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Abstract—Wireless sensor networks consist of unreliable and network coding, such that data stored in the network can be
energy-constrained sensors connecting to each other wirelessly efficiently recovered.

As measured data may be lost due to sensor failures, maintaining  Random linear codes traditionally used in network coding
the persistence of periodically measured data in a scalable . ’ ’

fashion has become a critical challenge in sensor networks, IS a _practical_ implementation of _erasure codes_ to provic_la da
without the use of centralized servers. To cope with node failures, Persistence in sensor networks in a decentralized faskien.
while providing convenient access to measured data, we proposeargue that it is not appropriate for many applications inseen
geometric random linear codes, to encode data in a hierarchical networks due to the following reason. It has been envisioned
fashion in geographic regions with different sizes, such that data [1] that sensor networks are a database interface to thécahys

are easy to access, if the original sensors producing the data .
are alive. Otherwise, data are persistently available elsewhere world. Under such a database abstraction, a data query may

in the network. Although our coding scheme is simple, we have be injected anywhere in the sensor field, and may only be
shown that it enjoys the same low encoding cost as sparse randominterested in data measured in a small geographic region. If

linear codes, while dramatically decreasing the decoding cost. We ysing random linear codes, when measured data are segmented
g;fesceﬂr\‘}ei)ggf)';’z:g@'é’:;fca'r:;‘goﬁ(ﬁﬁrggreggﬂégsu'ts to showhe 55 original source blocks, we need as many coded blocks as the

' original source blocks to decode any useful data. Thergefore
the communication cost in collecting coded blocks to decode
any useful data is too high in these applications.

Sensor networks consist of sensors that fail dynamically!n this paper, we propose geometric random linear codes
because sensors are unreliable and energy-constrained. fuprovide both data fault tolerance and easy data access, by
thermore, as a common strategy to prolong network liféading off a modest amount of storage space. In essence, we
sensors are put through sleep scheduling to conserve enei¢ode data hierarchically in geographic regions witredfit
i.e, they are turned on and off in a periodical fashion. sizes. If sufficient sensors in neighborhood are alive when a

Yet, as sensor networks are deployed to monitor endata query arrives, these sensors can serve the requesi with
ronments, the measured data have to be preserved for 1&®@ll amount of coded blocks. On the other hand, in the event
analysis. How do we collect such periodically measured,daff 9roup sensor failures within local area, the data quenybea
which may grow to substantial volumes over time? There afglisfied by remote active sensors, albeit with a larger amou
two reasons to believe that centralized servers or sinks nfdycoded blocks and a higher communication cost.
not be the appropriate answer. First, in sensor networks, it hrough theoretical analysis, we show that although ge-
may be too costly and unrealistic to periodically maintai@Metric random linear codes disseminate more data in the
routing structurese(g., aggregation trees) to centralized sinksgncoding phase, the encoding communication cost is asymp-
again due to frequent sensor failures and energy-congerviftically identical to sparse random linear codes [2], and
measures. Second, it may not be feasible to deploy poweﬂﬁf‘?e is optimal. Desp_lte the fact that our storage overhead
sinks or storage server in inaccessible geographic regiacs 1S higher than random linear codes bylog ), given there
as isolated islands or battle fields. are N sensors in the network, we believe such a tradeoff is

In this paper, we study the challenges involved wheMrthwhile, as our decoding communication cost is asyniptot
no sinks exist in sensor networks, and where periodicaff@!ly Smaller than random linear codes ®yV/log V) under
measured data must be stored within the network itself §Pmmon sensor failure models and network parameters. More
a collaborative fashion. This conforms to the peer-to-pelfpPortantly, a small storage overhead can be justified by the
mentality, but could be a serious problem when nodes angnificantly reduced communication cost, which increabes
inherently dynamic and failure-prone. The objective ofsthil[€lime of sensor networks dramatically.
paper is to propose new coding techniques inside the nefworkhe remainder of the paper is organized as follows. In

inspired by traditional random linear codes commonly used P€¢- !, we compare our approach with related work. In
Sec. lll, we describe the network model. In Sec. IV, we

