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Abstract— Prefetching has been shown to be an effective
technique for reducing resource cost and delay in heterogeneous
wireless networks. However, in modern wireless local area net-
works, there is little centralized management, with no control
of upper-level functions such as prefetching, and so users are
free to behave selfishly. This work focuses on how pricing can be
used to control the suboptimality that results from prefetching
and selfish users in heterogeneous wireless networks, and how
the perceived cost for the user can be optimized. We derive
an analytic model to characterize the optimal network and
Nash Equilibrium prefetching strategies. We present a pricing
scheme that optimizes the best achievable perceived cost when
the network is in a Nash Equilibrium.

I. I NTRODUCTION

Speculative prefetching, a technique for predicting and re-
trieving content before it is actually required, has been shown
to be effective in reducing perceived delay in applications
where user behavior is predictable. Many aspects of prefetch-
ing has been studied for web traffic in traditional homogeneous
networks. Work has focused on prefetch prediction strategies
[1], [2], and [3], mobile wireless networks [4], [5], [6], [7],
and multi-user effects [8].

While prefetching has been studied for many years, it has
only been deployed more recently on a large scale. The recent
versions of the Mozilla/Firefox web browsers have support
for special prefetch tags to instruct the browser to prefetch
links [9]. In this implementation, the information used to make
prefetching decisions is supplied by the server. The Google
search engine now utilizes this prefetching feature to reduce
access delay for top search results [10].

Now, with the popularization of wireless networks, many
access technologies have emerged, but no single technology
is best suited for every application. For example, while cellular
access can be made to be ubiquitous, it is expensive and has
a limited bandwidth. On the other hand, wireless local area
networking technologies (WLAN) such as WiFi offer high
bandwidths at low cost, but have limited coverage. In order
to create efficient networking solutions, access technologies
should be made to cooperate in heterogeneous networks. For
this reason, we examine the effects of prefetching for a two-
tier heterogeneous network.

In modern wireless network access standards such as WiFi,
there tends to be little centralized management, and no support
for higher-level functions such as prefetching. Therefore, it is

important to consider the network behavior when users base
their behaviors on their own best interests.

Recent research has examined the optimal network prefetch-
ing strategy for two-tier heterogeneous networks [11]. How-
ever, we make the observation that the optimal prefetching
strategy for a network is not the same as the optimal strategy
for an individual user [12]. For example, if all users use a
network optimal prefetching strategy with the exception of
one defecting user, the defecting user can reduce its cost by
increasing its level of prefetching. However, by doing so, the
defecting user increases the network load, and so increases
costs for all other users in the network. In a classical result,
Nash [13] shows that a symmetric equilibrium exists for any
finite multi-player game. Hence, if all users are homogeneous
and behave selfishly in selecting prefetching strategies, the
resulting prefetching strategy is at Nash Equilibrium, and
generally suboptimal.

In this paper, we derive an analytic model to calculate
and compare the network optimal prefetching strategy and
the Nash Equilibrium stategy. The main contribution of this
work is the optimization of the pricing scheme such that the
best achievable perceived cost, from the perspective of the
user, is minimized, while the network is stable, or at Nash
Equilibrium.

We begin by describing our system model in Section II.
In Section III, we characterize the expected perceived cost,
and compare the optimal and stable prefetching strategies.
Section IV discusses how pricing can be optimized. Finally,
we conclude with Section V.

II. SYSTEM MODEL

We first describe the mobility, network, and traffic models
that will be used for this discussion.

A. Mobility Model

We consider a two-tier wireless network consisting of small
high-bandwidth hot spots (WLAN) using a technology such
as WiFi, scattered throughout a ubiquitous wireless network
(CELL) using a technology such as cellular access. Mobile
users roam throughout the CELL sporadically entering and
leaving WLANs, as shown in Figure 1. Since we are assuming
that WLANs are much faster and cheaper to use than the
CELL, a user will use a WLAN exclusively when the user has
access to the WLAN. Therefore, we can model the mobility of



