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Abstract— Next-generation wireless networking is evolving to-
wards a multi-service heterogeneous paradigm that converges
different pervasive access technologies and provides a large set of
novel revenue generating applications. Hence, system complexity
increases due to its embedded heterogeneity, which can not be
accounted by the existing modeling and performance evaluation
techniques. Consequently, the development of new modeling
approaches becomes as a crucial requirement for proper system
design and performance evaluation. This paper presents a novel
mobility model for a two-tier integrated wireless system using a
new modeling approach that accommodates the aforementioned
complexity. Additionally, a novel session model is developed as an
adapted version of the proposed mobility model. These models
use phase-type distributions that are known to approximate
any generic probability laws. Using the proposed session model,
a novel generic analytical framework is developed to obtain
several salient performance metrics such as network utilization
times and handoff rates. Simulation and analysis results prove
the proposed model validity and demonstrate the accuracy of
the novel modeling approach when compared with traditional
modeling techniques.

I. INTRODUCTION

The future wireless networking is envisioned as an in-
tegrated system of heterogeneous pervasive wireless access
technologies that provides its users with a diverse set of
applications. The integration of wireless local area networks
(WLANs) and third-generation (3G) cellular networks [1], [2],
[3] is an example of this networking paradigm in which users
will enjoy the complementary advantages of both networks
including the universal coverage of cellular networks and the
low cost and large bandwidth of WLANs. In such heteroge-
neous system, the mobility influence on network performance
will be strengthened due to the user ability to roam from one
technology to another, known as vertical handoff (VHO) [4], in
addition to the traditional cellular horizontal handoff (HHO).
This VHO greatly impacts both session dynamics and system
resource utilization [5]. Hence, developing novel models that
accommodate these details becomes a crucial requirement for
proper system design and performance evaluation of different
design alternatives.

In homogeneous networks, the mobile terminal (MT) mo-
bility is modeled by its cell residence time (CRT), defined as
the duration spent by the MT within a cell. Various types of
random variables are used to represent the CRT such as the
phase-type (PH) distribution [6], Erlang distribution [7], [8],

hyper-exponential and hyper-Erlang [8], Gamma distribution
[7], [9], and SOHYP [10]. These models are sufficient to
describe the MT mobility in homogeneous networks since the
exact MT position within the cell is irrelevant. On contrary,
in heterogeneous networks, the MT location within the cell is
important since the MT can use different access technologies
within the cell to receive different levels of quality of service
(QoS). Hence, the MT mobility can not be uniquely described
by the CRT due to VHO transitions within the overlay network
cells. Consequently, more parameters are required such as
WLAN and inter-WLAN residence times to accurately repre-
sent all mobility details. In this context, the WLAN residence
time is similar to the CRT for the 3G cell, while the inter-
WLAN residence time is defined as the duration spent by the
MT in the cellular network between consecutive WLAN visits.

In this paper, we develop a novel model for MT mobility in
an integrated two-tier heterogeneous wireless system. In this
model, we adopt a new modelling approach that accommo-
dates the correlation between different residence times, which
can not be realized by extending traditional models assuming
generally but independently distributed time variables. The key
idea of the new model is to represent the 3G CRT as a summa-
tion of WLAN and inter-WLAN residence times. Additionally,
we develop a session model based on the proposed mobility
model for data and multimedia applications in next-generation
wireless networks. Furthermore, using this session model, we
develop a performance evaluation framework to derive several
salient performance metrics such as network utilization times
and handoff rates. The proposed modeling approach provides
significant accuracy in evaluating the performance of future
multi-service heterogeneous mobile systems.

The rest of this paper is organized as follows. In Section II,
we present the new mobility model. The subsequent session
model and the analytical performance framework are presented
in Section III. Section IV presents the results that show
the validity of the proposed models. Finally, conclusions are
presented in Section V.

