
JOINT OFFLOADING DECISION AND RESOURCE ALLOCATION FOR MOBILE CLOUD
WITH COMPUTING ACCESS POINT

Meng-Hsi Chen⋆ Min Dong† Ben Liang⋆

⋆ Dept. of Electrical and Computer Engineering, University of Toronto, Canada
† Dept. of Electrical, Computer and Software Engineering, University of Ontario Institute of Technology, Canada

ABSTRACT

We consider a mobile cloud computing system consisting of multi-

ple users, one computing access point (CAP), and one remote cloud

server. The CAP can either process the received tasks from mobile

users or offload them to the cloud. We aim to jointly optimize the

offloading decisions of all users and the CAP, together with commu-

nication and processing resource allocation, to minimize the over-

all cost of energy, computation, and the maximum delay among all

users. It is shown that the problem can be formulated as a non-

convex quadratically constrained quadratic program, which is NP-

hard in general. We further propose an efficient solution to this prob-

lem by semidefinite relaxation and a novel randomization mapping

method. Our simulation results show that the proposed algorithm

gives nearly optimal performance with only a small number of ran-

domization iterations.

Index Terms— Mobile cloud computing, computing access

point, offloading decision, resource allocation, semidefinite relax-

ation

1. INTRODUCTION

Mobile cloud computing extends the capabilities of mobile devices

to improve user experience [1] [2]. Mobile users can offload tasks to

the cloud, using abundant cloud resources to help them gather, store,

and process data. However, the interaction between mobile devices

and the cloud introduces difficult challenges such as the tradeoff

between energy savings and computing performance while offload-

ing tasks to the cloud. Besides, the communication delay between

mobile users and the cloud is an additional cost that cannot be ig-

nored [3].

An architecture was proposed in [4] to reduce transmission la-

tency by using nearby cloudlets to replace the remote cloud. The sce-

nario of a single user offloading its entire application to the cloud was

studied in [5] [6]. The multi-user scenarios were addressed in [7] [8].

Furthermore, in contrast to whole application offloading above, the

authors of [9–12] considered application partitioning. In [9], a sys-

tem namedMAUI was proposed to efficiently process the partitioned

tasks. Further improvements were proposed by Clonecloud [10] and

Thinkair [11]. Dynamic partitioning was considered in [12]. In all

cases, the partitioning problem results in integer programming that

are difficult to solve.

In our previous work [13], we have studied the impact of a novel

Computing Access Point (CAP), which can be a wireless access

point or a cellular base station with built-in computation capabil-

ity, showing substantial system performance improvement for the

single-user scenario. The CAP can either process the received tasks

from the mobile user or offload them to the cloud to provide addi-

tional computation capability over traditional mobile cloud comput-

ing systems. In this work, we further study the interaction between

multiple users and the CAP. Both the offloading decision and re-

source allocation among all users are jointly considered. Different

from [13], in this multi-user scenario, we need to allocate commu-

nication and computation resources among competing users, with

an aim to conserve energy and maintain quality of service for all

of them. A new method is required to solve this problem, and an

optimal offloading decision must take into consideration the compu-

tation and communication energies, computation costs, and commu-

nication and processing delays at all local user devices, as well as

the resource constraints and capabilities of the CAP and the remote

cloud.

We focus on jointly optimizing the offloading decisions as well

as the communication and computation resource allocation for mul-

tiple mobile users with one CAP and one remote cloud server. We

aim to minimize a weighted sum of the costs of energy, computation,

and the maximum delay among all users. We show that the resultant

mixed integer programming problem can be formulated as a non-

convex quadratically constrained quadratic program (QCQP) [14],

which is NP-hard in general. To solve this challenging problem, we

propose an efficient heuristic algorithm, termed shareCAP, based on

semidefinite relaxation (SDR) [15] and a novel randomization map-

ping method. Compared with the optimal offloading policy obtained

by exhaustive search, our proposed algorithm gives nearly optimal

performance with a small number of randomization iterations. Fur-

thermore, we observe that the addition of a CAP can significantly

reduce the energy and computational costs of mobile cloud comput-

ing in the multi-user scenario, over traditional systems where only

the remote cloud server is available for task offloading.

