
Topology Affects the Efficiency of Network Coding
in Peer-to-Peer Networks

Tara Small, Baochun Li, and Ben Liang
Department of Electrical and Computer Engineering

University of Toronto
{tsmall, bli}@eecg.toronto.edu, liang@comm.toronto.edu

Abstract— With network coding, intermediate nodes between
the source and the receivers of an end-to-end communication
session are not only capable of relaying and replicating data
messages, but also of coding incoming messages to produce coded
outgoing ones. It has been the traditional wisdom in information
theory that network coding improves the capacity of multicast
sessions in directed networks. Recent studies have also shown that
network coding is beneficial for content distribution in peer-to-
peer networks, since it resolves the “last block” problem, and
eliminates content reconciliation. In this paper, we show that
such benefits of network coding does not come without costs
and trade-offs. In particular, we refute the previous claim that
peers receive linearly independent coded blocks with very high
probabilities. Using example scenarios and extensive simulations,
we show that it is very likely for peers to receive linearly
dependent non-innovative blocks, thus decreasing their efficiency
as these redundant blocks consume bandwidth. We observe that
such redundancy of network coding is critically dependent on
the randomness and sparsity of the P2P topology. We conclude
with suggestions on topologies of certain characteristics that are
preferred over others, in order to minimize the network coding
redundancy, the time to distribute data, and the server cost.

I. INTRODUCTION

Network coding has recently been proposed in information
theory [1], and has since received extensive research attention.
In contrast to channel coding, the essence of network coding is
a paradigm shift to allow coding at intermediate nodes between
the source and the receivers in multicast communication
sessions, assuming that communication links are free of errors.
The fundamental assumption of error-free links is realistic in
peer-to-peer networks (due to retransmission-based transport
layer protocols). It has relieved the research on network coding
from addressing the challenges of interference, which often
lead to the most difficult problems in the field of network
information theory.

The fundamental insight of network coding is that infor-
mation to be transmitted from the source in a session can
be inferred, or decoded, by the intended receivers, and does
not have to be transmitted verbatim. It has also focused
on the coding capabilities of intermediate nodes, in addition
to forwarding and replicating incoming messages. With the
ability to code at relay nodes in a session, we may forward,
replicate and code information flows, as opposed to traditional
commodity flows, where only forwarding is allowed. In recent

This work was supported in part by Bell Canada through its Bell University
Laboratories R&D program.

research literature on network coding that is rapidly expanding,
it is a well known result that network coding — by using linear
codes only — may achieve better network throughput in some
of the network topologies.

In recent years, peer-to-peer (P2P) architectures have also
been shown to offer high performance, better scalability, as
well as superb resilience to peer failures and departures. It
has been increasingly natural to design Internet applications
using the peer-to-peer architecture, the most important appli-
cation being bulk content distribution (e.g., BitTorrent [2]).
As end hosts at the edge of the Internet possess abundant
computational resources with current-generation processors, it
is natural to consider taking advantage of the power of network
coding in peer-to-peer applications, by allowing end hosts to
not only forward and replicate, but to code as well.

Recent work on network coding has gradually shifted its
focus from a more theoretical point of view to a more practical
setting. The following critical question naturally emerges:
Given a content distribution session in peer-to-peer networks,
is network coding indeed able to offer a better throughput —
best measured in the time to complete downloading at the
peers, as compared to using a protocol without coding (such
as BitTorrent)? Recent studies (most notably the Avalanche
project [3]) have shown that network coding is beneficial for
content distribution in peer-to-peer networks, since it resolves
the “last block” problem, and eliminates content reconciliation.
These observations are derived from the insight that all coded
blocks are treated equally, without the need of finding the
rarest blocks that can be downloaded first. The conclusion
seems to be certain: network coding leads to shorter down-
loading times due to these benefits.

In this paper, we show that such benefits of network coding
do not come without costs and trade-offs. In particular, we
refute the claim from previous work that peers receive linearly
independent coded blocks (usually referred to as innovative
blocks) with very high probabilities. Theoretically, this claim
is correct, provided that all coding is performed at the source
peer, or at intermediate peers after complete decoding to re-
cover the original blocks. However, we show that, when peers
code outgoing blocks before they fully decode and recover
original blocks in realistic P2P topologies, it is very likely for
peers to receive linearly dependent non-innovative blocks, thus
(sometimes significantly) decreasing their efficiency as these
redundant blocks consume bandwidth.



