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Abstract—Wireless sensor networks consist of unreliable and
energy-constrained sensors connecting to each other wirelessly.
As measured data may be lost due to sensor failures, maintaining
the persistence of periodically measured data in a scalable
fashion has become a critical challenge in sensor networks,
without the use of centralized servers. To cope with node failures,
while providing convenient access to measured data, we propose
geometric random linear codes, to encode data in a hierarchical
fashion in geographic regions with different sizes, such that data
are easy to access, if the original sensors producing the data
are alive. Otherwise, data are persistently available elsewhere
in the network. Although our coding scheme is simple, we have
shown that it enjoys the same low encoding cost as sparse random
linear codes, while dramatically decreasing the decoding cost. We
present extensive analytical and experimental results to show the
effectiveness of geometric random linear codes.

I. I NTRODUCTION

Sensor networks consist of sensors that fail dynamically
because sensors are unreliable and energy-constrained. Fur-
thermore, as a common strategy to prolong network life,
sensors are put through sleep scheduling to conserve energy,
i.e., they are turned on and off in a periodical fashion.

Yet, as sensor networks are deployed to monitor envi-
ronments, the measured data have to be preserved for later
analysis. How do we collect such periodically measured data,
which may grow to substantial volumes over time? There are
two reasons to believe that centralized servers or sinks may
not be the appropriate answer. First, in sensor networks, it
may be too costly and unrealistic to periodically maintain
routing structures (e.g., aggregation trees) to centralized sinks,
again due to frequent sensor failures and energy-conserving
measures. Second, it may not be feasible to deploy powered
sinks or storage server in inaccessible geographic regionssuch
as isolated islands or battle fields.

In this paper, we study the challenges involved where
no sinks exist in sensor networks, and where periodically
measured data must be stored within the network itself in
a collaborative fashion. This conforms to the peer-to-peer
mentality, but could be a serious problem when nodes are
inherently dynamic and failure-prone. The objective of this
paper is to propose new coding techniques inside the network,
inspired by traditional random linear codes commonly used in
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network coding, such that data stored in the network can be
efficiently recovered.

Random linear codes, traditionally used in network coding,
is a practical implementation of erasure codes to provide data
persistence in sensor networks in a decentralized fashion.We
argue that it is not appropriate for many applications in sensor
networks due to the following reason. It has been envisioned
[1] that sensor networks are a database interface to the physical
world. Under such a database abstraction, a data query may
be injected anywhere in the sensor field, and may only be
interested in data measured in a small geographic region. If
using random linear codes, when measured data are segmented
as original source blocks, we need as many coded blocks as the
original source blocks to decode any useful data. Therefore,
the communication cost in collecting coded blocks to decode
any useful data is too high in these applications.

In this paper, we propose geometric random linear codes
to provide both data fault tolerance and easy data access, by
trading off a modest amount of storage space. In essence, we
encode data hierarchically in geographic regions with different
sizes. If sufficient sensors in neighborhood are alive when a
data query arrives, these sensors can serve the request witha
small amount of coded blocks. On the other hand, in the event
of group sensor failures within local area, the data query can be
satisfied by remote active sensors, albeit with a larger amount
of coded blocks and a higher communication cost.

Through theoretical analysis, we show that although ge-
ometric random linear codes disseminate more data in the
encoding phase, the encoding communication cost is asymp-
totically identical to sparse random linear codes [2], and
hence is optimal. Despite the fact that our storage overhead
is higher than random linear codes byO(log N), given there
are N sensors in the network, we believe such a tradeoff is
worthwhile, as our decoding communication cost is asymptoti-
cally smaller than random linear codes byΘ(N/ log N) under
common sensor failure models and network parameters. More
importantly, a small storage overhead can be justified by the
significantly reduced communication cost, which increasesthe
lifetime of sensor networks dramatically.

The remainder of the paper is organized as follows. In
Sec. II, we compare our approach with related work. In
Sec. III, we describe the network model. In Sec. IV, we
introduce geometric random linear codes. We present extensive
analysis of their properties in Sec. V. Simulation evaluation



of geometric random linear codes is in Sec. VI. Sec. VII
concludes the paper.