This work was supported in part by Bell Canada through it Belversity 'ntmdu.ce geom_etr'c rand_om _Ilnear COdeS'_We pr.esent exmr_]s
Laboratories R&D program. analysis of their properties in Sec. V. Simulation evaluati
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of geometric random linear codes is in Sec. VI. Sec. VIl| o|® ® o e
concludes the paper. 00 O, ® [ e
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Different variants of distributed erasure coding have been® O oo 5 t
proposed in sensor networks [2]-[5], or distributed nekedr o0 ele Cl®p 0
storage [6]-[9]. However, most of the existing work reqsire | @ @ ©®|g”|® © | g/ ®
collecting a large amount of coded data that are at least the ° @) o. o o ® )
volume of the data generated in the network in order to recove Ole ~Olo O o °

any useful data. Similar to growth codes [3] and priority
random linear codes [9], we support partially recovering of @ (b)

a SL_JbSEt of data in the _network n _thls’_ work. However, OLrL—rig. 1. (a) Leaves of the quad tree built in the sensor fielee $blid and
coding scheme targets different applications from thenmuin empty circles represent data sensors and non-data sensspsctively. (b)
applications, data queries can be injecaegwhere in a sensor Sensort belongs to multiple levels of squares.

field, and coded data are delivered to the requesting SeNSOTone time interval. These< source blocks are encoded
via mglti—hop Wireless_ co.mmunication. We are interested U}y yisseminated among aV sensors such that they can
reducing the cqmmunlcanon cost to recover Qata. In Cmtr"’,‘ﬁe retrieved elsewhere if some data sensors fail. Finaky, w
growth codes aim to recover as much as possible data on S'Ql§§ume that data queries can be injected from any sensa@ in th

in a catastrophic scenario. Hence, they exchange data amgRg, i and the destination of a data query can be anywhere
sensors with a gossiping style of protocol and have muﬁ?the sensor field as well

higher communication cost than ours. Priority random linea
codes assume that a mobile collector moves around within the V. GEOMETRIC RANDOM LINEAR CODES

sensor field to gather cached coded data directly. Hencéeunl we describe our method for encoding and decoding data

in our applications, there is no multi-hop communicatiofh sensor networks usin@Geometric Random Linear Codes
during the data gathering phase, and they do not consider taerLC).

communication cost in decoding. o ) )

Huanget al. [10] propose pyramid codes to trade space fdi Disiributed Encoding Algorithm
reading efficiency in traditional data storage systems.irThe We construct a standaxirtual quad treel” in a sensor field.
work has similar spirit as ours, but differs in three impatta The root node ofl’ corresponds to the bounding box of the
aspects. First, pyramid codes are not applicable for sevetor sensor field covering all sensors. The nodes on quadTZiree
works where data to be encoded are generated from differan¢ assigned recursively such that each node on the tree are
locations. Second, there are no concept of geographicdistadivided to four squares with equal sizestil at most one data
and locality in pyramid codes. Third, pyramid codes assunsensor exists in the leaf nodes. Fig. 1(a) shows an example of
that the decoder can access all coded data at the same titne,leaves of the quad tree. In the following, we use squares
whereas we assume that a sensor collects coded data fanmodes on the quad tree interchangeably. Since we assume
multiple sensors through wireless multi-hop communicatio that each sensor is aware of its location in the sensor field,
it is able to compute all levels of squares in the sensor field.
For example, it knows all tiles that it sits in as illustratied

Our network model consists oV sensors deployed uni- Fig. 1(b). Such information is used in the encoding algamith
formly in a square sensor field with siz¢ N x v/N. In described later in this section. Note that we do not need to
addition, we assume that all sensors know their locatiogtore the tree nodes of quad tree on sensors in practice.
in the sensor field, and greedy geographic routing or GPSRBY dividing squares by 4 recursively, it is easy to see that
[11] are implemented to route packets from one location tbere arel = log, K levels of squares with different sizes
another, through the shortest geographic path in the nktwan a sensor field. Let the root node of quad tree be the O-
Furthermore, we assume that data sensors are distributedevel square, and itéth level of descendants as thin level
uniformly among all sensors, wher& < N. Yet, we also squares. Hence, if we us€; and K; to denote the number of
assume that th& data sensors are deployed sufficiently densdl sensors and data sensors in ittelevel squares, we have
such that they cover the entire sensor field, @d= O(N), N K
i.e, K = AN, where)\ is a positive number less than 1. Note Ni= 3, K= (1)
that all N sensors, including th& data sensors, are used to