With analysis of two example networks and extensive sim-
ulations with a common small-world topology, we study how
the redundancy introduced by network coding is affected by
the sparsity of the topology, quantitatively represented by the
average number of neighbors that peers have, as well as the
randomness of the topology, quantitatively characterized by
the rewiring probability of a small-world topology. We also
study other vital system performance metrics, including the
time delay in data distribution and the bandwidth cost to the
P2P server. Finally, we seek to quantitatively identify the types
of topologies to optimize system performance should network
coding be applied.

The remainder of this paper is organized as follows. Sec. II
reviews related work. Using examples and intuitive explana-
tions, Sec. III illustrates why network coding leads to linearly
dependent blocks. The effects of randomness and network
sparsity are analyzed in Section IV with empirical studies.
In Sec. V, we further provide insights on preferred topologies
that optimizes system performance when network coding is
used.

II. RELATED WORK

The pioneering work by Ahlswede et al. [1] and Koetter et
al. [4] proves that, in a directed network with network coding
support, a multicast rate is feasible if and only if it is feasible
for a unicast from the sender to each receiver. Li et al. [5] has
further proved that linear coding usually suffices in achieving
the maximum rate. These results are significant in the sense
that, with network coding, the cut-set capacity bounds of
unicast flows from the source to each of the receivers can be
achieved in a multicast session. In other words, network coding
helps to alleviate competition among flows at the bottleneck,
thus improving session throughput in general.

To practically implement the paradigm of network coding,
one needs to address the challenges of computing coding
coefficients to be used by each of the intermediate nodes in
the session, so that the coded messages at the receivers are
guaranteed to be decoded. This process is usually referred to
as code assignment. Although deterministic code assignment
algorithms have been proposed and shown to be polynomial
time algorithms (e.g., [6]), they require extensive exchanges
of control messages, which may not be feasible in dynamic
peer-to-peer networks. As an alternative, Ho et al. [7] has
been the first to propose the concept of randomized network
coding. With randomized network coding, an intermediate
node transmits on each outgoing link a linear combination of
incoming messages, specified by independently and randomly
chosen code coefficients over some finite field. Ho et al. show
that by allowing peers to locally encode data using coefficients
from sufficiently large Galois fields, received coded blocks at
downstream peers are decodable with a very high probability,
on the order of the inverse of the size of the finite field.
For example, if the field size is 28, the lower bound of this
probability is ≥ 0.989.

Since the landmark paper on randomized network coding by
Ho et al., there has been a gradual shift in research focus in the

area of network coding, from theoretical studies on achievable
flow rates and code assignment algorithms, to more practical
studies on applying network coding in a practical setting. Such
a shift of focus has been marked by the work by Wu et al.
[8], in which the authors have concluded that randomized
network coding can be designed to be robust to random
packet loss, delay, as well as any changes in network topology
and capacity. It was shown that sessions with randomized
network coding can achieve close to the theoretically optimal
performance.

The Avalanche project by Microsoft Research [3], [9] has
further proposed that randomized network coding can be used
for bulk content distribution, in competition with BitTorrent,
one of the most successful P2P content distribution protocols
at the time of this writing. The work has made the claim that
performance benefits provided by network coding in terms
of throughput can be more than two to three times better
than transmitting original blocks. In this sense, one may
conclude that network coding can indeed be practically im-
plemented, and does offer significant advantages as compared
to BitTorrent. However, Wang et al. [10] has focused on the
computational complexity of network coding, and has shown
that coding complexity may lead to significant increases with
respect to downloading times in content distribution sessions,
especially as the number of blocks increases.

In this work, we show that the likelihood of receiving
linearly dependent blocks is much higher, leading to a lower
level of efficiency when network coding is used. Such redun-
dancy introduced by network coding depends on the topology,
but nevertheless leads to higher bandwidth consumption and,
inevitably, longer downloading times.

