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Abstract— Phase balancing is of paramount importance for
power system operation. We consider a substation connected to
multiple buses, each with single phase loads, generation, and
energy storage. A representative of the substation operates the
system and aims to minimize the cost of all buses as well as
balancing loads among phases. We first consider ideal energy
storage with perfect charging and discharging efficiency, and
propose a distributed real-time algorithm taking into account
system uncertainty. The proposed algorithm does not require
any system statistics and can ensure a certain performance
guarantee. We further extend the algorithm to accommodate
non-ideal energy storage. The algorithm is evaluated through
numerical examples and compared with a greedy algorithm.

I. INTRODUCTION

In North America, many residential customers are con-

nected to power grids through single phase transmission

lines. Phase balancing, i.e., maintaining the balance of loads

among phases, is crucial for power grid operation [1]. This is

because phase imbalance can increase energy losses and the

risk of failures, and can also degrade system power quality.

With the spread of single phase renewable generators, such

as wind and solar, and large loads, such as electric vehicles,

phase imbalance issues could be aggravated and thus deserve

a careful study. For example, in [2], the impact of electric

vehicles on phase imbalance is investigated considering

different charging modes and different penetration levels.

Previous works on phase balancing have considered meth-

ods such as phase swapping (e.g., [3]) and feeder recon-

figuration (e.g., [4]). However, these approaches can be

ineffective or can incur extra costs on human resources,

maintenance expenses, and planned outage duration [3]. An

alternative method is to employ energy storage to mitigate

the imbalance among phases, which is the focus of this paper.

Energy storage has been used widely in power grids for

applications such as energy arbitrage, regulation, and load

following [5]. The control of energy storage is, however,

generally a challenging problem due to storage charac-

teristics and system uncertainty. There are many existing

works on storage control in power grids. For example, using

stochastic dynamic programming, the authors of [6] propose

a stationary optimal policy for power balancing, and the

authors of [7] investigate both optimal and suboptimal po-

lices for energy balancing. Nevertheless, the derivation of an
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optimal policy under dynamic programming generally relies

on system statistics and some specific form of the problem

structure, and therefore cannot be easily extended. There

are some other works employing Lyapunov optimization

[8] for storage control. For example, the authors of [9]

consider power balancing, the authors of [10] study demand

side management, and the authors of [11] investigate the

management of networked storage with a DC power flow

model. The algorithms there do not require system statistics,

and the main technical challenge is to show the analyti-

cal performance of the algorithm. Besides the above two

approaches, the authors of [12] consider stochastic model

predictive control. However, the algorithm performance can

only be evaluated through numerical examples.

In this paper, we study the problem of phase balancing

with energy storage in the presence of system uncertainty.

To the best of our knowledge, this is the first work that

employs energy storage for phase balancing in power grids.

In particular, we consider a substation connected to multiple

buses, each with single phase loads, generation, and energy

storage. Aiming at minimizing the cost of all buses as well

as phase imbalances, we propose a distributed real-time

algorithm, in which each bus can determine its own control

variables. The main contribution is summarized as follows.

• We formulate phase balancing as a stochastic opti-

mization problem by incorporating system uncertainty,

storage characteristics, and power network constraints.

• For ideal energy storage with perfect charging and

discharging efficiency, we provide a real-time algorithm

building on the Lyapunov optimization framework and

prove its analytical performance guarantee. Moreover,

we offer distributed implementation for the algorithm.

• We extend the algorithm to accommodate non-ideal en-

ergy storage with inefficient charging and discharging.

• We evaluate the proposed algorithm through numerical

examples and reveal several interesting insights.

Our paper is most related to [11], in which a distributed

real-time algorithm is also proposed for power grids with

energy storage. However, these two papers are different in

terms of the application, objective, communication topology,

and power network constraints. Therefore, the problem for-

mulation and the design of distributed implementation are

largely different. Moreover, imperfect storage charging and

discharging are not considered in [11], but they are addressed

in this paper.

The remainder of this paper is organized as follows. In

Section II, we describe the system model and formulate
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Fig. 1. System model.

the optimization problem. In Section III, we propose a

distributed real-time algorithm for ideal energy storage. In

Section IV, we extend the algorithm to accommodate non-

ideal energy storage with imperfect charging and discharg-

ing. Numerical results are presented in Section V, and we

conclude in Section VI.

