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Abstract—We consider amplify-and-forward multi-antenna re-
laying between a single pair of source and destination under per-
antenna power constraints. Our objective is to obtain the optimal
relay processing matrix to minimize the maximum individual
antenna power for a given received SNR target. The problem is
not convex, but it can be shown to satisfy strong Lagrange duality.
We reveal a prominent structure of this problem, by establishing
its duality with direct point-to-point SIMO beamforming with
an uncertain noise. This enables us to derive a semi-closed
form expression for the optimal relay processing matrix that
depends on a set of dual variables, thus converting the original
optimization of a N×N matrix with (N+1) constraints, to a dual
problem with (N+1) variables and three constraints. We further
show that the dual problem has a semi-definite programming
form, so that the proposed solution has polynomial worst-case
complexity.

I. INTRODUCTION

We study the optimal design of amplify-and-forward (AF)
multi-antenna relaying to assist dual-hop data transmission.
A processing matrix is used at the relay to linearly combine
received signals to forward to the destination. The central
question for the design is how to optimize this relay processing
matrix for a given performance metric. This involves finding
both the structure of the optimal processing matrix and the
jointly optimal power allocation.

For transmission between a single pair of source and desti-
nation, optimal relay design has been studied under different
performance criteria, such as capacity, diversity gain, and relay
power minimization under quality-of-service constraints [1]-
[4]. For many cases studied, the processing matrix inherits
a beamforming structure characterized by the channels at the
first and second hops. The relaying design for multiple sources
and/or destinations are also studied in [5]-[7]. Either numerical
methods are proposed to obtain approximate solution for the
optimal processing matrix, or suboptimal structure is imposed,
as the explicit solution for the optimal processing matrix
cannot be obtained. All these existing results are obtained
based on a sum-power constraint at the relay.

In a practical system, each antenna is limited by its own
front-end power amplifier, so that a realistic multi-antenna
relay processing design is constrained by a per-antenna power
budget. With this constraint, the relay design becomes more
challenging. Even for the scenario of a single pair of source
and destination, none of the techniques developed in [1]-[4] is
applicable. Furthermore, the structure of the processing matrix
under the per-antenna power constraint becomes unclear. For

SNR maximization, for example, the processing matrix may
no longer possess the rank-one beamforming matrix structure
as found in [3].

In this work, we consider the more practical per-antenna
power constraint. For dual-hop AF multi-antenna relaying be-
tween a single pair of source and destination, given a received
SNR target, we design the optimal relay processing matrix
to minimize the maximum power consumption among the
relay transmit antennas. The solution can be applied to solve
an alternate design objective, to maximize the received SNR
with a uniform per-antenna power constraint. Our approach is
inspired by the framework in [8] for direct downlink communi-
cation, where the optimal transmit beamforming design is ob-
tained under per-antenna power constraints. However, different
from downlink beamforming, multi-antenna relaying leads to
a unique structure for the received SNR, which depends on the
channels over two hops and the additional noise amplification,
in addition to the per-antenna power control at the relay. This
complicates the optimization problem with new challenges.

Nonetheless, we show that the originally non-convex prob-
lem can still be transformed into an equivalent problem with
zero duality gap. Interestingly, through the Lagrange dual
method, we establish a duality between multi-antenna relay
beamforming and direct point-to-point SIMO beamforming
with uncertain noise and a channel vector formed by con-
catenating the two-hop relay channel vectors. This enables us
to derive a semi-closed form expression for the optimal relay
processing matrix. With N relay antennas, this solution not
only reveals the structure of the optimal processing matrix,
but also allows us to convert the original optimization problem
with N ×N variables in the processing matrix and (N + 1)
constraints, to one with (N+1) variables and three constraints.
We further show that the dual problem has a semi-definite
programming (SDP) form, which has polynomial worst-case
complexity [9]. This greatly reduces the computation complex-
ity in determining the final solution.

Notations: ∥·∥ denotes the Euclidean norm of a vector. E {·}
denotes statistical expectation. ⊗ stands for the Kronecker
product. Hermitian and transpose are denoted as (·)H and (·)T ,
respectively. Conjugate is denoted as (·)∗.