III. THE PROBLEM OF LINEARLY DEPENDENT BLOCKS

In this paper, the peer-to-peer session that we intend to study
is modeled as a collection of N peers, self-organized into a
peer-to-peer topology with application-layer links. One of the
peers is the server, or the source of content distribution. The
original content on the source is segmented into n original
blocks [b1, b2, . . . , bn], each bi has a fixed number of bytes
k (referred to as the block size). All other peers intend to
complete their downloads of the original content within the
constraints of the peer-to-peer topology. We make the realistic
assumption that a fraction ps of the peers serves as direct
downstream peers of the server. The server sends coded blocks
to these direct downstream peers with a period ts, i.e., the
server upload bandwidth to each peer is k/ts. Upon receiving
new coded blocks, a peer produces new coded blocks for its
downstream peers in the topology.

A. Randomized Network Coding

We briefly summarize the concept of randomized network
coding [3], [7], [8], [11]. At the time of encoding for
downstream peer p, a peer (including the source) indepen-
dently and randomly chooses a set of coding coefficients
[cp

1, c
p
2, · · · , cp

m](m ≤ n) in the Galois field GF(28) for the
downstream peer p. It then randomly chooses m blocks —



[bp
1, b

p
2, . . . , b

p
m] — out of all the blocks it has received so far

(all the original blocks if it is a source of the session), and
produces one coded block x of k bytes:

x =
m∑

i=1

cp
i · bp

i

The ratio m/n is referred to as density in this paper, as a
low ratio leads to sparse decoding matrices. A coded block
x is self-contained, in that the coding coefficients used to
encode original blocks to x are embedded in the header of
the coded block. Since the embedded coding coefficients are
related to the original blocks, we need a total of n coefficients,
leading to a header overhead of n bytes per coded block (if
uncompressed). These n coding coefficients to be embedded
can easily be computed by multiplying [cp

1, · · · , cp
m] with the

m×n matrix of coding coefficients embedded in the incoming
blocks [bp

1, b
p
2, . . . , b

p
m].

As the session proceeds, a peer accumulates coded blocks
from its upstream peers into its local buffer, and encodes new
coded blocks to serve its downstream peers. When serving
multiple downstream peers, it needs to independently and
randomly choose a new set of coding coefficients for each of
its downstream peers. In order to reduce the delay introduced
by waiting for new coded blocks, the peer produces a new
coded block upon receiving a ·n coded blocks (0 < a ≤ 1), in
which the tunable parameter a is referred to as aggressiveness
in this paper. A smaller a leads to a shorter waiting time and,
potentially, shorter delay in the process of content distribution.
In other words, the peer is more “aggressive.”

As soon as a peer has received a total of n coded blocks
x = [x1, x2, . . . , xn], it starts the decoding process. To decode,
it first forms a n×n matrix A, using the n coding coefficients
embedded in each of the n coded blocks it has received. Each
row in A corresponds to n coded coefficients of one coded
block. If vectors in all the rows are linearly independent, it
may then recover the original blocks b = [b1, b2, . . . , bn] by

b = A−1xT

In this equation, it first needs to compute the inverse of A,
using Gaussian elimination. It then needs to multiply A−1 and
x, which takes n2 ·k multiplications of two bytes in GF(256).
The inversion of A is only possible when its rows are linearly
independent, i.e., A is full rank.

B. The Problem of Linearly Dependent Blocks

We concur with the claims in previous work that peers
would receive linearly independent (innovative) blocks with
a very high probability, provided that all coding is performed
at the source peer, or at intermediate peers after they have
completed the decoding process and recovered all original
blocks (so that they become source peers). In other words,
we assume that peers wait for n coded blocks to arrive before
producing coded blocks, i.e., the aggressiveness is 1. However,
this assumption is made against the intuitive benefit of network
coding — the ability to code as peers receive. We now show

1

3 2

4 5

B A

2 B 5 A 3 A

2 x 2B, then 

5 x 5A + 3 x 2B  

Fig. 1. Network coding leads to linearly dependent blocks: the first example
with a small topology.

two examples — with smaller and larger topologies — that
peers may easily receive linearly dependent (non-innovative)
blocks when aggressiveness a < 1. When this phenomenon
occurs, we claim that the efficiency of network coding is lower,
as it introduces redundancy. Naturally, such redundancy is
undesirable as it consumes bandwidth.