Fig. 1. Mobility in a two-tier heterogeneous network

Fig. 2. Mobility as a Markov process

a user using a two-state alternating renewal process (WLAN
and CELL), where the user is in either a WLAN or the
CELL. It is well known that a phase-type (PH) distribution
can be used to model any positive distribution [14], and so
we usePH random variables to represent the residence time
of a user in theWLAN andCELL states. Now, since each
PH process can be associated with a Markov process, let
mw andmc represent the number of phases in the respective
WLAN and CELL Markov processes, as shown in Figure
2. The Markov process can be described by an infinitessimal
generator matrix

A =

[

−Qw twac

tcaw −Qc

]

, (1)

where aw, of size (1 × mw), are the initialWLAN state
probabilities,−Qw, of size (mw×mw), contains the transition
rates betweenWLAN states, andtw = Qw1, of size (mw ×
1), are the absorption rates ofWLAN states. Likewise, we
havemc, ac, −Qc, andtc for CELL.

To model user mobility in practical two-tier systems, the
entries in (1) can be estimated based on historical data
collected by the service provider. The reference [15] provides
the implementation and analytical details of such an example.

B. Network Model

Since most applications that can use prefetching, such as
web surfing, news forum browsing, or database access, have
traffic patterns that are highly asymmetrical, we only consider
downlink traffic. We assume that both the base stations and

wireless access points in the CELL and WLAN are connected
to a high speed backbone network. Thus, the traffic is only
limited by the wireless access media. In the CELL, users
are given dedicated downlink access channels with a fixed
bandwidthβc. In each WLAN, however, users share a single
wireless access point with a fixed bandwidthβw, where a FIFO
queue is formed for downlink traffic1. The per-byte prices to
use the CELL and WLAN areαc andαw respectively.

Next, we first define two costs.Resource cost, related toαw

and αc is the per-byte cost that the service provider charges
the user for bandwidth utilization.Delay costis the value of
time associated with the delay incurred while a user waits for
a requested document to download. When combined together,
we obtain theperceived cost. Existing literature has shown
that a user’s perceived value of time can be estimated using
the user’s level of income [17]. We will denote the user’s value
of time αt in dollars per unit time. Users base their behavior
on the perceived cost.

C. Traffic Model

Each user generates traffic following a Poisson process with
rate λr. We assume that with each document that a user
accesses, there areK other documents that the user will access
next with significant probability2. So, with each document that
usern downloads, the user’s device immediately attempts to
prefetch, in the background, thekn documents that will be
accessed next with highest probability. We callkn theprefetch-
ing strategyfor usern, and we manipulatekn to control the
level of prefetching. Each document has an associated access
probability that is provided by the document’s source [2], [3],
[6], [7], [16]. Clearly, when a user prefetcheskn documents,
those documents will be thekn documents that the user
will most probably access next. Hence, whenkn documents
are prefetched, the probability that the user will access a
prefetched document is a cumulative distribution function
Fp(kn). For convenience, we denoteFnp(kn) = 1 − Fp(kn).

Since the download times of documents is typically small,
we assume that a batch of prefetched documents is success-
fully received when the last document of the batch arrives.
Furthermore, we make the assumption of exponentially dis-
tributed document sizes for analytical tractability. However, we
later show by simulation that the distribution of the document
sizes has little effect on the results.

III. O PTIMAL AND STABLE PREFETCHINGSTRATEGIES

As mentioned earlier, prefetching can be optimized for a
heterogeneous network to reduce resource cost and delay for

1Although it is possible to consider a prioritized queue in the WLAN,
given that we are studying selfish users, users would classify all traffic as
high-priority, unless a differential pricing scheme is used. However, current
wireless services do not differentiate pricing based on traffic class, and in
practice it is difficult to implement.

2While we do not assume any specific application, caching is implemented
on some applications such as web browsing. When documents are cached and
users repeatedly access the same document, the rate at which users request
documents is effectively decreased. While it is possible to modify our model
to accommodate caching by scaling document access rates, the details are
application dependent and thus are beyond the scope of this paper.



the user. However, the optimal prefetching strategy is generally
not a Nash Equilibrium and therefore selfish users would not
choose to behave optimally. In this section, we first give an
introduction to the notion of the optimal and stable strategies,
followed by the calculation of the expected costs used to
determine these strategies, and then we discuss the differences
between these strategies.