II. RELATED WORK

Different variants of distributed erasure coding have been
proposed in sensor networks [2]–[5], or distributed networked
storage [6]–[9]. However, most of the existing work requires
collecting a large amount of coded data that are at least the
volume of the data generated in the network in order to recover
any useful data. Similar to growth codes [3] and priority
random linear codes [9], we support partially recovering of
a subset of data in the network in this work. However, our
coding scheme targets different applications from them. Inour
applications, data queries can be injectedanywhere in a sensor
field, and coded data are delivered to the requesting sensor
via multi-hop wireless communication. We are interested in
reducing the communication cost to recover data. In contrast,
growth codes aim to recover as much as possible data on sinks
in a catastrophic scenario. Hence, they exchange data among
sensors with a gossiping style of protocol and have much
higher communication cost than ours. Priority random linear
codes assume that a mobile collector moves around within the
sensor field to gather cached coded data directly. Hence, unlike
in our applications, there is no multi-hop communication
during the data gathering phase, and they do not consider the
communication cost in decoding.

Huanget al. [10] propose pyramid codes to trade space for
reading efficiency in traditional data storage systems. Their
work has similar spirit as ours, but differs in three important
aspects. First, pyramid codes are not applicable for sensornet-
works where data to be encoded are generated from different
locations. Second, there are no concept of geographic distance
and locality in pyramid codes. Third, pyramid codes assume
that the decoder can access all coded data at the same time,
whereas we assume that a sensor collects coded data from
multiple sensors through wireless multi-hop communication.

III. N ETWORK MODEL

Our network model consists ofN sensors deployed uni-
formly in a square sensor field with size

√
N ×

√
N . In

addition, we assume that all sensors know their locations
in the sensor field, and greedy geographic routing or GPSR
[11] are implemented to route packets from one location to
another, through the shortest geographic path in the network.
Furthermore, we assume thatK data sensors are distributed
uniformly among all sensors, whereK ≤ N . Yet, we also
assume that theK data sensors are deployed sufficiently dense
such that they cover the entire sensor field, andK = Θ(N),
i.e., K = λN , whereλ is a positive number less than 1. Note
that all N sensors, including theK data sensors, are used to
store coded data.

We assume that each data sensor monitors the environment
and compresses the obtained measurements to generate a
segment of data, referred to as asource block hereafter, for
each time interval periodically. Without loss of generality,
we focus on the persistence of the source blocks generated
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Fig. 1. (a) Leaves of the quad tree built in the sensor field. The solid and
empty circles represent data sensors and non-data sensors, respectively. (b)
Sensort belongs to multiple levels of squares.

in one time interval. TheseK source blocks are encoded
and disseminated among allN sensors such that they can
be retrieved elsewhere if some data sensors fail. Finally, we
assume that data queries can be injected from any sensor in the
network, and the destination of a data query can be anywhere
in the sensor field as well.

IV. GEOMETRIC RANDOM L INEAR CODES

We describe our method for encoding and decoding data
in sensor networks usingGeometric Random Linear Codes
(G-RLC).

A. Distributed Encoding Algorithm

We construct a standardvirtual quad treeT in a sensor field.
The root node ofT corresponds to the bounding box of the
sensor field covering all sensors. The nodes on quad treeT
are assigned recursively such that each node on the tree are
divided to four squares with equal sizes,until at most one data
sensor exists in the leaf nodes. Fig. 1(a) shows an example of
the leaves of the quad tree. In the following, we use squares
or nodes on the quad tree interchangeably. Since we assume
that each sensor is aware of its location in the sensor field,
it is able to compute all levels of squares in the sensor field.
For example, it knows all tiles that it sits in as illustratedin
Fig. 1(b). Such information is used in the encoding algorithm
described later in this section. Note that we do not need to
store the tree nodes of quad tree on sensors in practice.