Our first example involves a network topology that re-
sembles the structure in Fig. 1. We show that, when peers
become more aggressive and code as they receive, network
coding leads to linearly dependent blocks. Let us assume
that peers forward data to their downstream neighbors with
aggressiveness 1/n; that is, data is forwarded immediately
upon reception of an innovative block. Further, we let peer
1 send two linearly independent coded blocks A and B to its
downstream peers 2 and 3, respectively.

Peer 2 sends coded forms of A using randomly generated
coefficients, say 3A and 5A, to its peers 4 and 5. Similarly,
peer 3 encodes B and sends 2B to its downstream peer 4. Due
to the stochastic nature of arrivals, peer 4 may receive either
coded block before the other. If peer 4 receives 5A first, then it
sends k1 ·5A to peer 5 (for some random coefficient k1). Since
peer 5 may already have received 3A from peer 2, k1 · 5A is
linearly dependent (redundant). On the other hand if peer 4
receives 2B first, it then sends k2 · 2B (for some random k2)
to peer 5. Though peer 5 has already received two linearly
independent blocks containing A and B, when the number of
blocks n > 2 (which implies that peer 5 has not received all n
coded blocks yet), peer 4 would further send k3 ·5A+k4 ·2B
to peer 5 upon receiving 5A, since it is to produce one new
coded block to its downstream peers upon receiving a new
innovative block. The third block from peer 4 is obviously
linearly dependent and redundant on peer 5. It appears that
the problem of linearly dependent blocks comes from the fact
that both peer 2 and 4 are direct upstream peers of peer 5,
but peer 2 serves peer 4 at the same time. Such a “shortcut”
from peer 2 to 5 appears to be the cause of our problem in
this particular example.

The redundancy of using bandwidth with network coding,
shown in the example above on peer 5, is categorically
different from the problem of rank deficiency of the decoding
matrix A, when the min-cut between the sender and the
receiver is not large enough. In Fig. 1, peer 3 only has one link
from peer 1, so it is not able to fully decode within one time
slot (the time to transmit a coded block), as its decoding matrix



0
{0, 0}

4
{3, 0}

5
{3, 0}

8
{3, 0}

2
{3, 0}

7
{3, 0}

1
{3, 0}

9
{3, 0}

6
{3, 2}

3
{3, 0}

(a) Some common neigh-
bors in sparse topologies

0
{0, 0}

8
{3, 0}

9
{3, 0}

1
{3, 1}

2
{3, 5}

4
{3, 1}

5
{3, 1}

7
{3, 0}

3
{3, 4}

6
{3, 0}

(b) Many common neighbors in dense topologies

Fig. 2. Network coding leads to linearly dependent blocks: the second
example with random topologies.

A is rank deficient. Peer 5, however, suffers from a different
problem: over a period of one or two time slots (depending on
the stochastic progress of block propagation), it has received
more blocks than it needs.

The second example involves a larger topology, shown in
Fig. 2, which is an example of a random topology that is
often used in P2P networks today. In this figure, an identifier
is indicated for each peer, as well as the pair of the numbers of
{independent, dependent} blocks received by each peer after
every peer receives n = 3 coded blocks to successfully decode
the desired data. This example illustrates the results obtained
from our simulations.

In Fig. 2(a), peer 7 receives two independent blocks in
succession from peer 8 and forwards them to its downstream
neighbors, peers 3 and 6. Peer 3 is an upstream neighbor
of peer 6 and a downstream neighbor of peer 7, so the
information sent from peer 3 to peer 6 is almost always
redundant. In more densely-connected topologies, peers are
even more likely to have direct downstream neighbors in
common. In Fig. 2(b), peer 7 produces coded blocks to peer
3, its downstream neighbor; however, the existing blocks on
peer 7 may be received from peer 8, making it likely for the
freshly produced blocks from peer 7 to be linearly dependent
on the coded blocks from peer 8, who has peer 3 as one of its
downstream neighbors as well. In addition to peer 3, we show
from simulation results that peer 2, 4 and 5 have also received
various numbers of non-innovative blocks as well.