A. Overview of the Optimal and Stable Strategies

Let k = (k1, . . . , kN ) be the prefetching strategies of users
1, . . . , N . Let c(n)(k) be the perceived cost of a document
for usern in the WLAN. The perceived cost is a weighted
combination of the resource cost and delay cost. Now, given
the expression for the expected perceived cost, it is not difficult
to determine the network optimal prefetching strategy. If we
assume fairness in that all users use the same strategy, we
set k1 = k2 = . . . = kN = k. Substituting intoc(n)(k),
we obtain a single variable functionc(n)(k) which can be
easily optimized numerically to obtain the optimal prefetching
strategyk∗.

Next, supposeN−1 users are using the prefetching strategy
kA, and one user is usingkB . That is, sayk1 = . . . = kN−1 =
kA and kN = kB . Substituting, we obtain a two-variable
function c(n)(kA, kB). Suppose we fixkA = k∗ and optimize
c(n)(k∗, kB) overkB . We would see that in generalkB 6= k∗,
meaning thatk∗ is not a Nash Equilibrium. That is, userN
can gain by prefetching a different amount. To find the Nash
Equilibrium, where given the strategy of all users, no single
user would choose to behave otherwise, we solve the system
of equations

{

0 = ∂c(n)(kA,kB)
∂kB

kA = kB

. (2)

We will call the Nash Equilibrium for the perceived cost,ks,
the stable prefetching strategy.

Let c
(n)
r (k) andc

(n)
d (k) be expressions for the expected re-

source cost and delay. Likewise, we can also find the respective
optimal strategiesk∗

r andk∗

d, and the stable strategiesks
r and

ks
d when resource cost alone or delay alone is considered.

B. Analysis of the Expected Costs

We assume that since both the price and bandwidth of the
CELL is significantly higher than that of the WLAN, a user
would only prefetch in the WLAN. Thus, we calculate the
cost to request the next document at the time when a user
makes a decision on the number of documents to prefetch in
the WLAN.

The costs associated with downloading a document de-
pend on whether the document was previously successfully
prefetched, and if not, the current network that the user is
in. So, the costs depend on the relationships betweenTS , the
sojourn time of the WLAN queue,Tr, the request interarrival
time, andTw, the residual residence time of the user in the
WLAN. We can calculate the expected resource cost and delay
cost by considering the five possible cases, enumerated byl.

TABLE I

INTEGRATION L IMITS

Casel t
(l)
w,1 t

(l)
w,2 t

(l)
r,1 t

(l)
r,2

TS < Tr < Tw tS tw tS ∞

TS < Tw < Tr tS ∞ tw ∞

Tr < TS < Tw tS ∞ 0 tS
Tr < Tw < TS 0 tS 0 tw
Tw < TS , Tr 0 tS tw ∞

If we consider integrals of the form

∫

∞

0

∫ t
(l)
w,2

t
(l)
w,1

∫ t
(l)
r,2

t
(l)
r,1

(·)dtrdtwdtS (3)

then the integration limits fortr andtw are as shown in Table
I for each case.

Before we can discuss the costs, we must first describe
the behavior of the WLAN queue. Supposeµ = βw

W
is the

service rate for a single document in the WLAN. When user
n accesses a document, this document may or may not have
been prefetched. If the document was previously prefetched,
then the user only requestskn documents as prefetches in
preparation for the next document access. If, however, the
document was not prefetched, then the user must requestkn+1
documents. To simplify the analysis, we assume that the user
always makes requests forkn documents. This assumption is
valid because whenkn is small, the queue is rarely occupied,
so kn has little effect. Whenkn is large, however,kn and
kn + 1 are similar. This assumption is shown to be valid by
simulation in Section IV.

To calculate the distribution of the WLAN sojourn time,
we use the well known Pollaczek-Khinchin formula for the
Laplace transform of the sojourn time density of anM/G/1
queue [18]

f∗

TS
(k; s) =

s(1 − ρ(k))f∗

X(k; s)

s − λ + λf∗

X(k; s)
(4)

whereρ(k) = λr

µ

∑N
n=1 kn is the utilization of the WLAN,

f∗

X(k; s) is the Laplace transform of the density for a batch
of documents, andλ = Nλr is the aggregated WLAN traffic.