By dividing squares by 4 recursively, it is easy to see that
there areL = log4 K levels of squares with different sizes
in a sensor field. Let the root node of quad tree be the 0-
level square, and itsith level of descendants as theith level
squares. Hence, if we useNi andKi to denote the number of
all sensors and data sensors in theith level squares, we have

Ni =
N

4i
, Ki =

K

4i
. (1)

Next, we present the decentralized encoding algorithms used
in G-RLC. For each square in the sensor field1, we use the
sparseRandom Linear Codes (RLC) [2] to encode data in a
decentralized way. In particular, for each squareS that a data

1Note that there are different levels of overlapping squares.



sensor sits in, it disseminatesΘ(log n) copies of its source
block to Θ(log n) uniform random locations inS by greedy
geographic routing or GPSR [11], wheren is the number of
sensors inS. Each sensor, say sensorj, in S maintains acoded
block cj for S as a random linear combination of the source
blocks produced inS. Initially, cj is set to 0. Upon receiving
a source blockxi from a data sensori in S, sensorj will
combinexi with cj with the following algorithm:

cj = cj + βi,jxi (2)

where the coding coefficientβi,j is chosen, uniformly at
random, from a Galois field. Beside the coded blockcj , sensor
j stores the coding coefficientβi,j as well. In practice, the
storage overhead for coding coefficients can be ignored since
the size of coded blocks is usually significantly larger thanthe
coding coefficients [2].

We defer the description of the algorithm to retrieve coded
blocks in Sec. IV-B. Instead, we present the decoding al-
gorithm when a sensor has obtainedKi coded blocks and
their associated coding coefficients in anith-level square. By
the above encoding algorithm, each coded block represents
a linear equation with the source blocksxi as the unknown
variables, because the coding coefficients and the coded block
are known. Decoding theKi source blocks is equivalent to
solving the linear system composed of theKi coded blocks.
The decoding matrix represents the coefficient matrix of such
a linear system. When the rank of the decoding matrix isKi,
the linear system can be solved and theKi source blocks are
decoded. Otherwise, there is linear dependence among theKi

coded blocks, and the sensor will continue to obtain more
coded blocks until theKi source blocks can be decoded.

In the above algorithm, we enforceΘ(log n) copies of each
source block is disseminated in all levels of squares. However,
in practice there are only a small number of sensors located
within the leaves or the several lowest levels of the descendants
on the quad tree. However, the sparse decoding result (each
source block needs to be disseminated toΘ(log n) random
locations) only hold under the condition thatn is sufficiently
large. Hence, in these small squares, each source block needs
to be disseminated to more thanΘ(log n) random locations
to guarantee thatKi coded blocks in theith level square are
sufficient to decodeKi source blocks with high probability.
In the extreme case, a data sensor in a leaf on the quad tree
replicates its data to all sensors in the leaf.

B. Coded Block Retrieval Algorithm

We then describe the algorithm to retrieve coded blocks.
Clearly, if the network is disconnected due to node failures,
decoding always fails. Hence, in the following, we assume
that the network is always connected. Suppose that sensorr
is interested in the data at locationq. Note thatq is covered
by a data sensor by our assumption in Sec. III before node
failures occur. The block retrieval algorithm seeks to reach the
smallest square in the quad tree that cover locationq, and has
sufficient coded blocks to decode the data on locationq.

In particular, r sends a data query to locationq through
greedy geographic routing or GPSR. Through these routing
protocols, a data query always arrive at the closest sensor to
location q. If such a sensor is one of the sensors inside the
leaf of the quad tree that covers locationq, because the source
block of locationq is replicated to every sensor in the leaf
as described in Sec. IV-A, the data query is served and the
original source block is transmitted back to sensorr, again
with greedy geographic routing or GPSR. If all sensors in
the leaf of the quad tree that covers locationq fail, then the
data query arrives at a sensor inside the parent (levelL − 1)
of leaf on the quad tree. Clearly, the parent of leaf covers
location q as well, since the leaf is geographically a part of
its parent. The data query attempts to access sensors that are
closest to sensorr in the parent of the leaf. If sufficient coded
blocks are available on the active sensors to decodeKL−1

source blocks, these coded blocks are sent back to sensorr
for decoding. Otherwise, the data query will retrieve data on
the levelL− 2 square that is the grandparent of the leaf. This
process continues until either the decoding is successful in a
particular level of square that covers locationq, or decoding
fails even on the root node of the quad tree because of too
many sensor failures.

V. A NALYSIS

In this section, we provide rigorous analysis to characterize
the asymptotic storage and communication costs of G-RLC.

A. Sensor Storage Space Consumption

The following lemma characterizes the storage requirement
for each sensor.

