗)−1

Wp
Ỹ(n∗)

p Gp−1

)−1

GT
p−1Ỹ
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p S̃(n∗)−1
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]
S̃(n∗)

Bp
u(n∗)

p

Using the definition in (13), a generalized eigenvalue problem is obtained as R(n∗)
p S̃(n∗)

Bp
u = νS̃(n∗)

Wp
u.

Since ν is the criterion to be maximized, the maximization is achieved by setting u(n)∗

p to be the (unit)

generalized eigenvector corresponding to the largest generalized eigenvalue of (12).

APPENDIX B

CONNECTIONS AMONG VARIOUS MLDA ALGORITHMS AND LDA

The traditional linear projection is a vector-to-vector projection (VVP). The two multilinear projections

are the TTP and TVP. Thus, LDA is based on VVP. DATER and GTDA are MLDA through TTP (MLDA-

TTP), and TR1DA and UMLDA are MLDA through TVP (MLDA-TVP). The DATER algorithm [2] is

a specific realization of the MLDA-TTP, with the objective of maximizing the scatter ratio. The GTDA

algorithm [14] is an MLDA-TTP variant maximizing the scatter difference, The TR1DA algorithm [17],

[18] is an MLDA-TVP variant maximizing the scatter difference, with a heuristic residue-based approach.

The UMLDA algorithm proposed in this paper is an MLDA-TVP variant maximizing the scatter ratio,

while pursuing uncorrelated features.

The relationships between the LDA, MLDA-TTP and MLDA-TVP are revealed by examine the

relationships between VVP, TTP and TVP first. Obviously, VVP is the special case of TTP and TVP

with N = 1. Each projected element in TTP can be viewed as the projection of an EMP formed by

taking one column from each projection matrix so the projected tensor by TTP is obtained effectively

through
∏N

n=1 In interdependent EMPs, while in TVP, the P EMPs obtained successively are not inter-

dependent in general. Moreover, the projection using an EMP {u(1)T

,u(2)T

, ...,u(N)T } can be written as

y =< X ,U >=< vec(X ), vec(U) >= [vec(U)]T vec(X ). Therefore, an EMP is equivalent to a linear

projection of vec(X ) on a vector vec(U). Since U = u(1) ◦u(2) ◦ ... ◦u(N), the EMP is in effect a linear

projection with constraint on the projection vector such that it is the vectorized representation of a rank-one

tensor. Compared with a projection vector of size I× 1 in VVP specified by I parameters (I =
∏N

n=1 In

for an N th-order tensor), an EMP in TVP can be specified by
∑N

n=1 In parameters. Hence, to project a
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tensor of size
∏N

n=1 In to a vector of size P ×1, the TVP needs to estimate only P ·
∑N

n=1 In parameters,

while the VVP needs to estimate P ·
∏N

n=1 In parameters. The implication in pattern recognition problem

is that the TVP has fewer parameters to estimate while being more constrained on the solutions, and the

VVP has less constraint on the solutions sought while having more parameters to estimate. Summing

up, LDA is a special case of MLDA-TTP and MLDA-TVP when N = 1, with the scatter ratio as the

separation criterion. On the other hand, the MLDA-TTP is looking for interdependent EMPs while the

EMPs sought successively in the MLDA-TVP are not interdependent generally. Furthermore, for the same

projected vector size, the MLDA-TVP has fewer parameters to estimate while the projection to be solved

is more constrained, and LDA has more parameters to estimate while the projection is less constrained.
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