2. SYSTEMMODEL AND PROBLEM FORMULATION

Consider a cloud access network withN mobile users, one CAP, and

one remote cloud server, as shown in Fig. 1. The connections be-

tween mobile users and the CAP are wireless, while a wired connec-

tion is used between the CAP and the cloud. For the CAP, instead of

just serving as a relay to always forward received tasks from users to

the cloud, we assume it also has the capability to process user tasks

subject to its resource constraint. Each mobile user has one task to

be either processed locally or offloaded through a two-phase proce-

dure. In phase one, each mobile user decides whether to offload its

task to the CAP, and in phase two, the CAP determines whether to

process each received task itself or offload it to the cloud for process-

ing. Since there are multiple tasks offloaded to the CAP and some

of them are processed by the CAP, we need to further allocate the

communication and computation resources available to the CAP.

Denote the input and output data sizes and the application type

of each user i’s task by Din(i), Dout(i), and App(i), respectively,
where App(i) refers to the number of processing cycles per input

wireless

wired

Remote
 Cloud

Computing
 AP

Mobile
User 1

1

2

N

Mobile
User 2

Mobile
User N

Fig. 1. System model

data in this work. Denote the offloading decisions by

xli + xai
+ xci = 1, i = 1, . . . , N,

where xli , xai
, xci ∈ {0, 1} indicate whether user i’s task is pro-

cessed locally, at the CAP, or at the cloud, respectively. Notice that

only one of xli , xai
, xci for user i could be 1 at the same time.

For the task being locally processed by the mobile user i, de-
note the corresponding energy consumption for processing it by Eli

and the processing time by Tli . If the task is offloaded to the CAP,

denote the energy consumed for transmitting and receiving by Eti

and Eri respectively. Furthermore, denote the uplink and downlink

transmission times by Tti = Din(i)/cui
and Tri = Dout(i)/cdi ,

respectively, where cui
and cdi are uplink and downlink bandwidths

allocated to user i. Their values depend on the corresponding wire-
less link capacities, denoted by CUL and CDL, respectively, and the

number of other tasks offloaded to the CAP. If this task is processed

by the CAP, denote its processing time by Tai
= Din(i)App(i)/fai

,

where fai
is the assigned processing rate depending on the CPU rate

fA and the number of tasks being processed at the CAP. If instead

the task is further offloaded to the cloud from the CAP, we denote the

required transmission time between the CAP and the cloud by Taci ,

and the cloud processing time by Tci . We assume the transmission

between the CAP and the cloud as well as the cloud processing for

each offloaded task are separated from the rest and fixed, so that Taci

and Tci only depend on each task itself. Finally, denote by Cai
and

Cci the costs of processing user i’s task at the CAP and the cloud,

respectively.

Since our goal is to reduce the mobile users’ energy consump-

tion and maintain the QoS to their tasks, we define the total system

cost as the weighted sum of total energy consumption, the costs to

offload and process all tasks, and the corresponding maximum trans-

mission and processing delays among all users. We aim to minimize

the total system cost by jointly optimizing the task offloading deci-

sions xi = (xli , xai
, xci) as well as the communication and CAP

processing resource allocation ri = (cui
, cdi , fai

). The optimiza-
tion problem is formulated as follows:

min
{xi},{ri}

[N
∑

i=1

(Elixli + EAi
xai

+ECi
xci)

+ max
i

{ρi(TLi
+ TAi

+ TCi
)}
]

(1)

s.t. xli + xai
+ xci = 1, i = 1, . . . , N, (2)

N
∑

i=1

cui
≤ CUL, (3)

N
∑

i=1

cdi ≤ CDL, (4)