Since we are assuming that documents are exponentially
distributed, the service timeXn for a batch ofkn documents
for user n is Erlang distributed with Laplace transformed
density function

f∗

Xn
(kn; s) =

(

µ

s + µ

)kn

. (5)

When there areN identical and independent (iid) users in
the WLAN, the arrival process at the WLAN, an aggregation
of iid Poisson processes, is also Poisson, and the Laplace
transform of the density of general service timeX for a batch
of documents is

f∗

X(k; s) =
1

N

N
∑

n=1

(

µ

s + µ

)kn

. (6)



We must also first calculate the residual residence time of
a user in a WLAN. An important property ofPH renewal
processes is that the residual time of aPH renewal process is
a PH random variable. In fact, we can calculate the density
function of the WLAN residual residence time byfTw

(tw) =
q e−Qwtw Qw 1, whereq = (aw Q−1

w 1)−1aw Q−1
w [14]. Let

Qw be diagonalized asQw = Vdiag{νj}V
−1, whereνj are

the eigenvalues ofQw and V contains the eigenvectors of
Qw. The WLAN residual residence time is therefore

fTw
(tw) = qV diag{νj e−νjtw}V−1 1. (7)

We next describe the costs involved in each case.
1) Case 1:TS < Tr < Tw: In this case, the prefetched

documents arrive before the next request and before the user
leaves the WLAN. If the next document that the user requests
was prefetched, then there is no additional resource cost, and
the delay is zero. If, however, the next document that the user
requests was not prefetched, which occurs with probability
Fnp(kn), then the user must make a request on the WLAN,
which will incur an additional resource cost ofαw. To find
the expected time to service a request for asingle document
in the WLAN, we first find the expected waiting time using

λE[X2]

2(1 − ρ(k))
(8)

whereE[X2] = 1
N

∑N
n=1

kn+k2
n

µ2 [18], is the second raw mo-
ment of the Erlang distributed batch service time. Therefore,
we obtain the expected delay for a single document

E[T 1
S ] =

1

µ
+

N
∑

n=1

kn + k2
n

µ2
. (9)

Note that this is different from the sojourn time for a batch of
documents.

2) Case 2:TS < Tw < Tr: In this case, the prefetched
documents arrive before the next request, but the user’s next
request arrives after the user has left the WLAN. Hence, if a
document was not prefetched, which occurs with probability
Fnp(kn), the user must make a requestTr −Tw seconds after
it enters the CELL. When the user makes the next request,
the user may be in a WLAN or in a CELL. We can determine
the probabilities of being in either a WLAN or the CELL
after t seconds using the matrix exponentialP(t) = eAt [19].
Assuming thatA is diagonalizable with eigenvaluesσi, we
can write

P(t) = Udiag{e−σit}U−1 =
M
∑

i=1

P(i)e−σit (10)

whereU contains the eigenvectors ofA, P(i) = uiu
′

i, and
M = mc + mw. So, given that a user has just entered the
CELL, the probabilitypcw(t) that the user is in a WLANt
seconds later is given by

pcw(t) =

M
∑

i=1

ac,i





mw
∑

j=1

P
(i)
ij



 e−σit =

M
∑

i=1

ω
(cw)
i e−σit (11)

where P
(i)
ij is the ijth entry of P(i), ω

(cw)
i are constants,

and ac,i are the elements ofac. Likewise, we can compute
ω

(cc)
i andpcc(t) for the probability that the user is in a CELL.

Therefore, given that the user has just entered the CELL, the
resource cost for a requestt seconds later is

rRQ(t) = pcw(t)αw + pcc(t)αc (12)

and the delay is

dRQ(t) = pcw(t)E[T 1
S ] + pcc(t)D, (13)

whereD = W
βc

is the expected download time in the CELL.
We weight the contribution to the expected costs by the
probability that a request is made byFnp(kn).

