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ABSTRACT

We present a new method for spectrum allocation in a heteroge-
neous cellular network with multiple tiers of randomly placed
base stations and random user session arrivals. Different from
previous works, inelastic network traffic is considered, so as to
accommodate application sessions with fixed data rate require-
ments. We first quantify the average downlink sum throughput
of the network in terms of a given spectrum allocation vector.
We then derive concave upper and lower bounds to the through-
put to allow efficient approximate solutions to optimize spec-
trum allocation. We show that the proposed approach has a
worst case optimization performance gap of 12.6% and further
demonstrate via simulation that its actual performance is often
near optimal.

1. INTRODUCTION

Driven by recent advances in sophisticated mobile phones and
devices, multimedia applications have proliferated in mobile
networks. A defining characteristic of multimedia traffic is in-
elasticity. The required network throughput for a multimedia
session is defined in discrete levels, and the minimum through-
put must be satisfied, or the session is rejected or dropped.
The stringent requirements of inelastic traffic brings substan-
tial challenges to resource management in wireless networks.

Further complicating the resource management problem,
the multi-tier cellular structure, with microcells, femtocells,
and other small cells, is expected to be widely adopted to im-
prove throughput and coverage. The radio spectrum licensed
by a network operator must be shared by base stations (BSs) of
widely different power and coverage areas. Furthermore, small
cells are usually deployed randomly, creating complicated cell
shapes and interference patterns. In order to avoid cross-tier
interference, and the prohibitive complexity in tracking and
provisioning for such interference, it is commonly advocated to
allocate non-overlapping portions of the spectrum to different
tiers of BSs. Early works [1, 2] consider a fixed set of BSs and
User Equipments (UEs) without accounting for their random
spatial patterns.

More recent works on the spectrum allocation problem uti-
lize a stochastic geometric approach [3, 4, 5, 6]. Limited to two
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tiers of BSs, optimal spectrum allocation has been derived in
[7, 8]. Joint spectrum allocation and user association have been
studied in [9] for two tiers of BSs, and in [10] for general mul-
tiple tiers of BSs. However, all of these works assume that all
UEs are accepted by the system, so that they cannot accommo-
date the aforementioned scenario where inelastic traffic maybe
rejected.

In this work, we are interested in studying the optimization
of spectrum allocation in a multi-tier cellular network with in-
elastic traffic, in order to maximize the average downlink sum
throughput. Different from previous works, we assume that if
the inelastic traffic load has reached the allowed capacity at a
BS, no new UEs will be accepted. This user rejection problem
in multi-cell networks has been well studied in the existing lit-
erature, without considering the randomness in cell number or
location, e.g., [11, 12]. Instead, we model the random spatial
patterns of BSs and UEs as Poisson point processes. Our work
also builds on recent downlink performance analysis based on
stochastic geometry, e.g., [13, 14] for the single-tier case and
[15, 16] for the multi-tier case. However, none of them con-
sider spectrum allocation among BSs. To our best knowledge,
this is the first work to study multi-tier spectrum allocation with
inelastic traffic.

The hard limit of inelasticity imposes substantial challenges
to the analysis and optimization of system performance. Fur-
thermore, the standard stochastic geometric approaches often
lead to non-closed form expressions that require difficult nu-
merical computation. In this work, we first quantify the average
sum throughput in terms of a given spectrum allocation, taking
into consideration the probability of UE rejection. Then, we
develop concave upper and lower bounds to provide efficient
approximate solutions to the throughput optimization problem.
We further show that the proposed approach has a worst case
optimization performance gap within 12.6% and demonstrate
via simulation that its actual performance is often near optimal.

2. SYSTEM MODEL AND OBJECTIVE

2.1. Multi-tier Cellular Network

We consider a heterogeneous cellular network with random-
ly spatially distributed K tiers of BSs. As in conventional s-
tochastic geometric modeling of multi-tier cellular networks
[9, 15, 17, 18, 19], each tier of BSs is assumed to indepen-
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Fig. 1. System model, with N1 = 4.

dently form a homogeneous Poisson point process (PPP) in
two-dimensional Euclidean space R2. Let Φk denote the PP-
P corresponding to tier-k BSs, with intensity λk units/m2. The
locations of BSs do not change over time.

UEs are located randomly in the same two-dimensional s-
pace as the BSs, as well as in time. The arrival of UEs are mod-
eled as a homogeneous PPP Ψ with intensity µ units/(m2·min)
in R3. If a UE is admitted by the system, it will stay in the sys-
tem for a duration that is exponentially distributed with mean
1
ν minutes. We assume that a UE remains connected with the
same BS when it is in an active session. When a newly arriving
UE is rejected (see details in Section 2.3), it leaves the system
immediately.