II. PROBLEM FORMULATION

A. System Model

We consider a dual-hop AF relaying system where a
source and a destination each equipped with a single antenna
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Fig. 1: AF multi-antenna relaying.

communicate through a relay equipped with N antennas, as
illustrated in Fig. 1. Half-duplex transmission is assumed,
and the relaying takes place in two phases. In the first phase,
the source sends the signal to the relay. The received signal
vector at the relay is given by yr = h1

√
Pos+nr, where s is

the transmit signal from the source with unit power, Po is the
given transmit power at the source, h1 = [h1,1, · · · , h1,N ]T is
the N ×1 complex channel vector between the source and the
relay, and nr is the N × 1 complex additive white Gaussian
noise (AWGN) vector with covariance σ2

rI. In the second
phase, the relay forwards a processed version of signals to
the destination. The received signal at the destination is given
by

yd = hT
2 Wh1

√
Pos+ hT

2 Wnr + nd (1)

where h2 = [h2,1, · · · , h2,N ]T is the N × 1 complex channel
vector between the relay and the destination, W is the N×N
complex relay processing matrix, and nd is the AWGN at the
destination receiver with variance σ2

d. The received signal-to-
noise ratio (SNR) at the destination is given by

SNR =
Po|hT

2 Wh1|2

σ2
r∥hT

2 W∥2 + σ2
d

. (2)

The end-to-end performance such as data rate or BER is a
function of the received SNR given above. The optimization of
the relay processing matrix W for a given performance metric
can then be converted directly to that for the SNR metric.

We point out that, although we limit to single antenna setting
at the source and destination, the results developed in this work
is directly applicable to the case of MIMO relay beamforming
where source and/or destination are equipped with multiple
antennas, provided that the source beamforming vector and
the destination combining vector are fixed.

B. Relay Per-Antenna Power Limitation

Our goal is to design an optimal W at the relay to maximize
the received SNR at the destination, subject to a given relay
power constraint. For a sum-power constraint over N antennas
at the relay, this problem has been investigated in the past [3],
[4]. In this paper, we focus on per-antenna power constraints
that are more realistic in a practical system. The per-antenna
power constraint at the output of the relay is given by

E{|[Wyr]i|2} =
[
P0Wh1h

H
1 WH + σ2

rWWH
]
i,i

≤ Pi (3)

for i = 1, · · · , N , where Pi is the power budget at antenna i.
Alternatively, we consider the min-max problem of the relay

per-antenna power for a given SNR target γo at the destination.

This optimization problem can be formulated as

min
W

max
i

Pi (4)

subject to
Po|hT

2 Wh1|2

σ2
r∥hT

2 W∥2 + σ2
d

≥ γ0, (5)[
P0Wh1h

H
1 WH + σ2

rWWH
]
i,i

≤ Pi (6)

for i = 1, · · · , N

where [·]i,i denotes the ith diagonal entry of a matrix. It
can be shown that SNR maximization under per-antenna
power constraints with the same power budget can always be
solved through the above optimization problem. The details
are omitted due to page limitation.

III. OPTIMAL RELAY BEAMFORMING DESIGN

In this section, we provide the solution to the optimization
problem in (4). We first show that the problem can be
transformed into a formulation, for which the Lagrange dual
method [10] can be applied to obtain the solution. The dual
method leads to the establishment of the duality of multi-
antenna relay beamforming to SIMO beamforming in direct
point-to-point communication. Finally, we provide an SDP
formulation as the numerical method to determine W.

A. Feasibility Condition

The feasibility of the optimization in (4) depends on the
existence of W to satisfy the SNR constraint (5). It is
determined by the values of the given transmit power Po, the
SNR target γo, and the channel condition h1,h2. We now state
the feasibility condition for (4).

Proposition 1: The multi-antenna relay beamforming prob-
lem (4) is feasible only if the source transmit power P0 and
destination target SNR γo satisfy

γo
P0

hHR−1
g h < 1 (7)

where h
∆
= vec(h1h

T
2 ) = h2 ⊗ h1, and Rg

∆
= (h2h

H
2 )⊗ Iσ2

r .
Proof: To guarantee (5) has a solution, we first need to

find an upper bound, SNRup, of the SNR in (2). Then, we
can show that (5) is feasible only if there exists W, such that
SNRup > γo. This condition eventually leads to (7). Details
are omitted due to page limitation.

B. Optimization via Lagrange Dual Method

It is easy to see that the optimization in (4) is equivalent to

min
W

Pr (8)

subject to (5) and[
P0Wh1h

H
1 WH + σ2

rWWH
]
i,i

≤ Pr (9)

for i = 1, · · · , N.