To summarize our discoveries so far, we have observed from
both smaller and larger topologies that, if we allow peers to
produce new coded blocks as they receive from the upstream
peers, it is very likely that network coding leads to linearly
dependent blocks that bring redundant traffic to peer-to-peer

topologies, consuming bandwidth. The fundamental insights
in our observations are the following.
B Redundancy in network coding may be introduced by

the stochastic nature of overlay link delays, such that
peers receive linearly dependent blocks from some of
their upstream peers first, before they receive innovative
blocks from others.

B Redundancy in network coding is heavily dependent on
the topology itself. From our examples, it appears that
topologies with higher densities are more likely to induce
redundancy with network coding. Further, we have also
shown that neighborhoods that contain many “shortcuts”
— where direct upstream peers serve one another as
well — may be the culprit that causes problems of
redundancy, simply because they exchange coded blocks
faster than the rate of sending innovative blocks into the
neighborhood!

Is a sparse topology any better? On second thought, this
may not be the case. Though dense topologies may lead to
additional redundancy, they may also be helpful to rapidly
disseminate innovative blocks across the topology, simply
because the distance of travel (in terms of the link delays) is
much shorter. On the other hand, if topologies are too sparse,
coded blocks may not be able to travel effectively through
the topology, and ineffective travel may lead to redundancy
in small clusters of peers that are unlikely to receive new
innovative blocks. What constitutes a “good” topology that
minimizes redundancy introduced by network coding? The
rest of this paper is to explore, through extensive simulation
studies, two important characteristics of topologies, sparsity
and randomness.

IV. TOPOLOGY EFFECTS ON THE EFFICIENCY OF
NETWORK CODING

We developed an event-driven simulator in C++ to evaluate
the performance of network coding in a broad spectrum of
topologies with various levels of sparsity and randomness. We
seek to understand the way that redundancy, block distribution
times, and server costs vary. The block redundancy of a peer
is the quotient of the number of coded blocks it receives
and the number needed to successfully decode the segment.
Redundancy of 1 implies that only linearly independent blocks
are received at the peer. The distribution time is the time
interval from initial forwarding of a block from the server to
any of its downstream peers until all peers in the network have
successfully received n independent coded blocks. The server
cost is the number of blocks forwarded from the server to any
of its downstream peers. Note that the server stops sending
when all of its downstream peers (though not necessarily all
peers in the network) have received n independent blocks.
The remaining peers that have not yet received n independent
blocks request new coded blocks from their upstream neigh-
bors until n independent blocks have been received.

We vary the network topology randomness by adjusting the
rewiring probability in small-world topologies. Small-world
topologies are graphs that have been studied for many years



Fig. 3. Small-world topology with some rewired links.

to explain social networks [12]1. As explained in the seminal
paper by Watts and Strogatz [13], one way to construct a small-
world graph is by organizing the peers into a ring, connecting
each peer to d local neighbors, then rewiring each link to
a random peer in the network with probability p, as shown
in Fig. 3. Choosing p = 0 results in a completely regular
graph where each peer has the same number of downstream
and upstream neighbors. Peers in a p = 1 small-world graph
chooses each of its d downstream links uniformly at random
from all other peers in the network. The flexibility of adjusting
the parameter p between these two extremes allows us to
smoothly alter the randomness in the network.

When the regularity of the graphs varies, the path lengths
and clustering in the graphs change the structure. Random
graphs have low clustering, and since peers of degree d are
likely to have d 1-hop neighbors, d2 2-hop neighbors, d3 3-
hop neighbors, etc., it is likely that any two peers will have a
short path length between them. Alternatively, regular graphs
are likely to have long paths between peers and significant
clustering. Some analytical and numerical results for these
metrics are presented in [14]. Clearly, the number of neighbors
d of a peer characterizes the sparsity of the topology.

A. Impact of Randomness and Sparsity

We first evaluate a network of 100 peers using segments of
100 data blocks. Each peer forwards a coded block constructed
from m = 6 coded blocks with aggressiveness a = 0.04,
server connectivity ps = 0.15, and the segment contains 100
data blocks. Link delays follow a uniform random distribu-
tion in [0.75ts, 1.25ts]. The impact of both randomness and
sparsity on redundancy and distribution times is exhibited
quantitatively in Fig. 4.