2.2. Power and Pathloss

We define the tiers of BSs by their transmission powers. Let
Pk be the transmission power of tier-k BSs, which is a given
parameter. If Pt(x) is the transmission power from a BS at
location x and Pr(y) is the received power at y, we assume
Pr(y) =

Pt(x)hx,y

β|x−y|γ , where β|x − y|γ is the propagation loss
function with predetermined constants β and γ, and hx,y is the
fast fading term. Corresponding to common Rayleigh fading
with power normalization, hx,y is independently exponentially
distributed with unit mean.

We assume each BS is connected to the core network by
separate high-capacity wired or wireless links that have no in-
fluence on our performance analysis. In addition, because we
focus on downlink analysis, we assume that the downlink and
uplink of the system are operated in different spectrum, so that
the uplink interference and capacity have no influence on the
downlink analysis.

2.3. Spectrum Allocation and UE Rejection

Different tiers of BSs are allocated separated spectrum. Given
the total downlink spectrum bandwidth W , the network opera-

tor allocates ηkW to each tier-k BS, where ηk are the spectrum
allocation factors and

∑K
k=1 ηk = 1. Let η = (η1, η2, . . . , ηK).

Note that BSs in the same tier are operated on the same spec-
trum and will interfere at the UEs.

Each UE requests a connection with the BS that provides
the maximum received power.1 Then, the resultant cell splitting
forms a generalized Dirichlet tessellation, or weighted Poisson
Voronoi [20]. We assume that each admitted UE requires a
downlink frequency bandwidth of 1 (i.e., unit frequency band-
width). Therefore, a tier-k BS can accommodate at most Nk =
ηkW UEs. If there are already Nk UEs connecting to it, new
UE arrivals are rejected. Otherwise, a newly arriving UE is ran-
domly allocated an available unit frequency bandwidth. Figure
1 illustrates the system model with an example of UE rejection.
We assume that Nk is a large number2.

2.4. Coverage Probability and UE Data Rate

Let T denote the minimum required Signal-to-Interference Ra-
tio (SIR) of UEs. The coverage probability of a UE, Pcover,
is defined as the probability that its SIR is no less than T [3].
The thermal noise is assumed to be negligible compared with
interference. Then, a UE’s data rate is log(1 + T ) if the SIR
is no less than T , and its data rate is 0 if the SIR is less than
T (i.e., outage occurs). Thus, the overall data rate of the UE is
log(1 + T )Pcover.

In this work, we aim to optimize the spectrum allocation
factors η, in order to maximize the the long-term average down-
link sum throughput over all UEs, which equals the expected
downlink sum rate at any random snapshot.

3. DOWNLINK THROUGHPUT DERIVATION

3.1. Interference Analysis and Coverage Probability

Consider a reference UE, termed the typical UE, communicat-
ing with its BS, termed the typical BS. The average UE cover-
age probability in the system is the same as the coverage proba-
bility of the typical UE [3]. Furthermore, due to the stationarity
of UEs and BSs, we can re-define the coordinates so that the
typical UE is located at 0.

First, we derive the coverage probability given that the typi-
cal UE is at distance d from its associated tier-k BS. In this case,
the overall interference, Ik(d), to the typical UE is the sum in-
terference from all other tier-k BSs that are actively using the
same unit frequency band as the typical UE.

Let Φ′
k be the Palm point process corresponding to all tier-

k BSs other than the typical BS using the same unit frequen-
cy band as the typical UE, given that the typical BS is located

1This model can be easily extended to accommodate the flexible user asso-
ciation scheme [10, 17, 18, 19], in which each tier of BSs is assigned with an
association bias value, and a UE is associated with a BS providing the largest
biased received power.

2Even though we assume that Nk is large, it does not imply that all UEs
will be admitted, as the traffic load (average UE per BS) may increase in the
same scale of Nk .



at distance d from the typical UE. By standard Palm theory,
Φ′

k is a PPP with intensity 0 in B(0, d) and intensity pkλk in
R2\B(0, d), where B(0, d) denotes the disk region centered at
0 with radius d, and pk is the probability that the unit frequency
band of the typical UE is in use at a non-typical tier-k BS.