II. MOBILITY MODELING

In heterogeneous systems, as the MT traverse the overlay
cell, it may associate itself with one or more different access
technologies as shown in Fig. 1 (e.g. T3 and T2 respectively).
Additionally, the MT may start its overlay cell visit in either
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Fig. 1. 3G-WLAN Integrated System

technology as shown in T1 and T2. Generally, technology
transitions determine the bounds of each access technology
visit, while the CRT is bounded by HHOs. Clearly, the CRT
comprises a sequence of stages represented by durations spent
by the MT in different technologies and bounded by MT
technology transitions.

Our proposed mobility model is inspired by the similarity
between the operational phases of PH distributions and the
sequential stages of the MT CRT. Generally, a PH random
variable is defined as the absorption time of an evanescent
finite-state Markov process to a single absorbent state. This
process can be represented by an infinitesimal generator ma-
trix, Q, and an initial state distribution vector υ as follows
[11]

Q =
(

Tp×p tp×1

01×p 0

)
, (1)

υ = (α1×p, γ1×1) . (2)

Additionally, the PH distribution can be defined by the tuple
(α,T), such that if a random variable X is PH(α,T) of order
p, then its probability density function is expressed as

f(x) = −α exp(Tx)Te , x ≥ 0 , (3)

where e is a column vector of dimension p with all its
elements equal one. Generally, there are two different mod-
eling approaches with PH distributions [12]: fictitious and
physical approaches. In the former, PH distributions are used
as a versatile, dense, and algorithmically tractable class of
distributions defined on the non-negative real numbers; while
in the latter, phases or blocks of phases represent physical
processes in the model. The fictitious approach has been
successfully used to model the CRT in homogeneous network,
but it can not be used to model heterogeneous network due
to the characteristic diversity of different access networks.
Hence, the second approach should be considered in the new
model. In addition to the modelling approach change, the
common independence assumption of different time variables
is no longer valid and their correlation should be considered
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Fig. 2. Mobility Model

in the new model. The proposed model considers both issues
as shown in the following subsection.

A. A CRT Model for Two-Tier Integrated Wireless Networks

Fig. 2 shows the proposed CRT model structure for two-
tier integrated wireless networks, such as a 3G-WLAN inte-
grated system, with k stages representing consecutive visits of
networks A and B. Each stage is labelled with a letter that
represents the access technology and a number representing
the stage sequence. It is worth mentioning that A and B
may either denote WLAN and cellular network respectively
or vise versa depending on the initial technology visited by
the MT upon session initiation or cellular handoff. Generally,
the duration spent by the MT in stage Ai or Bi is assumed
to be PH(αi,Ti) whose absorption corresponds to an access
technology transition. Upon exiting a specific stage i, where
i = 1, 2, ..., k − 1, the MT may exit the cell with probability
bi or may continue to the next phase i+1 with probability ai,
where ai + bi = 1. In the last stage k, which may be WLAN
or cellular, the MT exits the cell with probability bk = 1.

Clearly, using this model the CRT is expressed as a summa-
tion of the durations spent by the MT within the WLANs and
in between them. Hence, the proposed model accommodates
the correlation between the CRT and both WLAN and inter-
WLAN residence times. The resultant CRT will be PH due to
the closure property of PH distributions under specific opera-
tions such as summation [11], and is denoted as PH(αm,Tm)

Tm =

⎛
⎜⎜⎝

T1 a1t1α2 0... ..0
0 T2 a2t2α2 ..0
. . .

0.. 0 Tk

⎞
⎟⎟⎠ (4)

αm = [α1 0] (5)

where ti = −Tie. It is worth mentioning that, if the stage res-
idence times are exponentially distributed, this distribution is
equivalent to the Coxian distribution [13]. Hence, we identify
the models with exponentially and PH distributed stages as
Coxian and extended-Coxian models respectively. It is worth
mentioning that the proposed models are approximated in the
sense that the number of alternating WLAN-cellular visits is
truncated to a specific value k while it can go indefinitely.
This value is determined from the obtained measurements
such that the probability of cell exit exceeds a pre-defined
probability threshold. Additionally, in the rest of the paper,



we will subdivide the phases into two subsets C and W that
correspond to cellular and WLAN stages respectively1.