II. SYSTEM MODEL AND PROBLEM STATEMENT

Consider a discrete-time model with time t ∈ {0, 1, 2, . . .}.

For simplicity of notation, throughout the paper we work

with energy units instead of power units. The system model

is depicted in Fig. 1. A substation is connected with N ≥ 2
buses, each with single phase loads and generation. For the

deployment of energy storage, we consider a general case

where it is optional for each bus to deploy storage. Denote

the set of buses that deploy storage by E ⊆ {1, 2, . . . , N}.

Below we first describe the components of each phase.

A. System Model of Each Phase

At the i-th bus, denote the amount of uncontrollable energy

flow during time slot t by ri,t. The uncontrollable flow

can represent renewable generation such as wind and solar,

base loads, or the difference between renewable generation

and base loads. Since the uncontrollable flow is generally

governed by nature or uncertain human behavior we assume

that ri,t is random, but it is confined within an interval

[ri,min, ri,max]. Throughout the paper we use a bold letter to

denote a vector that contains the elements of N buses. Here,

we define rt,[r1,t, . . . , rN,t] to represent the uncontrollable

energy flow vector during time slot t. The other vectors in

the following are defined similarly. Denote the amount of

the controllable energy flow at the i-th bus during time slot

t by li,t. The controllable flow can represent the output of

conventional generators, or the consumption of flexible loads.

We associate a cost function with the controllable flow and

denote the function by Ci(·).
The energy flow between the substation and the i-th bus

during time slot t is represented by fi,t. Due to the capacity

constraints of power lines, we assume that the energy flow

vector ft ∈ F , where the set F is non-empty, compact, and

convex. For example, F,{ft|fi,t ∈ [fi,min, fi,max], ∀i}.

Remark: The values of ri,t, li,t, and fi,t can be positive or

negative. We use the positive sign to indicate energy injection

to the i-th bus, and the negative sign to indicate energy

extraction from the i-th bus.

Assume that the i-th bus is equipped with an energy

storage unit. Denote its charging and discharging amounts

during time slot t by u+
i,t ∈ [0, ui,max] and u−

i,t ∈ [0, ui,max],
respectively, where ui,max is the maximum charging and

discharging amount. Denote the energy state of the i-th
storage at the beginning of time slot t by si,t, which evolves

as si,t+1 = si,t+u+
i,t−u−

i,t. To protect the storage device, the

energy state si,t is required to be within a preferred interval

[si,min, si,max]. The initial energy state si,0 ∈ [si,min, si,max].
For the i-th storage, we denote the charging efficiency by

η+i ∈ (0, 1] and the discharging efficiency by η−i ∈ (0, 1].
Due to the round-trip efficiency or other operating con-

straints, simultaneous charging and discharging is forbidden

in our model. If the i-th bus does not deploy storage, we

simply set the values of si,t, u
+
i,t, and u−

i,t to zero for all t.
The energy storage can additionally be used for arbi-

trage. Denote the electricity price at time slot t by pt ∈
[pmin, pmax], which is random over time. Then the cost asso-

ciated with energy arbitrage during time slot t is pt(
1
η
+

i

u+
i,t−

η−i u
−
i,t). Moreover, frequent charging and discharging can

shorten the lifetime of storage [13]. To model this effect, we

introduce a degradation cost function Di(·), with the negative

input indicating discharging and positive input indicating

charging.

B. Problem Statement

Since phase imbalance is harmful for power system oper-

ation, it is critical to balance the energy flows fi,t among

buses. To this end, we introduce a loss function F (·) to

characterize the deviation of fi,t from the average energy

flow during each time slot. In particular, at the i-th bus, F (·)
is a function of fi,t − f t, where f t,

1
N

∑N
j=1 fj,t.

We assume that the system is operated by a representative

of the substation, who aims to minimize the long-term

system cost, which includes the costs of all buses as well as

phase imbalances. Specifically, based on the model described

above, the system cost during time slot t is given by

wt =
∑

i∈E

[

pt(
1
η
+

i

u+
i,t − η−i u−

i,t) +Di(u
+
i,t) +Di(−u−

i,t)
]

+
∑N

i=1

[

Ci(li,t) + F (fi,t − f t)
]

.