Then, Ik(d) =
∑

x∈Φ′
k

Pkhx,0

β|x|γ , and its distribution is de-
rived through its Laplace transform as follows:

LIk(d, s) = E

exp
−

∑
x∈Φ′

k

sPkhx,0

β|x|γ


=exp

(
−2πpkλk

∫ ∞

d

sPkr
β

sPk

β + rγ
dr

)
, (1)

where the second equality is obtained from the Laplace func-
tional of PPP Φ′

k.
Let Pcover,k(d) denote the conditional coverage probability

of the typical UE given k and d. We have

Pcover,k(d) =P

[
PkhxB ,0

βdγ
≥ TIk(d)

]
= LIk(d, s)|s=Tβdγ

Pk

,

=exp

(
−πpkλkT

2
γ d2

∫ ∞

( 1
T )

2
γ

1

1 + t
γ
2

dt

)
,

where xB is the coordinate of the typical BS and |xB | = d.
Furthermore, the probability density function of the dis-

tance between the typical UE and its associated tier-k BS is
known to be gk(d) = 2πλk

Ak
d exp

(
−πd2 λk

Ak

)
[17], where Ak =

λk(Pk)
2
γ∑K

j=1 λj(Pj)
2
γ

represents the proportion of area that tier-k cells

cover. Then, we can derive the coverage probability Pcover,k of
the typical UE connected to a tier-k BS:

Pcover,k =

∫ ∞

0

gk(d)Pcover,k(d)dd =
1

1 + CAkpk
, (2)

where C = (T )
2
γ
∫∞
( 1

T )
2
γ

1
1+tγ/2 dt is a system-level constant

only related to γ and T . The details are omitted for brevity.

3.2. Normalized Downlink Throughput

Let Mk denote the number of UEs in a tier-k cell. Its mean is
denoted by E(Mk). Then the average throughput of a tier-k BS
is3

Rk =E(Mk) log(1 + T )Pcover,k, (3)

and the average downlink sum throughput per unit area (nor-
malized throughput) is

R =

K∑
k=1

λkRk =

K∑
k=1

λkE(Mk)
log(1 + T )

1 + CAkpk
. (4)

3We have used an approximation that the coverage event and Mk are inde-
pendent for mathematical tractability. In reality, their dependency is negligible,
which has been verified by simulations in [18, 14]. In Section 5, we also show
via simulation that the throughput maximization results based on this approxi-
mation is close to those without it.

Next, we aim to derive pk and E(Mk), which are required to
compute R.

First, the cell size of a tier-k cell, Sk, is known to have the
following probability density function [21, 18]:

fSk
(c) =

3.53.5

Γ(3.5)

λk

Ak

(
λk

Ak
c

)2.5

e
−3.5c

λk
Ak . (5)

Given a tier-k cell with Sk = c, and with Nk bandwidth,
the cell is equivalent to an M/M/Nk/Nk queueing system with
user arrival rate µc and departure rate ν. In this case, the prob-
ability that there are n UEs in the cell is P (Mk = n|Sk = c) =
(µc

ν )n

n! /
∑Nk

i=0
(µc

ν )i

i! . Then, the probability that a unit bandwidth
is in use is

pk(c) =

Nk∑
n=0

n

Nk

(µc
ν )n

n!∑Nk

i=0
(µc

ν )i

i!

=

{
µc
νNk

if µc
νNk

< 1,

1 if µc
νNk

≥ 1.
(6)

where the second equality holds since Nk is a large number.
Hence, pk can be computed as

pk = pk(c)fSk
(c)dc

=
1

αk
− 1

αk

3.53.5

Γ(3.5)

∫ ∞

1

(y − 1)α4.5
k y2.5e−3.5αkydy, (7)

where αk = λkνNk

Akµ
. For presentation convenience, we define

f(αk) =
3.53.5

Γ(3.5)

∫∞
1

(y − 1)α4.5
k y2.5e−3.5αkydy.

Finally, similar manipulation leads to

E(Mk) =
Akµ

λkν
− Akµ

λkν
f(αk). (8)

Substituting (7) and (8) into (4), we can compute the normal-
ized system throughput.

4. BOUNDING FOR SPECTRUM ALLOCATION

4.1. Optimization Problem Formulation

We aim to maximize R with respect to η. As there is a one-to-
one mapping between η and α = (α1, α2, . . . , αK), we instead
study the optimization over α for analytical convenience. This
is formally stated as optimization problem P:

maximize
α

R(α) =

K∑
k=1

Ak(1− f(αk))

1 +AkC
1
αk

(1− f(αk))
, (9)

subject to
K∑

k=1

αkAkµ

λkν
= W, αk ≥ 1, ∀k. (10)

Note that 1/αk represents the average traffic load per tier-k u-
nit frequency band. Therefore, we consider the constraint that
αk ≥ 1 in (10). log(1 + T ) and µ/ν are omitted in (9) for
presentation convenience.

Problem P is in non-closed form and is non-convex. Thus it
cannot be solved using a standard method. Instead, we propose
an efficient solution through bounding f(α) and R(α).



4.2. Bounding the Optimization Problem

As stated in the following lemma, we are able to derive closed
form upper and lower bounds of f(α). The proof is omitted
due to space limitation.