store coded data. , _ Next, we present the decentralized encoding algorithms use
We assume that each data sensor monitors the environmgng_r| c. For each square in the sensor fielde use the

and compresses the obtained measurements to generag‘?)aff‘seRandom Linear Codes (RLC) [2] to encode data in a

segment of data, referred to assaurce block hereafter, for yecentralized way. In particular, for each squérthat a data
each time interval periodically. Without loss of genesalit

we focus on the persistence of the source blocks generatetNote that there are different levels of overlapping squares

IIl. NETWORK MODEL



sensor sits in, it disseminaté3(logn) copies of its source In particular,r sends a data query to locatignthrough
block to ©(logn) uniform random locations it by greedy greedy geographic routing or GPSR. Through these routing
geographic routing or GPSR [11], whereis the number of protocols, a data query always arrive at the closest sensor t
sensors ir5. Each sensor, say sengoiin S maintains aoded location ¢. If such a sensor is one of the sensors inside the
block ¢; for S as a random linear combination of the sourckeaf of the quad tree that covers locatigrbecause the source
blocks produced irb. Initially, c; is set to 0. Upon receiving block of locationg is replicated to every sensor in the leaf
a source blockr; from a data sensof in S, sensorj will as described in Sec. IV-A, the data query is served and the

combinex; with ¢; with the following algorithm: original source block is transmitted back to senspagain
with greedy geographic routing or GPSR. If all sensors in
¢j = ¢+ BijTi (2)  the leaf of the quad tree that covers locatipfiail, then the

data query arrives at a sensor inside the parent (lBvell)
of leaf on the quad tree. Clearly, the parent of leaf covers
location ¢ as well, since the leaf is geographically a part of

where the coding coefficient; ; is chosen, uniformly at
random, from a Galois field. Beside the coded blegksensor
Jj stores the coding coefficierti; ; as well. In practice, the

: o : Ny rent. Th r m nsor r
storage overhead for coding coefficients can be |gnoredasmtS parent. The data query attempts to access sensors énat a

the size of coded blocks is usually significantly larger ttan Hosest to sensor in the parent of_ the leaf. If sufficient coded
; . blocks are available on the active sensors to dechige
coding coefficients [2].

o ) . source blocks, these coded blocks are sent back to sensor
We defer the description of the algorithm to retrieve cod r decoding. Otherwise, the data query will retrieve data o
blocks in Sec. IV-B. Instead, we present the decoding 3k '

) . e level L — 2 square that is the grandparent of the leaf. This
gorithm when a sensor has obtainég coded blocks and process continues until either the decoding is successfal i

:Eelr %ssomated (;:_odlngl CO?:'C'entS Ihn ﬂh(;le(\j/ekl)lsqiare. By %articular level of square that covers locatignor decoding
? above entc_o mgthat%orl m, eagl (;(O € h oc Leprese s even on the root node of the quad tree because of too
a linear equation wi e source blocks as the unknown many sensor failures.

variables, because the coding coefficients and the code#t blo
are known. Decoding théS; source blocks is equivalent to V. ANALYSIS
solving the linear system composed of the coded blocks. In this section, we provide rigorous analysis to charazteri
The decoding matrix represents the coefficient matrix ohsuéhe asymptotic storage and communication costs of G-RLC.
a linear system. When the rank of the decoding matrik’js .
the linear system can be solved and fkigsource blocks are A. Sensor Jorage Space Consumption
decoded. Otherwise, there is linear dependence amon@i‘the The fO||0Wing lemma characterizes the Storage requirement
coded blocks, and the sensor will continue to obtain mof@r each sensor.
coded blocks until thek; source blocks can be decoded. Lemma 1: A sensor store®)(log N) coded blocks.