B. Model Parameter Estimation

The proposed model parameters are estimated from MT
mobility traces that can be obtained from direct field mea-
surements or by simulation. In Section IV, we follow the
second approach since real measurements are not yet available
for next-generation systems. The following information is
collected for each visited cell:

• Initial technology, defined as the access technology used
by the MT when it enters the cell,

• WLAN durations, defined as the time spent by the MT
in a WLAN,

• Inter-WLAN durations, defined as the time spent by the
MT in between WLANs, and

• Number of WLAN boundary crossings.
The obtained data are first clustered into two separate data
partitions based on the initial technology. Then, for each
partition, we calculate bi as

bi =
Nc(i− 1)∑∞
j=i−1Nc(j)

,

where Nc(i) denotes the number of cells in which exactly
i VHOs are performed. Furthermore, the PH distribution
parameters of each stage are estimated using distribution fitting
tools such as the EMpht package [14] to statistically represent
the duration spent by the MT in the corresponding physical
network visit. For example α1 and T1 are calculated from the
measurement corresponding to the MT’s first visit to network
A. Similarly, α2 and T2 are calculated from the measurements
corresponding to the MT’s first visit to network B, and so on
for i = 1, 2, ..., k− 2. Finally, the last two phases’ parameters
are calculated from the information of the remaining visits for
the corresponding networks. As an example, let cvi denote
the coefficient of variation of stage i measurements, defined
as cvi = σi

μi
, where σi and μi represent the standard deviation

and mean of stage i measurements respectively. Based on the
cvi value, stage i measurements may be fitted to [13]

• hyper-exponential distribution if cvi > 1,
• exponential distribution if cvi = 1, or
• hypo-exponential (generalized Erlang) distribution if
cvi < 1.

III. SESSION MODEL AND PERFORMANCE ANALYSIS

The proposed session model is an adapted version of the
aforementioned mobility model. In this session model each
provided service S is characterized by two parameters: a Pois-
sonian arrival rate with parameters λS

n and exponentially dis-
tributed session holding times tSch and tSwh with parameters λS

ch

and λS
wh for cellular network and WLAN respectively. These

parameters depend on the application nature; for example,

1As a notational remark, we will be using subscripts c and w to denote
cellular network and WLAN parameters respectively. Additionally, we will
denote all vectors using boldface. Furthermore, we will use i and j as stage
indexes and r and s as phase indexes.

conversational applications such as voice over IP (VoIP) and
video conference (V-conf) are expected to preserve the same
holding time and bandwidth requirement in both networks.
On the other hand, streaming applications, such as video on
demand (VoD) and radio on demand (RoD), are bandwidth
greedy applications due to their buffering capabilities.

Additionally, we develop a generic performance analysis
framework to calculate different salient performance metrics
for different applications. Without loss of generality, we as-
sume that active MTs always handoff to a WLAN when it is
encountered due to its larger bandwidth and lower cost. We
study the performance within one cellular cell starting from
the moment at which the MT starts using the cell resources
until the session ends or the MT hands-off to a neighbor cell.
In the following subsections, we first present the session model
and then present the performance analysis framework.

A. Session Model

In the session model, the PH phases represent both MT
activity status and the utilized access technology. Hence phase
transitions occur due to new access technology availability,
current access technology exiting, current session termination
(normal or forced termination), or handoff to a neighboring
cell. Hence, different absorbing states are defined as follows

• Term state, normal session termination,
• SHH state, successful HHO,
• HHFT state, forced termination during HHO, and
• VHFT state, forced termination during VHO.