We first examine the effect of randomness. Recall that
rewiring with p = 0 forms a regular topology where we
see high clustering and long path lengths between peers. In a
regular network, we expect redundancy because the topology
is designed so that peers are likely to share neighbors. The
long path lengths also tend to increase the time to distribute
n independent data blocks to all peers. On the other hand,
rewiring with p = 1 creates a totally random topology with
very low clustering. Since it is unlikely for peers to share
neighbors, we expect lower redundancy and short paths lengths
should decrease the distribution times. Fig. 4 confirms the

1These graphs are also sometimes labelled as having “six degrees of
separation.”

 0.9
 1

 1.1
 1.2
 1.3
 1.4
 1.5
 1.6
 1.7
 1.8

 0  0.2  0.4  0.6  0.8  1

R
ed

un
da

nc
y

Rewiring probability, p

d = 2
d = 4
d = 6
d = 8

d = 10
d = 12

(a) Average redundancy experienced at a peer

 80

 100

 120

 140

 160

 180

 200

 0  0.2  0.4  0.6  0.8  1T
im

e 
to

 d
is

tr
ib

ut
e 

[t
im

e-
st

ep
s]

Rewiring probability, p

ps = 0.05
ps = 0.1

ps = 0.15
ps = 0.2

(b) Time to complete block forwarding

Fig. 4. Performance experienced in a network with different levels of
randomness and sparsity.

above intuition. Furthermore, we observe that, in most cases,
the effects of randomness decrease significantly from p ≈ 0.1
to p = 1.

With respect to sparsity, we observe that the degree, d, of
the peers has a significant impact on redundancy introduced
by network coding. Fig. 4 shows that choosing d = 6 as
the degree of peers leads to the best performance of the
network when the rewiring probability p is not too high. This
observation conforms to our intuition that, too few neighbors
result in topologies where there is infrequent introduction of
new information, leading to redundant blocks sent between
peers. Too many neighbors, however, also lead to common
downstream peers receiving the same information from mul-
tiple sources.

Server cost is another key concern when scaling any P2P
network to large numbers of nodes. Clearly, the fraction of
peers connected to the server ps has a direct impact on the
server cost. The cost is also indirectly affected by the connec-
tivity of the peers themselves. Networks may experience more
forwarding of independent blocks due to the choice of server
distribution period or due to the available links between the
peers. In either of these cases, the server cost is reduced.

Fig. 5 allows us to consider the server cost in terms of
the redundancy and distribution time metrics for four values
of server connection probability ps. The parameter values are
similar to those in the previous figure except where noted. As
is intuitively clear, we see a minimum in the server cost when
redundancy is low and the distribution time is low for any ps.
However, the lowest server cost is achieved (at the expense of
distribution time) when the server has the fewest downstream
peers.



 0.95

 1

 1.05

 1.1

 1.15

 1.2

 1.25

 1.3

 0  0.2  0.4  0.6  0.8  1

R
ed

un
da

nc
y

Rewiring probability, p

ps = 0.05
ps = 0.1

ps = 0.15
ps = 0.2

(a) Average redundancy experienced at a peer

 80

 100

 120

 140

 160

 180

 200

 0  0.2  0.4  0.6  0.8  1T
im

e 
to

 d
is

tr
ib

ut
e 

[t
im

e-
st

ep
s]

Rewiring probability, p

ps = 0.05
ps = 0.1

ps = 0.15
ps = 0.2

(b) Time to complete block forwarding

 400

 600

 800

 1000

 1200

 0  0.2  0.4  0.6  0.8  1

Se
rv

er
 c

os
t [

pa
ck

et
s]

Rewiring probability, p

ps = 0.05
ps = 0.1

ps = 0.15
ps = 0.2

(c) Cost to the server

Fig. 5. The choice of ps affects redundancy and server cost.

B. Impact of Network Size

Up to this point, the sparsity of network topologies has
been varied in the context of the degree d of each peer.
Another notion of sparsity is related to the number of peers in
the network, N . In a global sense, increasing the number of
peers in the network decreases the overall connectivity; that
is, the likelihood that a particular peer is directly linked to
another particular peer is smaller. Hence it may appear that the
ratio between d and N has a significant effect on the coding
efficiency.