N
∑

i=1

fai
≤ fA, (5)

cui
, cdi , fai

≥ 0, i = 1, . . . , N, (6)

xli , xai
, xci ∈ {0, 1}, i = 1, . . . , N, (7)

where EAi
, (Eti + Eri + αCai

) and ECi
, (Eti + Eri +

βCci) are the weighted transmission energy and processing cost for
task i being offloaded to the CAP or the cloud, respectively, with

α and β being their relative weights, TLi
, Tlixli is the process-

ing delay at the mobile user, TAi
, (Din(i)/cui

+ Dout(i)/cdi +

Din(i)App(i)/fai
)xai

and TCi
, (Din(i)/cui

+ Dout(i)/cdi +
Taci + Tci)xci correspond to the transmission and processing de-

lay at the CAP and the cloud, respectively, and ρi is the weight on
the delay relative to energy consumption. We can adjust ρi to place
different emphasis on delay and energy consumption. In the above

problem formulation, (2) is the offloading placement constraint, (3)

and (4) correspond to uplink and downlink bandwidth resource con-

straints, and (5) is the constraint on the CAP processing resource

allocation.

3. SHARECAP OFFLOADING SOLUTION

Given some offloading decisions xi, the above optimization problem

concerns only the resource allocation part and will become

min
{ri}

(

E +max
i

{ρi(TLi
+ TAi

+ TCi
)}
)

(8)

s.t. (3)− (6),

where E ,
∑N

i=1[Elixli + EAi
xai

+ ECi
xci] is a constant de-

pending on xi. Notice that our original optimization problem (1)

is a mixed integer linear programming problem, while the resource

allocation problem (8) is convex. In order to find an efficient solu-

tion to the original nonconvex problem (1), in the following, we first

transform it into a QCQP with a linear objective, and then propose

an SDR approach and a novel randomization mapping method to re-

cover the binary offloading decisions. Once we obtain the binary

offloading decisions, we can easily solve problem (8) to find the cor-

responding optimal resource allocation. We name this method the

shareCAP offloading solution.

3.1. Semidefinite Relaxation

To convert the optimization problem (1) into a QCQP problem, we

first replace the integer constraint (7) by

xki
(xki

− 1) = 0, i = 1, . . . , N, (9)

for k = l, a, c, and introduce additional auxiliary variables t and
di = (Dui

, Ddi , Dai
). The optimization problem (1) can be rewrit-

ten as

min
{xi},{ri},{di},t

N
∑

i=1

[Elixli + EAi
xai

+ ECi
xci] + t (10)

s.t. ρi(Tlixli +Dui
+Ddi +Dai

+ (Taci + Tci)xci) ≤ t, i = 1, . . . , N,

Din(i)(xai
+ xci)− cui

Dui
≤ 0, i = 1, . . . , N,

Dout(i)(xai
+ xci)− cdiDdi ≤ 0, i = 1, . . . , N,

Din(i)App(i)xai
− fai

Dai
≤ 0, i = 1, . . . , N,

(2)− (7).

Definew = [x1, . . . ,xN , fa1
, . . . , faN

, Da1
, . . . , DaN

,
cu1

, . . . , cuN
, Du1

, . . . , DuN
, cd1 , . . . , cdN , Dd1 , . . . , DdN , t]T ,

and 0 as the N × N zero matrix. In addition, define ei and e′
i as

the N × 1 and (9N + 1) × 1 standard unit vectors with the ith
entry being 1, respectively. The optimization problem (1) can now

be further transformed into the following QCQP formulation:

min
w

b
T
0 w (11)

s.t. b
T
ciw ≤ 0, i = 1, . . . , N,

w
T
Asiw + b

T
siw ≤ 0, s = u, d, a; i = 1, . . . , N,

b
T
Iiw = 1, i = 1, . . . , N,

b
T
Uw ≤ CUL, b

T
Dw ≤ CDL, b

T
Aw ≤ fA,

w
T
diag(e′

p)w − e
′T
p w = 0, p = 1, . . . , 3N,

w ≥ 0,

where

Aui
=

05N×5N 05N×2N 05N×(2N+1)