Hence, the generator matrix of the session Markovian process
will have the following structure

QS =
(

QTT QTerm QSHH QHHFT QV HFT

0 0 0 0 0

)
,

(6)
where

QTT = [Mij ] =

⎧⎪⎪⎪⎪⎨
⎪⎪⎪⎪⎩

Ti − λS
chI ∀ i = j , i ∈ C

Ti − λS
whI ∀ i = j , i ∈W

aitiαj ∀ j = i+ 1 , i ∈ C
(1 − Pvb)aitiαj ∀ j = i+ 1 , i ∈W
0 otherwise

,

(7)

QTerm = [qi,1] =
{
λS

che ∀ i ∈ C
λS

whe ∀ i ∈W
,

QSHH = [qi,1] =
{
biti(1 − Phb) ∀ i ∈ C
biti(1 − Pvb) ∀ i ∈W

,

QHHFT = [qi,1] =
{
bitiPhb ∀ i ∈ C
bitiPvb ∀ i ∈W

,

QV HFT = [qi,1] =
{

0 ∀ i ∈ C
aitiPvb ∀ i ∈W

,

where Pvb and Phb represent the VHO and HHO blocking
probabilities, and I is the identity matrix. It is worth men-
tioning that by aggregating the absorption states, the session
Markovian process can be expressed as PH(αm,QTT ). Using
the session model infinitesimal generator matrix, one can



obtain different performance metrics as shown in the next
subsections.

B. Initial State Distribution

The initial state distribution, πTo, represents the probability
distribution for starting the session in a specific phase and
mainly depends on the session type: handoff or new session.
For handoff sessions, the initial state distribution will be
equal to the CRT initial state distribution, i.e. πTo = αm,
while for new calls, it equals the residual CRT initial state
distribution. Since the residual time of any PH distribution
PH(α,T) is another PH distribution PH(β,T) such that β =
(αT−1e)−1αT−1 [11], we have πTo = (αmT−1

m e)−1αmT−1
m

for new sessions.

C. Session Termination Probabilities
The session termination probabilities equal the absorption

probabilities of the Markovian session process and are esti-
mated using an embedded Markov chain probability transition
matrix, W = [wij ]. The matrix W can be derived from the
infinitesimal generator matrix QS [15]. Similarly to QS , W
can be partitioned to transient and absorbing states such that

W =

�
WTT WTerm WSHH WHHFT WV HFT

0 e1 e2 e3 e4

�
,

where ei is an all zero column vector except at the ith

location, which is equal to one. Consequently, the absorption
probability to a specific state X can be calculated as [15]

PX = πTo(I − WTT )−1WX , (8)

where X can be Term, SHH, HHFT, or VHFT. These absorp-
tion probabilities can be used to calculate several performance
metrics as shown in the following subsections.

D. Session Probabilities

In homogeneous networks, session probabilities mainly de-
pends on the session type, B, which can be either a new
or a handoff session, while in heterogeneous networks, these
probabilities additionally depends on the initial network, A,
which may be either a cellular network or a WLAN. The initial
network determines the mobility model, and consequently the
session model, whose parameters are determined from the
corresponding data partition. In the mean time, the session
type determines the initial phase distribution πTo as presented
in subsection III-B.

The initial network probabilities depend on the WLAN
coverage area, assuming that the user will always use WLAN
whenever it is available. Therefore, the probability that the
initial network is a WLAN equals to the percentage of WLAN
coverage, Pwo, and the probability that the initial network is
the cellular network, Pco = (1 − Pwo). On the other hand,
session-type probabilities depend on the application HHO rate,
NHH , defined as the expected number of induced HHOs from
a new session. The probability that a session is a new one, Pn,
equals [9]

Pn =
1

1 +NHH
,

while the probability that the arrived session is a handoff
session, will be Ph = 1 − Pn.