In other words, it is equivalent to the problem of uniformly
minimizing per-antenna power∗. In the following, we carry

∗It can be shown that the same framework also applies to the power
minimization problem where each antenna has a power limit Pi, and the
objective is to minimize the fraction η used on each antenna, i.e., ηPi.



the discussion assuming the problem has a feasible solution.
Since (5) is not a convex constraint, the optimization problem
(8) is not convex. Nonetheless, we show in the following that
the optimization can be solved in the Lagrange dual domain.

Proposition 2: The optimization problem in (4) has zero
duality gap.

Proof: We here provide an outline of the proof. We first
show that the constraint function in (9) is convex. To see this,
let WH = [w1, · · ·wN ]. Then, (9) can be rewritten as[
P0Wh1h

H
1 WH + σ2

rWWH
]
i,i

= wH
i (P0h1h

H
1 + σ2

rI)wi

which shows that the constraint function is convex w.r.t. wi.
Only (5) is a non-convex constraint function. However,

we show that (5) can be converted into a second-order cone
programming (SOCP) constraint [10]. Denote w

∆
= vec(WH).

Omitting details, we can show that the constraint in (5) can
be rewritten as

Po|hT
2 Wh1|2

σ2
r∥hT

2 W∥2 + σ2
d

=
Po|wHh|2

∥R1/2
g w∥2 + σ2

d

(10)

where h = h2 ⊗ h1, and Rg = (h2h
H
2 ) ⊗ Iσ2

r . Then, the
inequality in (5) can be rewritten as√

Po|wHh| ≥ √
γo

∥∥∥∥ R
1/2
g w
σd

∥∥∥∥ (11)

which is a SOCP constraint, implying strong duality when the
dual problem is formulated in the conic form [10]. Further-
more, in [11], it is shown that this dual problem is equivalent
to the dual formulation of the original problem. Therefore, the
optimization problem in (8) has zero duality gap to its dual
problem.

Following Proposition 2, we solve the optimization problem
(8) through the Lagrange dual. Let the Lagrangian for (8) be

L(Pr,W,Λ, ν) = Pr − ν

{
P0

γ0

∣∣wHh
∣∣2 − ∥R

1
2
g w∥2 − σ2

d

}
+

N∑
i=1

λi

{[
PoWh1h

H
1 WH

]
i,i

+
[
σ2
rWWH

]
i,i

− Pr

}
(12)

where Λ
∆
= diag(λ1, · · · , λN ) is the diagonal matrix of

Lagrange multipliers corresponding to the per-antenna power
constraints, and ν is the Lagrange multiplier corresponding to
the received SNR target. The dual problem is given by

max
Λ,ν

min
Pr,W

L(Pr,W,Λ, ν) (13)

subject to Λ ≽ 0, ν ≥ 0.

C. Duality with Direct Point-to-Point SIMO Beamforming

In this section, we show that the optimization in (13) can
be transformed into the dual power minimization problem of
SIMO beamforming in direct point-to-point communication

For the SIMO beamforming problem under consideration,
the transmitter has a single antenna with transmit power P̃ .
The receiver has N2 antennas with a receiver noise covariance
matrix Σ̃. Assume that the channel is given by h, and w̃ is

the receiver beamforming vector. The objective is to jointly
optimize w̃ and P̃ to satisfy a given received SNR target γo:

min
w̃

P̃ (14)

subject to
P̃
∣∣w̃Hh

∣∣2
w̃HΣ̃w̃

≥ γo.

We establish the duality between the multi-antenna relay
beamforming and the direct point-to-point SIMO beamforming
with uncertain noise and the same SNR requirement in the
following result.

Theorem 1: The Lagrange dual problem associated with (4)
is equivalent to the following problem:

max
Λ

min
ν,w̃

νσ2
d (15)

subject to
νP0

∣∣w̃Hh
∣∣2

w̃HΣw̃
≥ γo (16)

tr (Λ) ≤ 1, Λ is diagonal (17)
Λ ≽ 0, ν ≥ 0 (18)

where Σ
∆
= Λ ⊗

(
Poh1h

H
1 + σ2

rI
)
+ ν

(
h2h

H
2 ⊗ σ2

rI
)

is the
receiver noise covariance matrix, and Λ

∆
= diag(λ1, · · · , λN ).