3) Case 3:Tr < TS < Tw: In this case, the user makes
the next request before the prefetched documents arrive on
the WLAN, so the user makes a new request on the WLAN.
Since we expect thatTr is typically much larger thanTS , the
occurrence ofTr < TS means that eitherTr is very small,
or TS is very large, and the WLAN queue is backlogged.
There is a strong correlation between the sojourn time of
the prefetched documents and that of the newly requested
document. To simplify the analysis, we assume that the two
sojourn times are the same. Thus, the resource cost isαw and
the delay isTS .

4) Case 4:Tr < Tw < TS : In this case, the user makes
the next request before the prefetched documents arrive on
the WLAN, so the user makes a new request on the WLAN.
However, the user leaves the WLAN beforeTS , the arrival
time of the original prefetch, so it is impossible for the request
to arrive on the WLAN in time. Hence,Tw −Tr seconds after
the request, the user leaves the WLAN and makes a request
on the CELL. The resulting resource cost for both the WLAN
and the CELL isαw + αc and the delay cost isTw −Tr + D.

5) Case 5:Tw < TS , Tr: In this case, the user leaves the
WLAN before the arrival of the prefetched documents and the
next request. When the user does make the next request, the
user could be in a WLAN or a CELL. This case is similar
to Case 2, with the exception thatrRQ(t) anddRQ(t) are not
weighted byFnp(kn).

The integrands and integration limits from the five cases
are summarized in Table II and Table I respectively. Using
the integrandsr(l)(tr, tw, tS) We can obtain the resource cost
by

c(n)
r (k) =

5
∑

l=1

∫

∞

0

∫ t
(l)
w,2

t
(l)
w,1

∫ t
(l)
r,2

t
(l)
r,1

r(l)(tr, tw, tS)dtrdtwdtS .

(14)
Likewise, we can obtain the delay costc

(n)
d (k) using the

integrandsd(l)(tr, tw, tS). The resulting expected resource
cost is

c
(n)
r (k) = qVdiag

{

ζj

(

1 − Fp(kn)f
∗

TS
(k; νj + λr)

)

+
αcλr

νj + λr

−αcf
∗

TS
(k; νj) +

αcνj

νj + λr

f
∗

TS
(k; νj + λr)

}

V
−1

1 + αwkn (15)



TABLE II

INTEGRANDS

Casel r(l)(tr, tw, tS) d(l)(tr, tw, tS)
TS < Tr < Tw Fnp(ki)αw Fnp(ki)E[T 1

S
]

TS < Tw < Tr Fnp(ki)rRQ(Tr − Tw) Fnp(ki)dRQ(Tr − Tw)
Tr < TS < Tw αw TS

Tr < Tw < TS (αw + αc) αt(tr − tw + D)
Tw < TS , Tr rRQ(Tr − Tw) dRQ(Tr − Tw)

and the expected delay cost is

c
(n)

d
(k) = qVdiag

{

Fnp(kn)E[T1
S

]λr

λr + λw

f
∗

TS
(k; λr + λw) −

∂f∗

TS
(k; s)

∂s

∣

∣

∣

∣

s=νj

+

∂f∗

TS
(k; s)

∂s

∣

∣

∣

∣

s=νj+λr

+

(

−

νj

(νj + λr)λr

+
Dνj

νj + λr

)

f
∗

TS
(k; λr + νj)+

+Fnp(kn)

M
∑

i=1

δi

λrνj

(σi + λr)(νj + λr)
f
∗

TS
(k; νj + λr) +

∂f∗

TS
(k; s)

∂s

∣

∣

∣

∣

s=νj

+

(

νj

λr(λr + νj)
−

λr

νj(λr + νj)
− D

)

f
∗

TS
(k; νj) +

(

λrD

νj + λr

+
λr

νj(νj + λr)

)

+

M
∑

i=1

δi

λrνj

(σi + λr)(νj + λr)
(1 − f

∗

TS
(k; νj + λr))

}

V
−1

1. (16)

We obtain the perceived cost by combining the per-byte
resource cost and the delay usingW , the expected document
size, andαt, the value of a user’s time. So, the perceived cost
is

c(n)(k) = Wc(n)
r (k) + αtc

(n)
d (k). (17)

C. Validation

The accuracy of the analytic model was verified by simula-
tion. The Java-based simulator that we implemented modelled
user mobility between the WLAN and CELL networks and
real simulation of the WLAN queue.