Denote the random system state at time slot t by

qt,[rt, pt], which includes the uncontrollable flow of N
buses and the electricity price. Denote the control action

at time slot t by at,[lt,u
+
t ,u

−
t , ft], which contains the

controllable flow, the charging and discharging amounts, and

the energy flow between each bus and the substation. We

formulate the problem as the following stochastic program.

P1: min
{at}

lim sup
T→∞

1

T

T−1
∑

t=0

E[wt]

s.t. 0 ≤ u+
i,t, u

−
i,t ≤ ui,max, ∀i ∈ E , ∀t, (1)

u+
i,t · u

−
i,t = 0, ∀i ∈ E , ∀t, (2)

si,t+1 = si,t + u+
i,t − u−

i,t, ∀i ∈ E , ∀t, (3)

si,min ≤ si,t ≤ si,max, ∀i ∈ E , ∀t, (4)

u−
i,t = u+

i,t = 0, ∀i /∈ E , ∀t, (5)

ft ∈ F , ∀t, (6)



fi,t + ri,t + li,t + η−i u−
i,t −

1

η+i
u+
i,t = 0, ∀i, ∀t. (7)

The expectation on the objective is taken over the random-

ness of qt and the possibly random control action. Constraint

(7) requires energy balance at each bus during each time slot.

To keep mathematical exposition simple, we assume that

the cost functions Ci(·) and Di(·) are continuously differ-

entiable and convex. This assumption is not too restrictive

since many practical cost functions can be well approximated

by such functions. Denote the derivatives of Ci(·) and

Di(·) by C′
i(·) and D′

i(·), respectively. Since the variables

u+
i,t, u

−
i,t, and li,t are bounded based on the constraints of

P1, the cost functions and their derivatives are bounded in

the feasible set. For the cost function Ci(·), we denote its

range by [Ci,min, Ci,max] and its range of the derivative by

[C′
i,min, C

′
i,max] in the feasible set. The range of the cost

function Di(·) and that of its derivative are defined similarly.

In addition, we assume that the loss function F (·) is convex

and continuously differentiable.

We are interested in designing a distributed real-time

algorithm for solving P1 that does not require any system

statistics. This is motivated by privacy concerns of each bus,

the potential requirement of real-time operation, and the fact

that accurate statistical information is generally difficult to

obtain in reality. However, this is a challenging task due

to system uncertainty, the coupling of all buses through

the objective, the non-simultaneous charging and discharging

constraint (2), and the energy state constraint (4).

III. DISTRIBUTED REAL-TIME ALGORITHM FOR IDEAL

ENERGY STORAGE

In this section, we propose a distributed real-time algo-

rithm for ideal energy storage with η+i = η−i = 1, ∀i ∈ E .

We first propose a real-time algorithm and show its analytical

performance and then provide distributed implementation for

the algorithm. The case of non-ideal energy storage is studied

in Section IV.

A. Description and Analysis of Real-Time Algorithm

For ideal energy storage, without loss of optimality, we can

combine the variables u+
i,t and u−

i,t into one by introducing

a new variable ui,t,u+
i,t − u−

i,t, which can represent the net

charging and discharging amount. If ui,t > 0 it indicates

charging, and if ui,t < 0 it indicates discharging. Therefore,

the non-simultaneous charging and discharging constraint (2)

can be eliminated. The control action at time slot t is now

at,[lt,ut, ft], and the system cost can be rewritten as wt =
∑

i∈E

[

ptui,t +Di(ui,t)
]

+
∑N

i=1

[

Ci(li,t) + F (fi,t − f t)
]

.

To deal with the energy state constraint, we replace

constraints (3) and (4) with a new time-averaged constraint,

which only requires the net charging and discharging amount

to be zero on average, i.e.,

lim
T→∞

1

T

T−1
∑

t=0

E[ui,t] = 0, ∀i ∈ E . (8)

It is not difficult to show that (3) and (4) imply (8). In other

words, any ui,t that satisfies (3) and (4) also satisfies (8). The

Algorithm 1 Real-time algorithm for ideal storage.

At time slot t, the substation executes the following steps

sequentially:

1: observe the system state qt and the energy state si,t;
2: solve P3 and obtain a solution a∗t ; and

3: update si,t by (3) using u∗
i,t.

reason for this relaxation is to employ Lyapunov optimization

techniques [8] for the real-time algorithm design. Later we

will prove that our proposed algorithm can ensure that (3)

and (4) hold.