In the above algorithm, we enforé(log n) copies of each Proof: A sensor belongs to at mosbg, K levels of
source block is disseminated in all levels of squares. HeweySduares as described in Sec. IV-A. It stores one coded btwck f
in practice there are only a small number of sensors locafe@ch level of squares. Hence, it stofeflog K) = O(log N)
within the leaves or the several lowest levels of the deszetsd c0ded blocks due to the fact that = ©(N). u
on the quad tree. However, the sparse decoding result (eachS compared to RLC where each sensor stores one coded
source block needs to be disseminatedetfiogn) random block [2], G-RLC consumes more storage WI'Fh z_i_loganthmlc
locations) only hold under the condition thatis sufficiently factor. However, we will show that G-RLC significantly re-
large. Hence, in these small squares, each source block ndi¢fes the communication cost of decoding in Sec. V-C.
to be disseminated to more th&logn) random locations B, Communication Cost in Decentralized Encoding

to guarantee thak'; coded blocks in thth Ieyel squareé are  \ye derive the asymptotic communication cost in the decen-
sufficient to decodek; source blocks with high probability. 1570 encoding of G-RLC, focusing on the dissemination
In the extreme case, a data sensor in a leaf on the quad {ge: ¢ o source block

replicates its data to all sensors in the leaf. Theorem 1: The dissemination cost for a source block is

. . O(vNlogN).

B. Coded Block Retrieval Algorithm ( Proo%: Bi/ our encoding algorithm described in Sec. IV-A,
We then describe the algorithm to retrieve coded blocks.source block needs to be disseminated, tvg, n sensors,

Clearly, if the network is disconnected due to node failurewhere n is the number of sensors in the square, ands

decoding always fails. Hence, in the following, we assun® constant. Furthermore, it requires,/n to disseminate a

that the network is always connected. Suppose that sensaource block to a random location in the square, wheris a

is interested in the data at locatign Note thatq is covered constant. Hence, the communication cégt) to disseminate

by a data sensor by our assumption in Sec. lll before nodesource block is

failures occur. The block retrieval algorithm seeks to hethe d(n) = creav/mlogy n

smallest square in the quad tree that cover locaticend has 2

sufficient coded blocks to decode the data on locagion = cv/nlogy n, ®3)



wherec = c;cs. failures. Furthermore, by the law of large numbers [12], the
For G-RLC, the communication cost to disseminate a soursamber of surviving sensors in the sensor field is very close t
block is the sum of the dissemination costs for lalf, K pN whenN is very large. Hence, ip < A, where\ = K/N
squares that the data sensor belongs to. Hence, the titathe coding rate, decoding almost always fails with RLC.
dissemination cosD (V) of a source block is as follows:  Therefore, in our analysis, we concentrate on the case when

D> A
D(N) = loiK d(g) ‘Theorem 2: If p > 1 (\/e)M (=2 the decoding commu-
g nication cost |99(\/_Nlog N).
log, K .Proof: We deﬂn(_aAl- as the event that.the nl_Jr_nber of
_ c \/ﬁ log E survived sensorsV/; in an ith-level square is sufficient to
pard 4i 702 g decode the data with high probability. If random coefficgent
log, K used in encoding are chosen from a sufficient large Galois
— /N Z i.(logQN— 21) flel_d, e_ventA,-, is equwalen_t to th_e eve_n{tMi > K;} [13],
= 2 which is usually the case in reality. With the same argument
log, K of the law of large numbers [12], under the conditipn- A,
<e/N log, N l we have
i=0 2 Pr(4p) = 1. (5)
< 2¢V/Nlog, N, 4 Let B; denote the event that the decoding succeedsand

where the second equality is due to Eq. (3), and all othrepresent the communication cost in tkie-level square. Then,
" quality =4 (©), have the expected decoding communication &4&t| Ao)
equalities are easy to see. We notice that in the low

descendants of the quad tree. a data sensor disseminaies der the condition that decoding succeeds at least on tie ro
€ quad ' MBe of the qguad tree.e., Ay happens, as follows:

than ©(logn) copies of its source block. However, because

these squares is very small, the dissemination cost remains =

very small, and does not change the conclusion. ] E[C|Ao] = Z Pr(Bi|A0)Ci- (6)
Because RLC has a dissemination cogb6f/N log N) [2], i=0