Fig. 6 shows that it is not the global connectivity that has
the most significant impact on network coding redundancy. It
is instead the local connectivity (the peer degree) that dictates
the redundancy in the network. The values of redundancy are
nearly identical as the number of network peers varies for a
large range of rewiring probabilities p. Again, we observe that,
as long as the topology is not completely random, the optimal
number of downstream peers is 6.

Other performance metrics differ considerably, however.
Perhaps the most notable scaling metric as N increases is
the server cost. Shown in Fig. 7, the server cost increases

 0.9
 1

 1.1
 1.2
 1.3
 1.4
 1.5
 1.6
 1.7
 1.8

 2  4  6  8  10  12

R
ed

un
da

nc
y

Number of neighbors, d

p = 0.0
p = 0.05

p = 0.1
p = 0.3
p = 0.7
p = 1.0

(a) Network of 100 peers

 0.9
 1

 1.1
 1.2
 1.3
 1.4
 1.5
 1.6
 1.7
 1.8

 2  4  6  8  10  12

R
ed

un
da

nc
y

Number of neighbors, d

p = 0.0
p = 0.05

p = 0.1
p = 0.3
p = 0.7
p = 1.0

(b) Network of 500 peers

 0.9
 1

 1.1
 1.2
 1.3
 1.4
 1.5
 1.6
 1.7
 1.8

 2  4  6  8  10  12

R
ed

un
da

nc
y

Number of neighbors, d

p = 0.0
p = 0.05
p = 0.1
p = 0.3
p = 0.7
p = 1.0

(c) Network of 1000 peers

Fig. 6. Regardless of the number of peers, 6 neighbors show the best
performance.

approximately linearly with N , but is lower for smaller (non-
zero) values of the rewiring probability. In other words, regular
topologies with a few long-distance links are preferred over
purely random topologies. Topologies with peers of degree
six to ten experience more than twice as much server cost
in a purely random network than a small-world network with
rewiring probability 0.05.

As one would expect, the distribution time increases sub-
linearly as N increases. Path lengths increase between peers
as log N , and distribution times increase even more slowly
than that because it is not necessary for the same blocks to
reach every part of the network. Since network coding requires
any n independent blocks for decoding, the distribution time
scales more effectively. Our simulation results confirm this
conclusion. However, we have omitted the graphs due to space
constraint.

V. CONCLUSION ON PREFERRED TOPOLOGIES

We have observed — using both examples and empirical
studies — that peer-to-peer networks with network coding
experience inefficiencies due to the timing of arrivals of



 200

 400

 600

 800

 1000

 1200

 1400

 2  4  6  8  10  12

Se
rv

er
 c

os
t [

pa
ck

et
s]

Number of neighbors, d

p = 0.0
p = 0.05

p = 0.1
p = 0.3
p = 0.7
p = 1.0

(a) Network of 100 peers

 2000

 3000

 4000

 5000

 6000

 7000

 2  4  6  8  10  12

Se
rv

er
 c

os
t [

pa
ck

et
s]

Number of neighbors, d

p = 0.0
p = 0.05
p = 0.1
p = 0.3
p = 0.7
p = 1.0

(b) Network of 500 peers

 4000

 6000

 8000

 10000

 12000

 14000

 2  4  6  8  10  12

Se
rv

er
 c

os
t [

pa
ck

et
s]

Number of neighbors, d

p = 0.0
p = 0.05
p = 0.1
p = 0.3
p = 0.7
p = 1.0

(c) Network of 1000 peers

Fig. 7. Server cost increases approximately linearly with N , and much better
performance is observed for small p as N scales up.

relayed blocks and due to the links formed between peers.
Although these inefficiencies naturally present themselves,
we have found that network parameters can be chosen to
intentionally minimize redundancy and optimize performance.

Based on extensive studies in the previous section, we have
shown that the peer-to-peer topologies offering the best overall
performance are small-world topologies with low rewiring
probability (around p = 0.1) with peer degree of six2. These
networks enjoy low redundancy, comparable with purely ran-
dom networks, but have lower distribution times. Furthermore,
in such preferred topologies, peers have a sufficient number
of neighbors for effective distribution, without too many
peers sharing downstream neighbors. Last but not the least,
small-world networks with low rewiring probability exhibit
significantly lower server cost than corresponding networks
with more randomness.