With constraint (8), we can form a relaxed stochastic

optimization problem as follows.

P2: min
{at}

lim sup
T→∞

1

T

T−1
∑

t=0

E[wt]

s.t. (5), (6), (7), (8)

− ui,max ≤ ui,t ≤ ui,max, ∀i ∈ E , ∀t. (9)

At time slot t, for i ∈ E , define a Lyapunov function

L(si,t),
1
2 (si,t − βi)

2, where βi is a perturbation parameter

introduced to ensure the boundedness of the energy state and

is defined as

βi,si,min + ui,max + Vi(pmax +D′
i,max + C′

i,max). (10)

The parameter Vi belongs to an interval (0, Vi,max] where

Vi,max,
si,max−si,min−2ui,max

pmax−pmin+D′

i,max
−D′

i,min
+C′

i,max
−C′

i,min

. To ensure

the positivity of Vi,max, we need si,max−si,min−2ui,max >
0. This is generally true in real-time applications, in which

the length of each time interval is small.

We define the one-slot conditional Lyapunov drift

as ∆(st),E
[
∑

i∈E
L(si,t+1)−L(si,t)

Vi
|st

]

. In the following

lemma, we show that this drift function is upper bounded.

Lemma 1: For all possible decisions and all possible val-

ues of si,t, i ∈ E , in each time slot t, the drift function is

upper bounded as follows

∆(st) ≤
∑

i∈E

u2
i,max

2Vi

+
si,t − βi

Vi

E [ui,t|st] .

Proof: See Appendix VI-A.

Define a drift-plus-cost function at time slot t by ∆(st)+
E[wt|st]. We propose a real-time algorithm that intends to

minimize this function. The idea is to minimize the current

system cost and also to keep the energy state bounded in

an intelligent way. Instead of using ∆(st) directly in the

objective, we employ its upper bound in Lemma 1 and

formulate the optimization problem at time slot t as follows.

P3: min
at

wt +
∑

i∈E

(si,t − βi)ui,t

Vi

s.t. (5), (6), (7), (9).

The overall algorithm is summarized in Algorithm 1, in

which we use the superscript notation ∗ to indicate the

solution to P3.

Denote the optimal objective value of P1 by wopt. Under

Algorithm 1, denote the objective value of P1 by w∗ and



the system cost at time slot t by w∗
t . The performance of

Algorithm 1 is shown in the following theorem.

Theorem 1: Assume that the system state qt is i.i.d. over

time, and η+i = η−i = 1, ∀i ∈ E . Under Algorithm 1 the

following statements hold:

1) {a∗t } is feasible for P1.

2) w∗ − wopt ≤
∑

i∈E

u2
i,max

2Vi
.

3) 1
T

∑T−1
t=0 E[w∗

t ]− wopt ≤
∑

i∈E

u2
i,max

2Vi
+

E[L(si,0)]
TVi

.
Proof: See Appendix VI-B.

Remarks:

• Theorem 1.1 shows that although the problem P1 is

relaxed to obtain the real-time problem P3, the bound-

edness of the energy state is ensured by Algorithm 1.

• For Theorem 1.2, first, if E is empty, i.e., no bus deploys

storage, then Algorithm 1 achieves the optimal objective

value. In fact, in this case, Algorithm 1 reduces to

a greedy algorithm that only minimizes the current

system cost at each time. Second, if E is non-empty,

to minimize the gap to the optimal objective value,

we should set Vi = Vi,max. Asymptotically, if the

energy capacity si,max is large and thus Vi,max is large,

Algorithm 1 achieves the optimal objective value.

• In Theorem 1.3, we characterize the performance of

Algorithm 1 under a finite time horizon. An extra gap is

incurred due to the initialization. However, if the time

horizon T is large, this gap is negligible.

• The i.i.d. assumption of the system state qt can be

relaxed to accommodate qt that follows a finite state

irreducible and aperiodic Markov chain. Using a multi-

slot drift technique [8], we can show similar conclusions

which are omitted here.