Lemma 1: A sensor storesO(log N) coded blocks.
Proof: A sensor belongs to at mostlog4 K levels of

squares as described in Sec. IV-A. It stores one coded block for
each level of squares. Hence, it storesO(log K) = O(log N)
coded blocks due to the fact thatK = Θ(N).

As compared to RLC where each sensor stores one coded
block [2], G-RLC consumes more storage with a logarithmic
factor. However, we will show that G-RLC significantly re-
duces the communication cost of decoding in Sec. V-C.

B. Communication Cost in Decentralized Encoding

We derive the asymptotic communication cost in the decen-
tralized encoding of G-RLC, focusing on the dissemination
cost of a source block.

Theorem 1: The dissemination cost for a source block is
Θ(

√
N log N).
Proof: By our encoding algorithm described in Sec. IV-A,

a source block needs to be disseminated toc1 log2 n sensors,
where n is the number of sensors in the square, andc1 is
a constant. Furthermore, it requiresc2

√
n to disseminate a

source block to a random location in the square, wherec2 is a
constant. Hence, the communication costd(n) to disseminate
a source block is

d(n) = c1c2

√
n log2 n

= c
√

n log2 n, (3)



wherec = c1c2.
For G-RLC, the communication cost to disseminate a source

block is the sum of the dissemination costs for alllog4 K
squares that the data sensor belongs to. Hence, the total
dissemination costD(N) of a source block is as follows:

D(N) =

log4 K
∑

i=0

d(
N

4i
)

=

log4 K
∑

i=0

c

√

N

4i
log2

N

4i

= c
√

N

log4 K
∑

i=0

1

2i
(log2 N − 2i)

≤ c
√

N log2 N

log4 K
∑

i=0

1

2i

≤ 2c
√

N log2 N, (4)

where the second equality is due to Eq. (3), and all other
equalities are easy to see. We notice that in the lowest
descendants of the quad tree, a data sensor disseminates more
than Θ(log n) copies of its source block. However, because
these squares is very small, the dissemination cost remains
very small, and does not change the conclusion.

Because RLC has a dissemination cost ofΘ(
√

N log N) [2],
we conclude that G-RLC has the same asymptotic dissemina-
tion cost. The underlying intuition is as follows. Althougha
data sensor disseminates more copies for each source block
than RLC, the destinations of most copies are concentrated
around the data sensor, and low communication costs are
required. We further note that the constant in (4) is a small
value 2, which implies in practice the dissemination cost
increases at most twice as compared to RLC. However, such
tradeoff is justified by the significantly decreased decoding
communication cost as shown in Sec. V-C.

C. Communication Cost in Decoding

We assume the following sensor failure model. After the
phase of decentralized encoding, each sensor is still alivewith
probability p independently. We first consider the following
two extreme cases. First, whenp → 1, there are very few
sensor failures in the network. Hence, with high probability, a
data query is able to be served in the leaves of the quad tree
with the original source block. Therefore, the communication
cost for decoding the data is the diameter of the sensor field
Θ(

√
N). Note that we have significant improvement over

RLC in such a case, as its decoding communication cost is
Θ(N

√
N) [2]. Second, ifp → 0, most sensors die such that

both our coding scheme and RLC are unable to decode data
because either the network is partitioned or insufficient coded
data remain in the sensor field. In the following, we investigate
how the decoding communication cost scales ifp assumes a
value between 0 and 1.

For analytical convenience while still capturing the problem
essence, we ignore the effect of network partition due to node

failures. Furthermore, by the law of large numbers [12], the
number of surviving sensors in the sensor field is very close to
pN whenN is very large. Hence, ifp < λ, whereλ = K/N
is the coding rate, decoding almost always fails with RLC.
Therefore, in our analysis, we concentrate on the case when
p > λ.

Theorem 2: If p > 1−(λ/e)λ/(1−λ), the decoding commu-
nication cost isΘ(

√
N log N).