Furthermore, the problem (15) can be interpreted as a point-to-
point SIMO beamforming problem (14) with a dual transmit
power P̃ = νσ2

d, the dual channel h = vec(h1h
T
2 ), and the

noise covariance matrix Σ̃ =
σ2
d

P0
Σ, for all diagonal Λ ≽ 0,

such that the SNR constraint (16) is satisfied.
Proof: The Lagrangian for (8) is given in (12). Omitting

details, we can show that

N∑
i=1

λi

[
W(Poh1h

H
1 + σ2

rI)W
H
]
i,i

= wH
[
Λ⊗ (Poh1h

H
1 + σ2

rI)
]
w. (19)

Thus, the Lagrangian in (12) can be rewritten as

L(Pr,W,Λ, ν) = νσ2
d + Pr[1− tr(Λ)]

+wH

[
Λ⊗ (Poh1h

H
1 + σ2

rI)− ν
P0

γ0
hhH + νRg

]
w (20)

Solving the inner minimization of the dual problem (13), the
dual problem can now be expressed as

max
Λ

max
ν

νσ2
d, (21)

subject to Σ ≽ νP0

γ0
hhH , (22)

(17) and (18)

where Σ = Λ ⊗
(
Poh1h

H
1 + σ2

rI
)
+ ν

(
h2h

H
2 ⊗ σ2

rI
)
. From

Proposition 2, the optimal solution of the dual problem (21)
is the same as that of the original relay beamforming problem
(4). To show (15) and (21) are equivalent, we adopt the
technique in [8]. By [8, Lemma 1], the SNR constraint (22) is
equivalent to νP0

γ0
hHΣ†h ≤ 1, where (·)† denotes the matrix



pseudo-inverse, since the matrix Σ may not be strictly positive
definite. Thus, the dual problem (21) is equivalent to

max
Λ

max
ν

νσ2
d (23)

subject to
νP0

γ0
hHΣ†h ≤ 1

(17) and (18).

To show (15) and (23) are equivalent, we note that the inner
minimization part in (15) can be interpreted as a direct point-
to-point SIMO beamforming problem given in (14), for which
the solution is known. The optimal receiver beamforming
vector w̃o is thus given by

w̃o = Σ̃
†
h =

Po

σ2
d

Σ†h. (24)

Substituting (24) into the SNR constraint (16), we obtain

νP0

γ0
hHΣ†h ≥ 1. (25)

Compared to (23), the SNR constraint is reversed and the
minimization over ν is also reversed as maximization. How-
ever, with a fixed noise covariance matrix Σ, at optimality,
it can be shown that the received SNR constraint in both
problems are reached with equality, and the two problems
lead to the same optimal beamforming vector solution [8],
[11]. Thus, the optimal νo in both cases is the solution of
νP0

γ0
hHΣ†h = 1. Therefore, the Lagrange dual of the relay

beamforming problem (4) is equivalent to the problem (15).

Corollary 1: The min-max per-antenna power P o
r in the

relay beamforming problem (4) is obtained through the dual
point-to-point SIMO beamforming problem (15) as

P o
r =

σ2
dγo

PohHΣo†h
(26)

where Σo is the value of Σ under the opitmal (Λo, νo).
Proof: At optimality, the minimum per-antenna power P o

r

in (4) is the same as the value of the objective function in (15).
From (24), P o

r in (26) follows. Details are omitted due to page
limitation.

D. The Semi-Closed Form Solution for the Optimal Wo

Since (4) and (15) lead to the same beamforming vector
solution, up to a scaling factor, the optimal wo at the relay
can be determined through the SIMO beamforming problem
(15). Let

wo = βw̃o (27)

where, without loss of generality, β is a real scaling factor.
To determine β, note that the SNR constraint (5) is met with
equality at the optimality. From (10), we have

P0w
oHhhHwo

woHRgwo + σ2
d

= γo. (28)

Substituting (27) into this equation, and combining with equa-
tion (24), we obtain

β =
σ2
d

Po

√√√√ σ2
d

P0

γ0

∣∣∣hHΣo†h
∣∣∣2 − ∥∥∥R 1

2
g Σ

o†h
∥∥∥2 (29)

By reversing the operation wo = vec(WoH), we now have
obtained the explicit closed form solution (once Λo and νo

are given) for the optimal relay processing matrix Wo of the
relay beamforming problem (4).