B. Distributed Implementation of Real-Time Algorithm

Due to the privacy concerns or the difficulty of collecting

information from all buses, in Algorithm 1, the substation

may not be able to solve P3 in a centralized way. In this

subsection, we provide a distributed algorithm for solving

P3. For ease of notation, we suppress the time index t.
The provided distributed algorithm is based on the two-

block ADMM [14]. To facilitate the algorithm development,

we rewrite P3 as follows.

min
a

ι(f ∈ F) +

N
∑

i=1

[

Hi(li, ui) + F (fi − f)
]

s.t. fi + ri + li − ui = 0, ∀i (11)

where ι(·) is the indicator function that equals 0 (resp. +∞)

when the enclosed event is true (resp. false), and

Hi(li, ui),











(si−βi)ui

Vi
+ pui +Di(ui) + Ci(li)

+ι(−ui,max ≤ ui ≤ ui,max), if i ∈ E

Ci(li) + ι(ui = 0), if i /∈ E .

We associate a Lagrange multiplier λi with equality (11).

By treating the variables (l,u) as one block and the

variable f as the other, we express the updates at the (k+1)-
th iteration as follows based on the ADMM algorithm.

Substation

Bus i
Bus 1 Bus N

(update lk+1

i
, uk+1

i
, and λk+1

i
)

(update f
k+1)

m
k

i
fk

i

· · · · · ·

Fig. 2. Distributed implementation for solving P3.

(li, ui)
k+1
← argmin

li,ui

[

Hi(li, ui) +
ρ

2
(fk

i + ri + li − ui +
λk
i

ρ
)2
]

f
k+1
← argmin

f∈F

N
∑

i=1

[

F (fi − f) +
ρ

2
(fi + ri + l

k
i − u

k
i +

λk
i

ρ
)2
]

λ
k+1

i ← λ
k
i + ρ(fk+1

i + ri + l
k+1

i − u
k+1

i )

where ρ > 0 is a parameter. From the above updates, each

bus updates li, ui, and λi, and the substation updates f .

To accomplish the updates, at the (k + 1)-th iteration, the

substation sends fk
i to each bus, and each bus provides

mk
i,ri + lki − uk

i +
λk
i

ρ
to the substation. The schematic

representation of the distributed implementation is given in

Fig. 2.

The convergence behavior of the distributed algorithm is

summarized in the following theorem. The proof follows

Theorem 2 in [15] and thus is omitted.

Theorem 2: Assume that the functions Di(·), Ci(·), and

F (·) are closed, proper, and convex. Then the sequence

{lk,uk, fk, λk} converges to an optimal primal-dual solution

of P3 with the worst case convergence rate O(1/k).
Remark: With the proposed distributed algorithm, each

bus only needs to provide mk
i to the substation without re-

vealing the cost functions or the other parameters. Therefore,

the communication requirement is limited and the privacy of

each bus is well protected.

IV. EXTENSION TO NON-IDEAL ENERGY STORAGE

In this section, we discuss the algorithm design for non-

ideal storage with imperfect charging and discharging.

The framework of the algorithm design follows that of

ideal storage. However, due to the charging and discharging

inefficiency, the variables u+
i,t and u−

i,t cannot be combined

into one as we did in Section III, and therefore, the non-

simultaneous charging and discharging constraint (2) cannot

be eliminated. The strategy we take is to first ignore con-

straint (2) and then adjust the solution to fit (2). Specifically,

the real-time problem at time slot t is designed as follows.

P3’: min
at

wt +
∑

i∈E

(si,t − βi)

Vi

(u+
i,t − u−

i,t)

s.t. (1), (5), (6), (7)

where we have defined the perturbation parameter

βi,si,min + ui,max + Vi(
pmax

η
+

i

+ 1
η
+

i

C′
i,max + D′

i,max).

The parameter Vi lies in the interval (0, Vi,max], where

Vi,max,
si,max−si,min−2ui,max

pmax

η
+
i

−pminη
−

i
+D′

i,max
−D′

i,min
+ 1

η
+
i

C′

i,max
−η

−

i
C′

i,min

.



Algorithm 2 Real-time algorithm for non-ideal storage.