Proof: We defineAi as the event that the number of
survived sensorsMi in an ith-level square is sufficient to
decode the data with high probability. If random coefficients
used in encoding are chosen from a sufficient large Galois
field, eventAi is equivalent to the event{Mi ≥ Ki} [13],
which is usually the case in reality. With the same argument
of the law of large numbers [12], under the conditionp > λ,
we have

Pr(A0) = 1. (5)

Let Bi denote the event that the decoding succeeds, andCi

represent the communication cost in theith-level square. Then,
we have the expected decoding communication costE[C|A0]
under the condition that decoding succeeds at least on the root
node of the quad tree,i.e., A0 happens, as follows:

E[C|A0] =

L
∑

i=0

Pr(Bi|A0)Ci. (6)

Furthermore, we have

Pr(Bi|A0) =
Pr(BiA0)

Pr(A0)

= Pr(BiA0)

≤ Pr(Bi). (7)

Substituting (7) into (6), we have

E[C|A0] ≤
L
∑

i=0

Pr(Bi)Ci. (8)

Next, we derive the upper bounds ofCi and Pr(Bi) to
bound the expected decoding communication costE[C]. The
decoding communication costCi is the product of the upper
bound of the communication cost (i.e., the diameter of the
networkΘ(

√
N)) to obtain a coded block and the number of

coded blocksKi that is sufficient to decode data with high
probability. Hence, we have

Ci ≤ Kic1

√
N = cNi

√
N, (9)

wherec1 andc = λc1 are constants, andKi andNi are from
(1).

Next, we compute Pr(Bi). Because decoding occurs at thei
level only if decoding fails from leveli+1 to levelL. Hence,
we have

Pr(Bi) = Pr(AiAi+1 · · ·AL)

= Pr(Ai|Ai+1 · · ·AL)Pr(Ai+1 · · ·AL)

≤ Pr(Ai+1 · · ·AL)

≤ Pr(Ai+1). (10)



The eventAi+1 happens if less thanKi+1 sensors survive in
the i+1th level of square. Furthermore, given the independent
sensor failure model, the number of sensors that are still alive
conforms to a binomial distribution. Hence, we have

Pr(Ai+1) =

Ki+1−1
∑

j=0

(

Ni+1

j

)

pj(1 − p)Ni+1−j

≤
Ki+1
∑

j=0

(

Ni+1

j

)

pj(1 − p)Ni+1−j

≤
(

Ni+1

Ki+1

)

(1 − p)Ni+1−Ki+1

≤
(

eNi+1

Ki+1

)Ki+1

(1 − p)(1−λ)Ni+1

=

(

(

λ

e

)λ(
1

1 − p

)1−λ
)

−Ni+1

= α−Ni+1 , (11)

where the second inequality is due to the tails of the bi-
nomial distribution [14], the third inequality is because of
the binomial bounds [14], and the fact thatKi = λNi.
α = (λ/e)λ(1/(1 − p))1−λ is used to simplify the notations.
Hence, Pr(Ai+1) decreases exponentially ifα > 1, i.e.,
p > 1 − (λ/e)λ/(1−λ).

For the special case where a source block is replicated to
all NL sensors in a square of levelL. The eventBL denoting
decoding success occurs if at least one sensor is alive in the
square. Therefore, we have

Pr(BL) = 1 − (1 − p)NL ≤ 1 (12)

where we use a trivial bound 1.
We are now ready to bound the conditional expected de-

coding communication cost. Substituting (11) to (10), then
(9), (10), and (12) to (8), we have

E[C|A0] ≤ cNL

√
N +

L−1
∑

i=0

α−Ni+1cNi

√
N

= c
√

N(NL +

L−1
∑

i=0

Niα
−Ni+1). (13)

Let f(i) = Niα
−Ni+1 . We will show thatf(i) ≤ f(i+1) when

i is asymptotically less thanL = O(log N) by the following
argument:

f(i + 1)

f(i)
=

1

4
α

3

4i+2 N

> 1. (14)

Henceforth, (13) becomes

E[C|A0] ≤ O(
√

N(NL + LNLα−NL))

= O(
√

N log N), (15)

where the second equality utilizes the fact thatL = O(log N),
andNL = N/4L is a constant.

Theorem 2 shows that our coding scheme has much smaller
decoding communication cost than RLC as long as the surviv-
ing probabilityp is sufficiently large.