we conclude that G-RLC has the same asymptotic disseminaFurthermore, we have

tion cost. The underlying intuition is as follows. Although PH(Bi| Ag) — Pr(B;Ay)

data sensor disseminates more copies for each source block ie20) = Pr(Ay)

than RLC, the destinations of most copies are concentrated = PI(B;Ag)

around the data sensor, and low communication costs are < Pr(B;) @)

required. We further note that the constant in (4) is a small - e

value 2, which implies in practice the dissemination coSubstituting (7) into (6), we have

increases at most twice as compared to RLC. However, such I

tradeoff is justified by the significantly decreased decgdin E[C|Ay] < Zpr( B;)C;. (8)

communication cost as shown in Sec. V-C. part

C. Communication Cogt in Decoding Next, we derive the upper bounds 6f; and P(B;) to
Wi he followi tail del. Aft hbound the expected decoding communication dogt]. The

e assume t € following sensor tafiure model. Alter t 8ecoding communication cosl; is the product of the upper
phase (.)T decgntrallzed encodmg,_each Sensoris S“”"”“""‘? bound of the communication cosig, the diameter of the
probability p independently. We first consider the fOHOW'ngnetwork@(\/]V)) to obtain a coded block and the number of

two extre_me Cases. First, when— 1, there.are very f_gw coded blocksK; that is sufficient to decode data with high
sensor failures in the network. Hence, with high probahikit Probability Hence. we have
ee ’

data query is able to be served in the leaves of the quad t
with the original source block. Therefore, the communiati C; < K;e;V'N = eN;V/N, 9)
cost for decoding the data is the diameter of the sensor ﬁ%!ﬁllerecl andc = \¢, are constants, ani; and N; are from
O(V/N). Note that we have significant improvement ove B ‘
RLC in such a case, as its decoding communication cost'i
©(N+/N) [2]. Second, ifp — 0, most sensors die such thay
both our coding scheme and RLC are unable to decode d

%\Iext, we compute FB;). Because decoding occurs at the
evel only if decoding fails from level 41 to level L. Hence,

have
because either the network is partitioned or insufficiertecb L
data remain in the sensor field. In the following, we investy Pr(B;) = Pr(A;Aiy1--- AL)
how the decoding communication cost scaleg dissumes a = Pr(A;[Aiy - AL)PH( A1 - AL)
value between 0 and 1. —_
For analytical convenience while still capturing the peshl < PrlAin )
essence, we ignore the effect of network partition due teenod < Pr(Aita). (10)



The event4,;; happens if less thaft; ;; sensors survive in

Theorem 2 shows that our coding scheme has much smaller

thei+ 1th level of square. Furthermore, given the independedecoding communication cost than RLC as long as the surviv-
sensor failure model, the number of sensors that are sti# aling probability p is sufficiently large.

conforms to a binomial distribution. Hence, we have

Koot N .
Prdi) = > ( o )p](l—p)Ni“_J
=0 J
Kiy1
5 e

) (1 _ p)Ni+1*Ki+1

(
< (.«31\72‘+1>Ki+1 (1 _p)(l—)\)NHl
()

=«

11)

VI. SIMULATION VALIDATION

In this section, we demonstrate the advantage of G-RLC
with simulations. Our simulation results are consistertd an
complement with the asymptotic theoretical results preskn
in Sec. V. We have implemented both RLC and G-RLC on
a grid network with size/N x v/N, where a random subset
of K sensors monitor the environment and generate data. We
set N = 47 = 16384 and K = N/2. Furthermore, we use
GF(2®) as the Galois field where G-RLC and RLC are operated
in all simulations. To focus on understanding the algorithm
performance difference between RLC and G-RLC, we ignore
the effect of network partition due to node failures, beeaitis
has the same impact on both coding schemes.