At time slot t, the substation executes the following steps

sequentially:

1: observe the system state qt and the energy state si,t;
2: solve P3’ and obtain a solution ât,[̂lt, û

+
t , û

−
t , f̂t];

3: generate a new solution a∗t where u+∗
i,t = max{û+

i,t −

û−
i,t, 0}, u

−∗
i,t = max{û−

i,t− û+
i,t, 0}, l

∗
i,t = l̂i,t+η−i û

−
i,t−

1
η
+

i

û+
i,t − η−i u

−∗
i,t + 1

η
+

i

u+∗
i,t , and f∗t = f̂t; and

4: update si,t by (3) using u+∗
i,t and u−∗

i,t .

TABLE I

SETUP OF PARAMETERS AND FUNCTIONS IN EXPERIMENT

Par. Setup Par. (Fun.) Setup

[ri,min, ri,max] [−8, 8] η+i , η−i 1
[fi,min, fi,max] [−5, 5] Ci(x) 1.5x2

[si,min, si,max] [2, 10] Di(x) 0.2x2

[pmin, pmax] [7, 12] F (x) 10x2

ui,max 1

The overall algorithm is summarized in Algorithm 2,

where we use the superscript notations ˆ and ∗ to indicate

the intermediate solution derived from P3’ and the final so-

lution, respectively. To ensure that the final solution satisfies

constraint (2), in Step 3, we adjust the intermediate solutions

û+
i,t, û−

i,t, and l̂i,t derived from P3’, so that simultaneous

charging and discharging cannot happen. Note that since the

non-convex constraint (2) is ignored in P3’, P3’ is a convex

problem and can be solved by a similar distributed algorithm

as that in Section III-B.

Under some conditions, constraint (2) may automatically

hold by solving P3’, and thus the adjustment in Step 3 is

unnecessary, e.g., when the electricity price pt is positive

and the cost function of the controllable flow Ci(·) is

increasing. In such a case, Theorem 1 can be easily extended

to characterize the performance of Algorithm 2. However,

in general, the solution of P3’ may not meet constraint (2)

and thus Step 3 in Algorithm 2 may be necessary. The

performance analysis of Algorithm 2 in the general case is

more complicated and is left for future work.

V. NUMERICAL RESULTS

In this section, we evaluate the performance of the pro-

posed algorithm using an idealized numerical setup.

In simulation, all buses are equipped with ideal energy

storage. The setup of the system parameters and functions

are shown in Table I. The random system state [rt, pt] is

assumed to be i.i.d. over time. The uncontrollable energy

flow ri,t follows the Gaussian distribution N (0, 42) and

is truncated within [ri,min, ri,max]. The electricity price pt
follows the uniform distribution. At each time the control

action at is generated by Algorithm 1, and the algorithm is

run for T = 500 time slots. For comparison, we consider a

greedy algorithm, which minimizes the current system cost

subject to all constraints of P1 at each time slot.

In Figs. 3 and 4, the uncontrollable energy flows are

modeled as independent among phases. Although the three-

phase transmission is dominant in practice, we are interested
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Fig. 3. System cost vs. number of phases.
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Fig. 5. System cost vs. correlation coefficient of uncontrollable flows.

in finding how the number of phases affects the algorithm

performance. In Fig. 3, we increase the number of phases

N from 2 to 10. We see that the system cost of both algo-

rithms increases linearly with N . In addition, the proposed

algorithm leads to a smaller slope, which indicates that it

is more preferable than the greedy algorithm especially with

more phases. For N = 2, we sample the energy flow between

each bus and the substation every 10 time slots. The sampled

energy flows and the corresponding average flow are shown

in Fig. 4 for the first 200 time slots. For the energy flow of

each bus, the average percentage of the deviation from the

average flow is around 20%. This value can be decreased by

increasing the coefficient of the loss function at the expense

of a higher system cost.

In Fig. 5, for N = 2, we examine the effect of the correla-

tion of the uncontrollable flows on the system performance.

Interestingly, for both algorithms, the system cost decreases

with the correlation coefficient. In other words, a lower

system cost is incurred if the uncontrollable flows of two

buses are more positively correlated, and vice versa, which

confirms our intuition. Moreover, the benefit of applying the

proposed algorithm increases as the uncontrollable flows are

more negatively correlated.

VI. CONCLUSION AND FUTURE WORK

We have investigated the problem of phase balancing with

energy storage. We have proposed a distributed real-time

algorithm for ideal energy storage and also extended the al-

gorithm to accommodate non-ideal energy storage. For future

work, we are interested in incorporating system statistics into

the algorithm design to further improve performance, and

also combing energy storage with traditional methods such

as feeder reconfiguration for phase balancing.