02N×5N A′
ui

02N×(2N+1)

0(2N+1)×5N 0(2N+1)×2N 0(2N+1)×(2N+1)

 ,

Adi =

07N×7N 07N×2N 07N×1

02N×7N A′
di

02N×1

01×7N 01×2N 0

 ,

Aai
=

03N×3N 03N×2N 03N×(4N+1)

02N×3N A′
ai

02N×(4N+1)

0(4N+1)×3N 0(4N+1)×2N 0(4N+1)×(4N+1)

 ,

A
′
si

= −0.5

[

0 diag(ei)
diag(ei) 0

]

, s = u, d, a,

b0 = [El1 EA1
EC1

. . . ElN EAN
ECN

01×6N 1]T ,

bci = ρi[Tlie
′
3i−2 + (Taci + Tci)e

′
3i

+ e
′
4N+i + e

′
6N+i + e

′
8N+i],

bui = Din(i)(e
′
3i−1 + e

′
3i), bdi = Dout(i)(e

′
3i−1 + e

′
3i),

bai = Din(i)App(i)e′
3i−1, bIi = e

′
3i−2 + e

′
3i−1 + e

′
3i,

bU = [01×5N 11×N 01×(3N+1)]
T ,

bD = [01×7N 11×N 01×(N+1)]
T ,

bA = [01×3N 11×N 01×(5N+1)]
T .

Comparing the optimization problems (10) and (11), all con-

straints have one-to-one correspondence. Note that the opti-

mization problem (11) is a non-convex QCQP problem, which

is NP-hard in general. To solve it, we apply the SDR approach

to relax it into a semidefinite programming (SDP) problem. De-

fine X = [wT 1]T [wT 1]. By dropping the rank constraint

rank(X) = 1, we have the following SDP problem:

min
X

Tr(G0X) (12)

s.t. Tr(GriX) ≤ 0, r = c, u, d, a; i = 1, . . . , N,

Tr(GIiX) = 1, i = 1, . . . , N,

Tr(GUX) ≤ CUL, Tr(GDX) ≤ CDL, Tr(GAX) ≤ fA,

Tr(GpX) = 0, p = 1, . . . , 3N,

X(9N + 2, 9N + 2) = 1, X � 0,

where

G0 =

[

0(9N+1)×(9N+1)
1
2
b0

1
2
bT
0 0

]

,

Algorithm 1 ShareCAP Offloading Algorithm

1: Obtain optimal solution X∗ of the SDP problem (12). Extract

the upper-left 3N × 3N sub-matrixX′∗ fromX∗. Set the num-

ber of randomization trials as L.
2: Record the values of diagonal terms in X′∗ as p =

[pl1pa1
pc1 . . . plN paN

pcN]T .
3: for l = 1, ..., L do

4: v(l) = [u1 . . .uN]T with random vectors generated in (13);

5: Solve resource allocation problem (8) given offloading

decision v(l);

6: end for

7: Choose among v(1), . . . ,v(L) the one that yields the minimum

objective value of (8); Set it as vo.

8: Output: the proposed offloading solution vo and the correspond-

ing resource allocation.

Gli =

[

0(9N+1)×(9N+1)
1
2
bli

1
2
bT
li

0

]

, l = c, I ; i = 1, . . . , N,

Gsi =

[

Asi
1
2
bsi

1
2
bT
si

0

]

, s = u, d, a; i = 1, . . . , N,

GS =

[

0(9N+1)×(9N+1)
1
2
bS

1
2
bT
S 0

]

, S = U,D,A,

Gp =

[

diag(e′
p) − 1

2
e′
p

− 1
2
e′T
p 0

]

, p = 1, . . . , 3N.

The above problem can be solved efficiently in polynomial time us-

ing standard SDP software, such as SeDuMi [16].

DenoteX∗ as the optimal solution of the SDP problem (12). We

need to recover a rank-1 solution of the original problem (1) from

X∗. In the following, we propose a randomization method to obtain

our binary offloading decisions.