E. Horizontal Handoff Rate

In an integrated two-tier network, the handoff rate generally
differs from the homogeneous case due to session dynamics
variations resulting from the embedded network heterogeneity.
Let PAB

X denotes the absorption probability to state X given
that a session of type B, where B ∈ {n, h}, starts in network
A, where A ∈ {c, w}. Let Phf denote the probability that
a handoff session normally terminates within the same cell
or will be blocked during VHO. Then, Phf = Pwo(1 −
Pwh

SHH − Pwh
HHFT ) + Pco(1 − P ch

SHH − P ch
HHFT ). Let Pss

denote the probability that a handoff session will perform
exactly one successive HHO. Then, Pss = Pwo(Pwh

HHFT +
Pwh

SHHPhf ) + Pco(P ch
HHFT + P ch

SHHPhf ). Consequently, one
can derive the marginal distribution function of the HHO
number, H , assuming the session starts in network A as
follows:

P (H = 0|A) = PAn
Term + PAn

V HFT ,
P (H = 1|A) = PAn

HHFT + PAn
SHHPhf ,

P (H = k|A) = P An
SHH(PwoP

wh
SHH + PcoP

ch
SHH)k−2Pss , ∀k ≥ 2 .

Hence, the expected number of HHOs for a session starting
in a WLAN will be

E{H|A} =
∞�

k=0

kP (H = k|A)

= P An
HHFT + P An

SHH

�
Phf + Pss

�
2 − Phh

(1 − Phh)2

��
,

where Phh = PwoP
wh
SHH + PcoP

ch
SHH . Hence, the total

handoff rate, NHH , equals

NHH = E{H|W}Pwo + E{H|C}Pco .

F. Network Utilization Times

The network utilization time is defined as the expected
time spent by the MT using a network within the 3G cell
under consideration. In our model, this metric is calculated as
the duration spent by the MT in a specific type of network
phases before absorption, e.g. the WLAN utilization time
is estimated as the duration spent in WLAN phases before
absorption. From [11], the expected total time spent in phase
s until absorption, given that the initial phase is r, is given by
(−Q−1

TT )rs. Hence, the expected time spent in different phases
until absorption, LT , can be expressed as

LT = −πToQ−1
TT . (9)

Consequently, given a session of type B starts in network
A, the expected cellular network utilization time in the inte-
grated model is E{Lc|AB} =

∑
r∈C LT (r) and the expected

WLANs utilization time is E{Lw|AB} =
∑

r∈W LT (r).
Hence, the expected cellular utilization time is expressed as

E{Lc} = PwoPnE{Lc|WN} + PcoPnE{Lc|CN} +
PwoPhE{Lc|WH} + PcoPhE{Lc|CH} .



Similarly, the expected WLAN utilization time can be es-
timated. Finally, the expected session cell dwelling time,
E{Ls} = E{Lc} + E{Lw}.

G. Vertical Handoff Rates

The VHO rate is defined as the expected number of VHOs
induced by an active session within a 3G cell. Generally, two
types of VHOs are defined: upward and downward VHOs,
also respectively known as move out (MO) and move in (MI)
depending on the direction of motion with respect to WLANs.
The VHO rates are calculated for different session cases using
Markovian reward models [16]. For example, the MI rate is
calculated by assigning any phase s ∈ C a reward equaling the
summation of the transition rates from phase s to any phase
l ∈ W , i.e. ρs =

∑
l∈W qsl, where qsl is the transition rate

from phase s to phase l in QS . Then, the accumulated reward
until absorption for a specific phase s can be calculated as
the product of the assigned phase reward and the duration
spent within this phase (−Q−1

TT )rs, given that the session
starts in phase r. Hence, the total expected number of MIs
given that the session starts in phase r can be expressed
as ψMI

r =
∑

s∈C(−Q−1
TT )rsρs. Consequently, the expected

number of MIs, E{NMI}, is expressed as

E{NMI} = πToΨMI ,

where ΨMI is a column vector whose rth element is ψMI
r .

This procedure is repeated for different session cases, and the
total MI rate, NMI , can then be calculated as

NMI = PwoPnE{MI|WN} + PcoPnE{MI|CN} +
PwoPhE{MI|WH} + PcoPhE{MI|CH} .