We know that web document access frequency follows a
Zipf-like distribution, and that there is a weak correlation
between document size and access frequency [20]. Therefore,
for the remainder of this discussion we use a specific a Zipf-
like cumulative distribution function

Fp(kn) =

{

ln(kn+1)
ln(K+1) (1 − ǫ) 0 < kn < K

1 − ǫ kn ≥ K
(18)

where ǫ, assumed to be very small, is the probability that
the user does not choose any of theK documents. We point
out that the above analysis holds regardless of the distribution
used.

Figure 3 shows the analytical and simulated perceived cost
for different document size distributions, plotted with95%
confidence intervals. Each data point shown represents the re-
sults from ten simulation runs. All of the mobility models used
Erlang-distributed residence times in the WLAN and CELL,
with mean residence times oftres,w and tres,c respectively.
The parameters used wereαw = $0.1/MB, αc = $0.01/KB,
αt = $20/h, βw = 10Mbps, βc = 100kbps, W = 50KB,
mw = 4, mc = 4, tres,w = 60s, tres,c = 60s, λr = 1/20s−1,
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Fig. 3. The effect of document size distribution on perceivedcost

K = 50, and N = 10. Unless otherwise specified, these
parameters are used in later discussions. In the analytic model,
we had assumed exponentially distributed document sizes.
However, as the simulation results show in Figure 3, the
resulting perceived cost does not change significantly even
document sizes have Erlang, truncated Pareto, or Gaussian
distributions. Likely, this is because when few documents
are prefetched, there is little backlog in the WLAN, so
the delay caused by queueing is insignificant and document
size distribution has little effect. On the other hand, by the
Central Limit Theroem we see that when many documents
are prefetched, the distribution of the total size of a batch
of documents approaches Gaussian in shape, regardless of
distribution.

D. Discussion of the Stable and Optimal Strategies

We first discuss the resource cost and delay separately
to gain insight into how resource cost and delay affect the
perceived cost. Figure 4 shows how the optimal and stable
prefetching strategies,k∗

r and ks
r respectively, are affected

when resource cost aloneis considered. When the WLAN
is very cheap with respect to the CELL,αw

αc
is very small,

and each user can reduce its own resource cost by prefetching
many documents. However, in doing so, each user increases
the resource cost for all other users. For all users in the
network to minimize resource cost for everyone, the optimal
prefetching strategyk∗

r , as shown in Figure 4, is to prefetch
far less than that the stable strategyks

r . When the ratioαw

αc
is

higher, the optimal and stable strategies are very close. This
suggests that if only resource cost is considered, the pricing
ratio αw

αc
should not be too small.

Figure 5 shows how the number of users affects the optimal
and stable prefetching strategies,k∗

d andks
d respectively,when

delay aloneis considered. For small numbers of users, the
stable strategy is to prefetch as many documents as possible
(in this caseK = 50, the maximum number of documents),
which is significantly greater than the optimal strategy. This
problem, when delay alone is considered, arises when a flat-
rate pricing scheme is used. This result suggests that a flat-rate
pricing scheme results in significant suboptimality when users
are selfish.
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Figure 6 show the plots of the stable and network optimal
prefetching strategies,k∗ and ks respectively, when resource
cost and delay are combined into perceived cost. In this
figure, as the value of timeαt is increased, the tendency
for suboptimality increases. For smallαt, the behavior of
perceived cost follows that of resource cost, but for large
αt, the behavior of perceived cost follows that of delay. In
practice,αt tends to be small (e.g.$20 per hour is equivalent to
$0.0056 per second), and so resource cost typically dominates
the perceived cost.

IV. OPTIMAL PRICING

In the following section, we discuss how the pricing ratio
in a hybrid pricing scheme can be optimized.

A. Optimizing the Pricing Ratio

Suppose we consider a scenario whereαt is fixed at$20
per hour. Using the perceived cost, we can calculate that the
stable prefetching strategy isks = 6.1885, which is the actual
strategy that selfish users would use. However, the optimal
resource cost strategy isk∗

r = 5.6130, meaning that the users
are paying more than necessary, and the optimal delay strategy
is k∗

d = 11.5736, meaning that the users are also waiting
longer than necessary for requests.