The experiments are performed as follows. Thkesource
blocks produced by data sensors are encoded with G-RLC and

where the second inequality is due to the tails of the bRLC, respectively. Each sensor then survives with profgbil
nomial distribution [14], the third inequality is becausé of: Afterwards, the source and the destination of a data query

the binomial bounds [14], and the fact thaf, = \N;.

are randomly chosen in the sensor field. The source then sends

a = (\e)M1/(1—p))'~> is used to simplify the notations. & data query to the destination, and we use the decoding

Hence, PfA;.;) decreases exponentially i > 1, i.e,
p>1—(N\e)MIN,

For the special case where a source block is replicated’/'}o

all Ny, sensors in a square of level The eventB denoting

algorithms of G-RLC and RLC to decode data.

Data Resilience
We first illustrate the data resilience performance of G-RLC

decoding success occurs if at least one sensor is alive in #m RLC in Fig. 2, where the fraction of data queries with

square. Therefore, we have
Pr(Br)=1-(1-p)" <1 (12)

where we use a trivial bound 1.

decoding success among all 1000 independent data queries
is reported. We observe that if the surviving probabilitys
greater than the percentage of data sensas > 0.5, both
G-RLC and RLC are able to serve almost all data queries

We are now ready to bound the conditional expected dedccessfully. However, ip < 0.5, almost all data queries of
coding communication cost. Substituting (11) to (10), theRLC fail. This is due to the fact that the number of survived

(9), (10), and (12) to (8), we have

L—1
E[C|Ag) < eNLVN + > a NitteN;VN
=0

L—-1
= C\/N(NL + Z NiOé_NHl).
=0
Let f(i) = N;a~Ni+1, We will show thatf (i) < f(i+1) when
1 is asymptotically less thalh = O(log N) by the following
argument:

(13)

1+1 3
f(f(i) ) _ 1w
> 1 (14)
Henceforth, (13) becomes
E[C|Ao] < O(WN(Ny + LNpa~Nr))
=O(VNlogN), (15)

where the second equality utilizes the fact that O(log N),
and Ny, = N/4% is a constant. ]

sensors are very closepdV as justified in Sec. V-C by the law

of large numbers. Hence, there are insufficient coded blocks
remained in the network to decode &l source blocks with
high probability, if p < 0.5. On the other hand, G-RLC can
decode a faction of data evenjif< 0.5. This is because G-
RLC encodes data within small squares where the number
of sensors is much smaller, and the law of large numbers
does not apply. Therefore, in small squares of G-RLC, the
probability that there are sufficient sensors alive to pievi
coded data is much higher than in RLC. In summary, Fig. 2
demonstrates that G-RLC provides significantly highertfaul
tolerance than RLC when the surviving probabilitis smaller
than the percentage of data sensors in the network.

B. Decoding Communication Cost

Next, we study the decoding communication cost of both
coding schemes. To mitigate randomness in simulations, we
show, for each data point in Fig. 3, the average and the 95%
confidence intervals from 100 independent experiments. The
experimental data of decoding communication costs cansist
of both the case of decoding success and decoding failure.



1r same argument for RLC. However, G-RLC differs from RLC
8 in that its decoding communication starts to decrease when p
Sos8 -6-G-RL(| is around 0.3 and decreases very fast wheapproaches 0.5
g ~CRLC because the increasing density of active sensors.
©
20'6 VIl. CONCLUSION
g In this paper, we introduce geometric random linear codes
S 041 . . . .
K to provide both data persistence and convenient data aircess
g sensor networks. Our study is based on extensive thedretica
B 0.2 analysis and experimental evaluations. We have shown that
T in comparison with random linear codes, although geometric
o ‘ ‘ ‘ ‘ ] random linear codes introduce a modest storage overhead
0.2 0.4 0.6 0.8 1

Surviving probability

Fig. 2. The fraction of success data queries under diffesensor surviving
probabilities.

x 10°

——G-RLC| 1
——RLC

~
T

Decoding communication cost
= N w N a1 (2]

o
T
L

0.8

g

0.4 0.6
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0.2

Fig. 3. The decoding communication cost under different seasuviving
probabilities.

and a small additional communication cost in decentralized
encoding, it significantly reduces the communication cost t
decode useful data, when a query is only interested in the
data generated in a small geographic subregion, as compared
to random linear codes. Hence, the proposed coding scheme
represents a significant step toward applying practicafjeisa

of decentralized erasure coding in sensor networks.