3.2. Binary Offloading Decisions via Randomization

A common approach [15] to obtain an integer solution from the re-

laxed SDP problem is to randomly generate vectors from the Gaus-

sian distribution with zero mean and covarianceX∗ for L times, and

then map them to the integer set {0, 1}3N by using the sign of each

element in these vectors. Among the generated vectors, the one that

yields the best objective value of the original problem will be chosen

as the desired solution. However, the above randomization proce-

dure may not be feasible when those generated vectors cannot sat-

isfy the placement constraint (2). Instead, we propose the following

improved method.

Define v = [xl1 , xa1
, xc1 , . . . , xlN , xaN

, xcN]T as the offload-

ing solution. Notice that, first, only the upper-left 3N × 3N sub-

matrix of X∗, denote by X′∗, is needed to recover the solution v.

Second, each diagonal term in X′∗ is always between 0 and 1, de-
noted by p = [pl1 , pa1

, pc1 , . . . , plN , paN
, pcN]T , corresponding

to the probability that each element in v is 1. To satisfy the place-
ment constraint (2), we define Uli = pli(1− pai

)(1− pci), Uai
=

(1− pli)pai
(1− pci), Uci = (1− pli)(1− pai

)pci , and randomly
select vectors ui, which represent the location that user i’s task will
be processed, as follows:

ui =

(1, 0, 0), with probability Pli (local processing),

(0, 1, 0), with probability Pai
(CAP processing),

(0, 0, 1), with probability Pci (cloud processing),

(13)

where Pli = Uli/(Uli +Uai
+Uci), Pai

= Uai
/(Uli +Uai

+Uci),
Pci = Uci/(Uli + Uai

+ Uci), and Pli + Pai
+ Pci = 1. We gen-

β (J/bit)
×10

-7

1 2 3 4 5

to
ta

l
c
o
s
t
(J

)

300

400

500

600

700

800
local processing

cloud processing

Local-Cloud 10

ShareCAP 10

random mapping 10

optimal policy

Fig. 2. The total cost under different policies vs. β (J/bit).

erate L i.i.d. feasible solutions v(l) = [u1 . . .uN]T using the above

procedure, for l = 1, ..., L, and solve the corresponding resource

allocation problem (8) for each. We then choose the one among

these feasible solutions that gives the minimum objective value of

the optimization problem (1) to obtain the offloading solution and

corresponding resource allocation.

The details of the overall shareCAP offloading and resource al-

location algorithm are given in Algorithm 1. Notice that the SDP

problem (12) can be solved within precision ǫ by the interior point
method in O(

√
N log(1/ǫ)) iterations, where the amount of work

per iteration is O(N6) [17], while there are 3N choices in exhaus-

tive search to find the optimal offloading decision. In addition, we

observe from simulation results that a small number of randomiza-

tion trials (e.g., L = 10) is enough to give system performance very

close to the optimal one.

4. SIMULATION RESULTS

In this section, we provide computer simulation to study the per-

formance of our proposed shareCAP offloading solution under dif-

ferent parameter settings. In the following, the default parameter

values are described, unless otherwise indicated later. We adopt the

mobile device characteristics from [18], which is based on Nokia

N900, and set the number of users as N = 6. According to Tables
1 and 3 in [18], the mobile device has CPU rate 500 × 106 cycles/s
and processing energy consumption 1

730×106
J/cycle, and the local

computation time 4.75×10−7 s/bit and local processing energy con-

sumption 3.25 × 10−7 J/bit are calculated when the x264 CBR en-

code application (1900 cycles/byte) is considered as App(i) in our
simulations. The input data size Din(i) of each task is assumed to
be uniformly distributed from 1 to 40MB, and the output data size

Dout(i) = Din(i)/10.
In addition, both uplink and downlink transmission capacities

are 72.2 Mbps (e.g., IEEE 802.11n) between the mobile user and

the CAP, and the transmission and receiving energy consumptions

of the mobile user are both 1.42× 10−7 J/bit as indicated in Table 2

in [18]. The CPU rates of the CAP and each sever at the remote cloud

are 5 × 109 cycle/s and 10 × 109 cycle/s, respectively. When tasks

are offloaded to the cloud, the transmission rate Rac is 15 Mpbs.