Using a similar reward structure, the MO rate, NMO, can
be obtained. Finally, we have the VHO rate NV HO = NMI +
NMO.

It is worth mentioning that the presented analytical frame-
work represents a generic analytical approach that can be
applied to any PH system representation to obtain the derived
performance metrics, including the classical distribution fitting
approach.

IV. SIMULATION RESULTS

We perform simulation in Matlab to validate the analytical
framework and demonstrate the improved accuracy of the
proposed mobility model in comparison with the traditional
independent models. Square cells are used for simplicity of
illustration. Each 3G cell is sub-divided into N subdivisions,
where WLANs are randomly located with a certain density in
the interior of a cell, each covering one subdivision. Hence, the
MT encounters different topology when it handoffs to another
cell. We adopt a two-dimensional Gauss-Markov movement
model from [17] due to its tunability to a wide range of
user mobility patterns including both the random-walk and
the constant velocity fluid-flow models. In this model, the MT
velocity is correlated in time and is modeled by a Gauss-
Markov process. In its discrete version, at time n, the MT

TABLE I

APPLICATION PARAMETERS

VoIP Vconf RoD VoD
1/λch 3 30 60 90
1/λwh 3 30 10 15

velocity in each dimension, vn, is given by

vn = αvvn−1 + (1 − αv)μv +
√

1 − α2
v xn−1 , (10)

where αv represents a past velocity memory factor such that
0 ≤ αv ≤ 1, μv is the asymptotic mean of vn, and xn

is an independent and stationary Gaussian process with zero
mean and standard deviation σv , where σv is the asymptotic
standard deviation of vn. In the example system presented
here, the mobility parameters αv , μv , and σv are set to 0.9, 1,
0.5 respectively. Additionally, WLANs are assumed to overlap
with 30% of the cell area.

We consider different applications including both
symmetric-conversational applications such as VoIP and
Vconf, and asymmetric-streaming applications such as RoD
and VoD. The application parameters used in our simulations
are shown in Table I . In session simulations, the collected
results represent an average of five thousand sessions in
which both Pvb and Phb equal 0.01.

The simulation results are compared with the analysis re-
sults for the extended-Coxian, Coxian, and traditional indepen-
dent PH fitting models. In the latter model, the residence times
are fitted to suitable PH distributions following the same rules
used for stage measurements fitting in the extended-Coxian
model. Figures 3-5 illustrate the cellular and WLAN network
utilization times, HHO rate, and VHO rate, respectively.

All figures show that the analytical results of the Coxian
models match very well with simulation, usually with less
than 10% discrepancy. In comparison, the classical generic
fitting model can result in up to 65% discrepancy, especially
in estimating the HHO rate for conversational applications
such as video-conferencing. Clearly, ignoring the dependence
of CRT and WLAN and inter-WLAN residence time result in
an inaccurate estimation for the obtained metrics as shown in
the figures.

Additionally, we observe that the difference between Coxian
and extended-Coxian modeling is insignificant. Hence, we can
model stage residence times as negative exponential random
variables, which can significantly reduce the computation com-
plexity and reduce the fitting time for real-time performance
optimization sacrificing only slightly on the accuracy.

V. CONCLUSION

Wireless technologies are evolving towards a multi-service
heterogeneous networking paradigm. Hence, the development
of new mobility and traffic models emerges as a crucial
requirement for proper system design and performance evalu-
ation. In this paper, we have developed a novel mobility model
for an integrated two-tier system, using the 3G-WLAN inte-
gration as an example, which accommodates the correlation
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between the residence times in different tiers. Additionally,
we develop a new session model and use it to obtain several
performance metrics including network utilization times and
horizontal and VHO rates. Simulation and analysis results
demonstrate that the proposed model significantly outperforms
the traditional independent residence-time model for a wide
range of multimedia applications.
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