Small-world topologies with low p also benefit from the

2We have also observed that a suitable aggressiveness factor is around
0.04 − 0.05 to balance the distribution time and redundancy. An extensive
study on the optimal aggressiveness factor is omitted due to the limitation on
paper length.

ability to achieve better overhead and load balance than purely
random networks without overwhelming cost to the server
or to the peers. Finding random neighbors for each peer is
usually a costly operation that require global knowledge in the
network. When the rewiring probability is small, messaging
overhead is only needed for a small fraction of the links, and
local links are straightforward to acquire.

The above observations can be applied to generate design
guidelines for P2P topology design [15] when network coding
is used. In particular, in the case when multiple data segments
are to be distributed (e.g., peer-to-peer streaming), good load
balance can be achieved by changing the rewired links for
different segments of the data stream. Clearly, data arriving at
a peer from a different part of the network (along a rewired
“long-distance” link) is more likely to be independent from
coded blocks acquired locally. Changing the rewired links
will alter the flow of data through the network, so that peers
would appear to have different positions in the topology.
Averaging over many data segments, each peer should serve
approximately the same number of coded blocks to the other
peers.

REFERENCES

[1] R. Ahlswede, N. Cai, S. R. Li, and R. W. Yeung, “Network Information
Flow,” IEEE Transactions on Information Theory, vol. 46, no. 4, pp.
1204–1216, July 2000.

[2] B. Cohen, “Incentives Build Robustness in BitTorrent,” in Proc. of
Workshop on Economics of Peer-to-Peer Systems, June 2003.

[3] C. Gkantsidis and P. Rodriguez, “Network Coding for Large Scale
Content Distribution,” in Proc. of IEEE INFOCOM 2005, March 2005.

[4] R. Koetter and M. Medard, “An Algebraic Approach to Network
Coding,” IEEE/ACM Transactions on Networking, vol. 11, no. 5, pp.
782–795, October 2003.

[5] S. Y. R. Li, R. W. Yeung, and N. Cai, “Linear Network Coding,” IEEE
Transactions on Information Theory, vol. 49, p. 371, 2003.

[6] P. Sanders, S. Egner, and L. Tolhuizen, “Polynomial Time Algorithm for
Network Information Flow,” in Proc. of the 15th ACM Symposium on
Parallelism in Algorithms and Architectures (SPAA 2003), June 2003.

[7] T. Ho, R. Koetter, M. Medard, D. Karger, and M. Effros, “The Benefits of
Coding over Routing in a Randomized Setting,” in Proc. of International
Symposium on Information Theory (ISIT 2003), 2003.

[8] P. Chou, Y. Wu, and K. Jain, “Practical Network Coding,” in Proc. of
Allerton Conference on Communication, Control, and Computing, Oc-
tober 2003.

[9] C. Gkantsidis, J. Miller, and P. Rodriguez, “Anatomy of a P2P Content
Distribution System with Network Coding,” in Proc. of the 5th Interna-
tional Workshop on Peer-to-Peer Systems (IPTPS 2006), 2006.

[10] M. Wang and B. Li, “How Practical is Network Coding?” in Proc.
Fourteenth IEEE International Workshop on Quality of Service, June
2006, pp. 274–278.

[11] T. Ho, M. Medard, J. Shi, M. Effros, and D. Karger, “On Randomized
Network Coding,” in Proc. of Allerton Conference on Communication,
Control, and Computing, October 2003.

[12] S. Milgram, “The Small World Problem,” in Psychology Today, vol. 2,
1967, pp. 60–67.

[13] D. Watts and S. Strogatz, “Collective dynamics of ’small-world’ net-
works,” in Nature, vol. 393, June 1998, pp. 440–442.

[14] M. E. J. Newman, “Models of the Small World,” Journal of Statistical
Physics, vol. 101, no. 3-4, pp. 819–841, November 2000.

[15] T. Small, B. Li, and B. Liang, “Outreach: Peer-to-Peer Topology Con-
struction towards Minimized Server Bandwidth Costs,” IEEE Journal
on Selected Areas in Communications, Special Issue on Peer-to-Peer
Communications and Applications, vol. 25, no. 1, pp. 35–45, May 2007.