In practice, it is easy to manipulate the pricing but it is
difficult to change the bandwidth given the hardware in the
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Fig. 6. The effects ofαt on prefetching, considering perceived cost

network. Therefore, the goal is to manipulate the pricing
such that the stable prefetching strategy of the perceived cost
coincides with the optimal strategies of the resource cost and
delay. In this way, the system performs optimally, and no user
would opt for a different prefetching strategy.

We propose a hybrid pricing scheme where the service
provider charges a fixed monthly feeαF in addition to the per-
byte costsαw andαc. The feeαF is set by the service provider
to make the wireless network profitable, and does not affect
the prefetching strategies of the users. In the extreme case
whenαw andαc are zero, the network uses flat-rate pricing,
where delay alone is considered for prefetching decisions.As
we saw in Figure 5, in this case the network can become highly
suboptimal.

We assume thatαF is reasonably set by the service provider,
and thus does not affect the user’s per-document perceived
cost. We assume that all users subscribe to the network
regardless ofαF , since issues of network participation are
beyond the scope of this discussion.

Since the expected cost expressions are linear with respect
to αw andαc, we are only interested in theratio between these
two costs. Therefore, we fixαc and varyαw. We expect that as
αw

αc
decreases, there is increased benefits to prefetching. Now,

when αw is decreased andαc is fixed, the service provider
would increaseαF to recuperate lost profits. The goal of this
optimization is to manage the suboptimal behavior of selfish
users such that users can achieve the best possible perceived
cost by manipulating the ratioαw

αc
. The exact values ofαw,

αc, and αF depend on the perceived utility of data and the
cost for the service provider to run a wireless network, and is
beyond the scope of this paper.

Figure 7 shows the stable and optimal strategies as the
pricing ratio is changed. We see that asαw

αc
changes, not

only does the degree of suboptimality change, but we can also
manipulateks.

We are interested in finding thebest achievable perceived
cost for selfish users. That is, the perceived cost when users
all use the stable prefetching strategyks. Fixing αc, we can
find the optimal WLAN priceα∗

w by solving

α∗

w = arg minαw

{

c(n)(ks(αw);αw)
}

(19)
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whereks(αw) is the solution to (2) usingαw. While intuitively
one would expect the best achievable perceived cost to always
decrease asαw decreases, it is not the case, as shown in
Figure 8. From this figure, we can see that to a certain degree,
reducing αw while fixing αc decreases the perceived cost
for the user. However, as we continue to decreaseαw, the
best achievable perceived cost increases rapidly. This is likely
because a lowerαw

αc
encourages more prefetching. When users

prefetch too many documents, the WLAN becomes too heavily
loaded and the WLAN queueing delay increases, prefetching
becomes less effective for all users, and so the best achievable
perceived cost increases.

Figure 8 also shows the effect ofαt, the value of time, on the
best achievable perceived cost. As the value of time increases,
the weight of delay cost increases. Since the prefetching
strategy when only delay is considered is significantly higher
than that when only resource cost is considered, more prefetch-
ing is encouraged. However, when only delay is considered,
the suboptimality is significantly greater, and so the best
achievable perceived cost is increased.

V. CONCLUSIONS

Speculative prefetching has been shown to be an effective
technique for reducing resource cost and delay in heteroge-
neous wireless networks. In modern WLANs, there is little
centralized management, so it is important that we find meth-

ods to control the effects of selfish users.
In this paper, we studied the optimal pricing for a two-

tier heterogeneous network with prefetching and selfish users.
Using an analytic model to quantify the expected perceive cost
associated with the number of documents a user prefetches,
we demonstrated the effects of variables such as pricing, the
number of WLAN users, and the value of time on the stable
and optimal prefetching strategies. We showed that the pricing
ratio can be manipulated to optimize the best achievable
perceived cost for users, such that the network is in a Nash
Equilibrium. Finally, there are many mechanisms such as trust
and courtesy that govern human interaction. The assumption
that users behave only in their own best interest provides a
worse case analysis of selfish behavior.
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