Also, we set the values of cost Cai
and Cci to be the same as that of

the input data sizeDin(i), and α = 1×10−7 J/bit and β = 3×10−7

J/bit. We further set ρi = 2 J/s as the weight of the delay to process
each user’s task.

For comparison, we also consider the following methods: 1) the

local processing only method where all tasks are processed by mo-

bile users, 2) the cloud processing only method where all tasks are

offloaded to the cloud, 3) the local-cloud offloading method where

the same approximation procedure as the shareCAP method is ap-

plied except that there is no CAP, 4) the random mapping method

where each task is processed at different locations with equal prob-

ability, 5) the optimal policy where the optimal value is obtained by

ρ (J/s)

0.5 1 1.5 2 2.5 3 3.5 4

to
ta

l
c
o
s
t
(J

)

200

300

400

500

600

700

800

900
local processing

cloud processing

Local-Cloud 10

ShareCAP 10

random mapping 10

optimal policy

Fig. 3. The total cost under different policies versus ρ (J/s).

number of users

6 7 8 9 10 11 12

to
ta

l
c
o
s
t
(J

)

200

300

400

500

600

700

800

900

1000

1100

local processing

cloud processing

Local-Cloud 10

ShareCAP 10

random mapping 10

optimal policy

lower bound

Fig. 4. The total cost under different policies versus number of users.

exhaustive search which is possible only when the number of users is

small, and 6) the lower bound of the minimum cost, which is the op-

timal objective value of the SDR problem (12), which is used when

the number of users is larger.

In the following figures, we use “shareCAP 10,” “local-cloud
10,” and “random mapping 10” to indicate that L = 10 for the

randomization trials in these methods. Our simulation shows that

it is sufficient for shareCAP to provide near-optimal performance,

despite the much larger 3N decision space of the optimization prob-

lem. Finally, all simulation results are obtained by averaging over

100 realizations of the input and output data sizes of each task.

In Figs. 2, we show the system cost vs. the weights β on the

cloud processing cost. When β becomes large, all tasks are more

likely to be processed by either the mobile user or the CAP. The

local-cloud method in this case converges to the local processing

method. In Fig. 3, we study the system cost under various values

of weight ρ on the processing delay. We observe that with the help

of the CAP, shareCAP outperforms all other methods and is nearly

optimal.

Finally, we examine the impact of the limited processing capa-

bility at the CAP on the performance of shareCAP. Fig. 4 plots the

total system cost vs. the number of users N . We are not able to

obtain an optimal solution for N > 10 due the complexity of ex-

haustive search. However, we see that shareCAP is close to the SDR

lower bound, indicating that it is nearly optimal for all N values.

5. CONCLUSION

We consider mobile cloud computing system consisting of multiple

users, one CAP, and one remote cloud server. We have developed

a new method toward minimizing the weighted total cost of energy,

computation, and the maximum delay among all users through joint

tasks offloading and resource allocation. Although the optimization

problem is non-convex, we propose an efficient heuristic algorithm

using SDR and a new randomization mapping approach. Simulation

results suggest that the proposed algorithm gives nearly optimal per-

formance, and the resultant efficient utilization of a CAP can bring

substantial cost benefit.

6. REFERENCES

[1] K. Kumar, J. Liu, Y.-H. Lu, and B. Bhargava, “A survey of

computation offloading for mobile systems,”Mob. Netw. Appl.,

vol. 18, pp. 129–140, 2013.

[2] N. Fernando, S. W. Loke, and W. Rahayu, “Mobile cloud

computing: A survey,” Future Generation Computer Systems,

vol. 29, pp. 84 – 106, 2013.