VI. SIMULATION VALIDATION

In this section, we demonstrate the advantage of G-RLC
with simulations. Our simulation results are consistent and in
complement with the asymptotic theoretical results presented
in Sec. V. We have implemented both RLC and G-RLC on
a grid network with size

√
N ×

√
N , where a random subset

of K sensors monitor the environment and generate data. We
set N = 47 = 16384 and K = N/2. Furthermore, we use
GF(28) as the Galois field where G-RLC and RLC are operated
in all simulations. To focus on understanding the algorithmic
performance difference between RLC and G-RLC, we ignore
the effect of network partition due to node failures, because it
has the same impact on both coding schemes.

The experiments are performed as follows. TheK source
blocks produced by data sensors are encoded with G-RLC and
RLC, respectively. Each sensor then survives with probability
p. Afterwards, the source and the destination of a data query
are randomly chosen in the sensor field. The source then sends
a data query to the destination, and we use the decoding
algorithms of G-RLC and RLC to decode data.

A. Data Resilience

We first illustrate the data resilience performance of G-RLC
and RLC in Fig. 2, where the fraction of data queries with
decoding success among all 1000 independent data queries
is reported. We observe that if the surviving probabilityp is
greater than the percentage of data sensors (i.e., p > 0.5, both
G-RLC and RLC are able to serve almost all data queries
successfully. However, ifp < 0.5, almost all data queries of
RLC fail. This is due to the fact that the number of survived
sensors are very close topN as justified in Sec. V-C by the law
of large numbers. Hence, there are insufficient coded blocks
remained in the network to decode allK source blocks with
high probability, if p < 0.5. On the other hand, G-RLC can
decode a faction of data even ifp < 0.5. This is because G-
RLC encodes data within small squares where the number
of sensors is much smaller, and the law of large numbers
does not apply. Therefore, in small squares of G-RLC, the
probability that there are sufficient sensors alive to provide
coded data is much higher than in RLC. In summary, Fig. 2
demonstrates that G-RLC provides significantly higher fault
tolerance than RLC when the surviving probabilityp is smaller
than the percentage of data sensors in the network.

B. Decoding Communication Cost

Next, we study the decoding communication cost of both
coding schemes. To mitigate randomness in simulations, we
show, for each data point in Fig. 3, the average and the 95%
confidence intervals from 100 independent experiments. The
experimental data of decoding communication costs consists
of both the case of decoding success and decoding failure.
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Fig. 2. The fraction of success data queries under differentsensor surviving
probabilities.
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Fig. 3. The decoding communication cost under different sensor surviving
probabilities.

If decoding succeeds, the decoding communication cost rep-
resents the amount of the transmissions in terms of hop
counts in order to answer a data query. On the other hand,
if decoding fails, the decoding communication cost is the
total communication cost that the data query gathers all coded
blocks on all active sensors.

We describe our findings from Fig. 3. First, we observe that
the decoding communication cost of G-RLC is significantly
smaller than RLC as expected, because of G-RLC can retrieve
and decode from a small geographic region with significantly
less coded data. Second, the decoding communication cost of
RLC increases when the surviving probability increases from
0.1 to 0.5. This is because there are insufficient sensors for
decoding success such that coded data on all active sensors
are collected. Hence, the communication cost in proportionto
the number of active sensors in the network, which increases
with the surviving probability. If p > 0.5, the decoding
communication cost of RLC decreases because the coded data
can be gathered from more and more active sensors in local
area. Third, similarly, we can explain the increasing trendfor
G-RLC when the surviving probability is very small with the

same argument for RLC. However, G-RLC differs from RLC
in that its decoding communication starts to decrease when p
is around 0.3 and decreases very fast whenp approaches 0.5
because the increasing density of active sensors.

VII. C ONCLUSION

In this paper, we introduce geometric random linear codes
to provide both data persistence and convenient data accessin
sensor networks. Our study is based on extensive theoretical
analysis and experimental evaluations. We have shown that
in comparison with random linear codes, although geometric
random linear codes introduce a modest storage overhead
and a small additional communication cost in decentralized
encoding, it significantly reduces the communication cost to
decode useful data, when a query is only interested in the
data generated in a small geographic subregion, as compared
to random linear codes. Hence, the proposed coding scheme
represents a significant step toward applying practical usage
of decentralized erasure coding in sensor networks.
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