Lemma 1 flb(α) < f(α) < fub(α) on [1,∞), where flb(α) =
3.54

3! e−3.5α ·
[

α2

3.52 + 4α
3.53 + 6

3.54

]
and fub(α) = 3.55

4! e−3.5α ·[
α3

3.52 + 6α2

3.53 + 18α
3.54 + 24

3.55

]
.

As a consequence, we can define the upper and lower
bounds of R(α) as Rub(α) =

∑K
k=1

Ak(1−flb(αk))

1+AkC
1

αk
(1−flb(αk))

and

Rlb(α) =
∑K

k=1
Ak(1−fub(αk))

1+AkC
1

αk
(1−fub(αk))

respectively. Thus, in-

stead of solving the original problem P directly, we propose to
solve the following two problems separately:

P1 maximize
α

Rub(α) subject to (10),

P2 maximize
α

Rlb(α) subject to (10).

Note that both Rub(α) and Rub(α) are concave functions,
and (10) is linear. Therefore, P1 and P2 can be efficiently
solved by standard convex optimization methods.

4.3. Performance Bound Analysis

Let α∗, α̂∗, and α̃∗ denote the optimal solution to problems P,
P1, and P2 respectively. We quantify ∆1 = |Rub(α̂

∗)−R(α∗)|
R(α∗)

and ∆2 = |Rlb(α̃
∗)−R(α∗)|

R(α∗)
as the relative performance gap cor-

responding to α̂∗ and α̃∗ respectively.
Let ∆ = Rub(α̂

∗)−Rlb(α̃
∗)

R(α∗)
. Clearly, ∆ ≥ max(∆1,∆2).

Then, we can bound the worst case performance gap of the pro-
posed solution as follows:

∆ =
Rub(α̂

∗)−Rlb(α̃
∗)

R(α∗)
≤ Rub(α̂

∗)−Rlb(α̂
∗)

Rlb(α̂
∗)

≤max
k


Ak(1−flb(α̂

∗
k))

1+AkC
1

α̂∗
k
(1−flb(α̂∗

k))
− Ak(1−fub(α̂

∗
k))

1+AkC
1

α̂∗
k
(1−fub(α̂∗

k))

Ak(1−fub(α̂∗
k))

1+AkC
1

α̂∗
k
(1−fub(α̂∗

k))


≤ max

α∈[1,∞)

fub(α)− flb(α)

1− fub(α)
= 12.6%. (11)

5. NUMERICAL STUDY

In addition to the above performance bound, we further evaluate
the proposed solution via computer simulation. We first obtain
optimal solutions to P1 and P2 as η̂∗ and η̃∗, respectively. We
further obtain η∗ from exhaustive search. We then apply these
spectrum allocation factors to a simulated network and compute
the resultant throughput.

In Figs. 2 and 3, the following network parameters are used:
K = 3; (λ1, λ2, λ3) = (1, 5, 10) units/km2; (P1, P2, P3) =

400 500 600 700 800 900 1000
350

400

450

500

550

600

650

700

µ (unit/m2
·min)

N
o
rm

al
iz

ed
th

ro
u
g
h
p
u
t

(b
it
s/

s·
H

z·
k
m

2
)

Upper bound

Lower bound

Analytical Result

Simulation Result

Fig. 2. Optimal normalized throughput under different µ.
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Fig. 3. Approximations of η∗ under different µ.

(50, 40, 30) dBm; ν = 1 units/min; W = 400 units; γ = 4;
and T = 1. Note that we choose the UE density (in space-time)
to satisfy µ ≤ 1011.4 units/m2·min such that the optimization
problem is feasible. In each round of simulation, UEs and B-
Ss are generated on a 10 km × 10 km square, and the UEs in
the central 5 km × 5 km square are selected for performance
evaluation in order to remove the edge effect. Each data point
is averaged over 100 rounds of simulation.

Fig. 2 shows the normalized throughput bounds obtained
from η̂∗ (upper bound) and η̃∗ (lower bound), respectively. We
also show the throughput under η∗ for reference. Our numeri-
cal results demonstrate that the bounding approximations pro-
vide nearly optimal throughput for a wide range of µ. Fig. 3
further shows η̂∗ and η̃∗ versus µ. We observe that both of
them closely match η∗ for all µ. These figures demonstrate that
the proposed solution often performs much closer to optimality
than the analytical bound derived in Section 4.3.

6. CONCLUSION

A new spectrum allocation method is presented for multi-tier
wireless networks with inelastic traffic, with an aim to max-
imize the downlink sum throughput. The effect of spectrum
allocation is derived through a stochastic geometric approach,
with consideration for user rejection when a BS is at full capac-
ity. The proposed concave upper and lower bounds are shown,
both analytically and by simulation, to allow accurate approxi-
mation to the optimal solution.
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