APPENDIX

A. Proof of Lemma 1

Based on the definition of L(si,t) and the update of si,t,

L(si,t+1)− L(si,t) =
1

2

[

(si,t+1 − βi)
2 − (si,t − βi)

2
]

≤ (si,t − βi)ui,t +
1

2
u2
i,max.

Using the above upper bound for all i ∈ E and then taking

the conditional expectation give the final upper bound.

B. Proof of Theorem 1

1) Since the real-time problem P3 includes all constraints

of P1 but the energy state constraint, the key of the feasibility

proof is to show that the energy state si,t is bounded within

[si,min, si,max]. We first prove the following lemma which

gives a sufficient condition for charging or discharging.

Lemma 2: Under Algorithm 1, for i ∈ E ,

1) if si,t < βi − Vi(pmax +D′
i,max +C′

i,max), then u∗
i,t =

ui,max;

2) if si,t > βi − Vi(pmin +D′
i,min + C′

i,min), then u∗
i,t =

−ui,max.

Proof: For simplicity of notation, we drop the time

index t in P3. Using constraint (7) we replace lj with

uj−fj−rj in the objective of P3. Next we solve P3 through

the partitioning method by first fixing the optimization vari-

ables f and uj , j 6= i, and then minimizing over ui. The

optimization problem with respect to ui is as follows.

min
ui

pui +Di(ui) + Ci(ui − fi − ri) +
(si − βi)ui

Vi

, s.t.(9).

The derivative of the objective above with respect to ui is
∂(·)
∂ui

= p+D′
i(ui)+C′

i(ui−fi−ri)+
(si−βi)

Vi
. Therefore, if si

is upper bounded as shown in Lemma 2.1), we have
∂(·)
∂ui

< 0
and thus u∗

i,t = ui,max. Or, if si is lower bounded as shown

in Lemma 2.2), we have
∂(·)
∂ui

> 0 and thus u∗
i,t = −ui,max.

The boundedness of the energy state can be shown by

mathematical induction using Lemma 2 and the definition of

βi. We omit the proof here due to limited space.

2) We prove Theorem 1.2 and 1.3 together. Denote w̃ as

the optimal value of P2. In the following lemma, we show

the existence of a special algorithm for P2. The proof follows

Theorem 4.5 in [8] and is omitted for brevity.

Lemma 3: For P2, there exists a stationary and random-

ized solution ast that only depends on the system state qt,

and at the same time satisfies the following conditions:

E[ws
t ] ≤ w̃, ∀t, E[us

i,t] = 0, ∀i ∈ E , t,
where the expectations are taken over the randomness of the

system state and the possible randomness of the actions.

Using Lemmas 1 and 3, the drift-plus-cost function under

Algorithm 1 can be upper bounded as follows.

∆(st) + E[w∗
t |st]

≤ E[ws
t |st] +

∑

i∈E

[u2
i,max

2Vi

+
si,t − βi

Vi

E
[

us
i,t|st

]

]

(12)

≤ w̃ +
∑

i∈E

u2
i,max

2Vi

(13)

≤ wopt +
∑

i∈E

u2
i,max

2Vi

(14)

where (12) is derived based on Lemma 1 and the fact that

P3 minimizes the upper bound of the drift-plus-cost function,

(13) is derived based on Lemma 3 and the fact that the action

ast is independent of st, and the inequality in (14) holds since

P2 is a relaxed problem of P1.

Taking expectations over st on both sides of (14) and

summing over t ∈ {0, · · · , T − 1} yields
∑

i∈E

E

[

L(si,T )− L(si,0)

Vi

]

+
T−1
∑

t=0

E[w∗
t ] ≤ (wopt +

∑

i∈E

u2
i,max

2Vi

)T.

Note that L(si,T ) is non-negative. Divide both sides of the

above inequality by T . After some arrangement, there is

1

T

T−1
∑

t=0

E[w∗
t ]− wopt ≤

∑

i∈E

[u2
i,max

2Vi

+
E[L(si,0)]

TVi

]

, (15)

which is the conclusion in Theorem 1.3. Taking lim sup on

both sides of (15) gives Theorem 1.2.
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