REFERENCES

[1] R. Govindan, J. Hellerstein, W. Hong, S. Madden, M. Fiamkand
S. Shenker, “The Sensor Network As a Database,” Universiyouth-
ern California, Tech. Rep., 2002.

[2] A. G. Dimakis, V. Prabhakaran, and K. Ramchandran, “Deedized
Erasure Codes for Distributed Networked StoradBFE Transactions
on Information Theory, vol. 52, no. 6, pp. 2809-2816, June 2006.

[3] A. Kamra, J. Feldman, V. Misra, and D. Rubenstein, “Growthd€s:
Maximizing Sensor Network Data Persistence,’Hroc. of ACM S G-
COMM, 2006.

[4] D.Wang, Q. Zhang, and J. Liu, “Partial Network Coding @ontinuous
Data Collection in Sensor Networks,” iProc. of the Fourteenth |EEE
International Workshop on Quality of Service (IWQoS), 2006.

[5] Y. Lin, B. Liang, and B. Li, “Data Persistence in Largease Sensor
Networks with Decentralized Fountain Codes,"Rroc. of IEEE INFO-
COM, 2007.

[6] S. Acedanski, S. Deb, M. Medard, and R. Koetter, “How Gded
Random Linear Coding Based Distributed Networked Storage?
Proc. of First Workshop on Network Coding, Theory, and Applications
(NetCod), 2005.

If decoding succeeds, the decoding communication cost refd A. G. Dimakis, P. B. Godfrey, M. Wainwright, and K. Ramchaan,

resents the amount of the transmissions in terms of hop

“Network Coding for Distributed Storage Systems,” Bnoc. of IEEE
INFOCOM, 2007.

counts in order to answer a data query. On the other han@; c. wu and B. Li, “Echelon: Peer-to-Peer Network Diagrsosith Net-
if decoding fails, the decoding communication cost is the work Coding,” inProc. of the Fourteenth |EEE International Workshop

total communication cost that the data query gathers akdod

blocks on all active sensors.

We describe our findings from Fig. 3. First, we observe that
the decoding communication cost of G-RLC is significantlg}o]

on Quality of Service (IWQoS), 2006.
[9] Y. Lin, B. Li, and B. Liang, “Differentiated Data Persestce with
Priority Random Linear Codes,” ifroc. of 27th IEEE International
Conference on Distributed Computing Systems (ICDCS), 2007.
C. Huang, M. Chen, and J. Li, “Pyramid Codes: Flexible Soks to
Trade Space for Access Efficiency in Reliable Data Storagste8ys,”

smaller than RLC as eXpeCted, because of G-RLC can retrieve in Proc. of IEEE International Symposium on Network Computing and
and decode from a small geographic region with significantlﬁl Applicationsd(NCA), 2007. GPSR. Greed StateRe

; ot B. Karp and H. T. Kung, “GPSR: Greedy Perimeter StateRsating
less coded data. Second, the decoding communication COStOf (& \yue oo Networks.” inProc. of the 6th ACM Annual International
RLC increases when the surviving pr0bab||lty increasemfro Conference on Mobile Computing and Networking (MobiCom), 2000.
0.1 to 0.5. This is because there are insufficient sensors &t M. Mitzenmacher and E. UpfaProbability and Computing: Random:
decoding success such that coded data on all active sensorsgfgss'%%ggms and Probabilistic Analysis.  Cambridge University
are collected. Hence, the communication cost in propottion i3] T. Ho, R. Koetter, M. Medard, D. R. Karger, and M. EffrdShe
the number of active sensors in the network, which increases Bfenefits of Cocliingaj over Routing in ]:a Rar]domihzed szeét(i)nsg,’thc.

; . A ; of IEEE International Symposium on Information Theory, .

with the_ SU!’VIVlng probablllty. pr > 0.5, the deCOdmg 514] T. H. Cormen, C. E. Leiserson, R. L. Rivest, and C. Sthiiroduction
communication cost of RLC decreases because the coded dafato aigorithms. The MIT Press, 2001.
can be gathered from more and more active sensors in local
area. Third, similarly, we can explain the increasing tréod

G-RLC when the surviving probability is very small with the