E. Determining Λo and νo through SDP

To determine the optimal relay processing matrix Wo, we
need to obtain the optimal Λo and νo. This can be done by
directly solving the Lagrange dual problem (21).

Proposition 3: The dual problem (21) is an SDP problem.
Proof: Define s

∆
= [0, · · · , 0,−σ2

d]
T , a ∆

= [1, · · · , 1, 0]T ,
and x

∆
= [λ1, · · · , λN , ν]T = [x1, · · · , xN , xN+1]

T , where
s,a,x ∈ R(N+1)×1. The constraint (22) can be expressed as

−Λ⊗Rr − ν

(
Rg −

P0

γ0
hhH

)
≼ 0 (30)

where Rr
∆
= Poh1h

H
1 + σ2

rI. Observing that Λ is a diagonal
matrix, we obtain

−Λ⊗Rr =
N∑
i=1

λiFi, (31)

where Fi is a block diagonal matrix, whose ith diagonal
block is −Rr and all other (N − 1) diagonal blocks are
0N×N . Thus, the constraint (30) can be further expressed as∑N+1

i=1 xiFi ≼ 0, where FN+1
∆
= P0

γ0
hhH − Rg . Therefore,

the dual problem (21) can be transformed into the following
SDP

min
x

sTx (32)

subject to x ≽ 0, aTx− 1 ≤ 0,
N+1∑
i=1

xiFi ≼ 0

where F1, · · · ,FN+1 are all Hermitian matrices.
The significance of the SDP formulation is two-fold: first,

we now convert the optimization problem (4) with N2 vari-
ables and (N+1) constraints to one with (N+1) variables and
three constraints; second, the SDP algorithm has a polynomial
worst-case complexity, and performs very well in practice [9].
Thus, we greatly reduce the computation complexity in finding
the solution of the original optimization problem. The SDP
problem above can be solved using standard SDP software
such as SeDuMi or CVX.

IV. NUMERICAL COMPARISONS

Using the proposed optimization solution, we compare the
performance under per-antenna power minimization with that
under sum-power Psum minimization at the MIMO relay. For
relay sum-power minimization with a given destination SNR



target, we can use the result in [3] to derive the minimum
sum-power as

Psum =

(
σ2
r + Po∥h1∥2

)
σ2
dγo

(Po∥h1∥2 − σ2
rγo)∥h2∥2

. (33)

It is easy to see that the feasibility condition for the equation
above is Po >

σ2
rγo

∥h1∥2 .
In the following numerical results, the noise powers at the

relay and at the destination are set as σ2
r = σ2

d = 0.1W . The
source transmitted power P0 is set to 10dB above the noise
power. The relay has N = 4 antennas. The entries of h1

and h2 are assumed i.i.d. zero-mean Gaussian with variance
1. First, we explore the average per-antenna power usage for
different required SNR γ0 under both power objectives. As
demonstrated in Fig. 2, the higher required SNR, the higher
average per-antenna power usage in both cases. As expected,
the sum-power objective uses less power on average than
per-antenna power objective due to the flexibility of power
distribution among antennas.

Next, we study the statistical behavior of per-antenna power
usage under both types of power minimization. Fig. 3 demon-
strates the PDF of the 1st antenna’s power usage. As we see
the variance of per-antenna power usage under the per-antenna
case is much smaller than that under the sum-power case;
wider tails at both ends of the PDF curves for the sum-power
case can be seen.

Finally, we compare the PDF of the maximum power usage
among all antennas under both types of power minimization
objectives at the MIMO relay in Fig. 4. The shift of power
profile of the maximum power consumption among antennas
under the two cases is evident, where lower maximum power
usage for the per-antenna objective can be clearly seen.

V. CONCLUSION

In this work, we have considered the jointly optimal design
of multi-antenna relay processing matrix and per-antenna
power control. We have established the duality of MIMO relay
beamforming and direct point-to-point SIMO beamforming.
This enables us to obtain a semi-closed form solution of the
optimal relay processing (beamforming) matrix. The solution
not only reveals the structure of the optimal processing matrix,
but also allows us to significantly lower the computation
complexity of the optimal design, through drastic reduction
in the number of optimization variables and constraints, as
well as an efficient SDP formulation for the dual problem.
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