[3] K. Kumar and Y.-H. Lu, “Cloud computing for mobile users:

Can offloading computation save energy?” Computer, vol. 43,

pp. 51–56, 2010.

[4] M. Satyanarayanan, P. Bahl, R. Caceres, and N. Davies, “The

case for vm-based cloudlets in mobile computing,” IEEE Per-

vasive Computing, vol. 8, pp. 14–23, 2009.

[5] S. Barbarossa, S. Sardellitti, and P. Di Lorenzo, “Computation

offloading for mobile cloud computing based on wide cross-

layer optimization,” in Proc. Future Network and Mobile Sum-

mit (FutureNetworkSummit), 2013, pp. 1–10.

[6] W. Zhang, Y. Wen, K. Guan, D. Kilper, H. Luo, and D. Wu,

“Energy-optimal mobile cloud computing under stochastic

wireless channel,” IEEE Transactions on Wireless Communi-

cations, vol. 12, pp. 4569–4581, 2013.

[7] S. Ren and M. van der Schaar, “Efficient resource provisioning

and rate selection for stream mining in a community cloud,”

IEEE Transactions on Multimedia, vol. 15, pp. 723–734, 2013.

[8] O.Munoz, A. Pascual Iserte, J. Vidal, and M. Molina, “Energy-

latency trade-off for multiuser wireless computation offload-

ing,” in Proc. IEEE Wireless Communications and Networking

Conference (WCNC) Workshops, 2014, pp. 29–33.

[9] E. Cuervo, A. Balasubramanian, D.-k. Cho, A. Wolman,

S. Saroiu, R. Chandra, and P. Bahl, “MAUI: Making smart-

phones last longer with code offload,” in Proc. ACM Interna-

tional Conference on Mobile Systems, Applications, and Ser-

vices (MobiSys), 2010, pp. 49–62.

[10] B.-G. Chun, S. Ihm, P. Maniatis, M. Naik, and A. Patti,

“Clonecloud: Elastic execution between mobile device and

cloud,” in Proc. ACM Conference on Computer Systems (Eu-

roSys), 2011, pp. 301–314.

[11] S. Kosta, A. Aucinas, P. Hui, R. Mortier, and X. Zhang,

“Thinkair: Dynamic resource allocation and parallel execu-

tion in the cloud for mobile code offloading,” in Proc. IEEE

International Conference on Computer Communications (IN-

FOCOM), 2012, pp. 945–953.

[12] J. Niu, W. Song, L. Shu, and M. Atiquzzaman, “Bandwidth-

adaptive application partitioning for execution time and en-

ergy optimization,” in Proc. IEEE International Conference on

Communications (ICC), 2013, pp. 3660–3665.

[13] M.-H. Chen, B. Liang, and M. Dong, “A semidefinite relax-

ation approach to mobile cloud offloading with computing ac-

cess point,” in Proc. IEEE Workshop on Signal Processing Ad-

vances in Wireless Communications (SPAWC), 2015.

[14] S. Boyd and L. Vandenberghe, Convex Optimization. Cam-

bridge University Press, 2004.

[15] Z.-Q. Luo, W.-K. Ma, A.-C. So, Y. Ye, and S. Zhang,

“Semidefinite relaxation of quadratic optimization problems,”

IEEE Signal Processing Magazine, vol. 27, pp. 20–34, 2010.

[16] M. Grant, S. Boyd, and Y. Ye, “CVX: Matlab software for

disciplined convex programming,” 2009. [Online]. Available:

http://cvxr.com/cvx/

[17] Y. Nesterov, A. Nemirovskii, and Y. Ye, Interior-point polyno-

mial algorithms in convex programming. SIAM, 1994.

[18] A. P. Miettinen and J. K. Nurminen, “Energy efficiency of mo-

bile clients in cloud computing,” in Proc. the 2nd USENIX

Conference on Hot Topics in Cloud Computing (HotCloud),

2010.

