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Abstract—Motivated by a wide range of applications from par-
allel computing to distributed learning, we study distributed on-
line load balancing among multiple workers. We aim to minimize
the pointwise maximum over the workers’ local cost functions.
We propose a novel algorithm termed Distributed Online Load
Balancing with rIsk-averse assistancE (DOLBIE), which jointly
considers the worker heterogeneity and system dynamics. The
workload is distributed to workers in an online manner, where
the underloaded workers learn to provide an appropriate amount
of assistance to the most overloaded worker for the next online
round without making themselves overwhelmed. In DOLBIE, all
workers participate in updating the workload simultaneously, and
no computationally intensive gradient or projection calculation
is required. DOLBIE can be implemented in both the master-
worker and fully-distributed architectures. We analyze the worst-
case performance of DOLBIE by deriving an upper bound on
its dynamic regret. We further demonstrate the application of
DOLBIE to online batch-size tuning in distributed machine
learning. Our experimental results show that, in comparison with
state-of-the-art alternatives, DOLBIE can substantially speed up
the training process and reduce the workers’ idle time.

I. INTRODUCTION

Load balancing is an important component of parallel
computing, especially in heterogeneous systems [1]. It helps
improve service quality and maintain system stability. One
typical load balancing object is the pointwise maximum over
a set of local cost functions, e.g., the makespan, defined as
the maximum completion time over all workers. This metric
arises in a wide range of applications, e.g., Bulk Synchronous
Parallel [2], data partitioning in distributed learning [3], and
task offloading in edge computing [4].

Most existing load balancing algorithms are offline and
require a priori knowledge of the state of the system, e.g.,
the processing power of the workers and the channel state
information [5]. However, in real-world distributed computing
applications, it may be impractical to collect such information
due to the delayed feedback, while the system may evolve
in an unpredictable fashion. Take as an example synchronous
distributed training of a machine learning model. The load
balancing task is to split the dataset into multiple disjoint
partitions in each round of training, and assign them to the
workers. The objective is to minimize the total wall-clock
training time. We note that the per-round training time is not
known a priori since the data samples are randomly drawn
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and the computation and communication capabilities of the
workers may fluctuate over time, making this naturally an
online load balancing problem.

Most online load balancing algorithms share a common
understanding that the more powerful workers that incur lower
cost in the previous online rounds should take up more
workload so as to reduce the impact of the straggler, defined as
the worker who incurs the highest cost. Recent works achieve
load balancing by taking the workload inversely proportional
to the historical local cost [3], and by shifting a predefined
amount of work from the straggler to the most underloaded
worker [6]. However, the proportional adjustment in [3] is
not robust to non-linear cost functions, and the prescribed
fixed increment in [6] overlooks the system heterogeneity. We
further note that in these works, the workloads on the non-
straggling workers are passively updated without consideration
for these workers’ own local cost functions, which puts them
at risk of becoming worse stragglers.

Instead, a guiding design principle in this work is that
the assisting non-straggling workers should stay risk-averse
and judiciously share an appropriate amount of work without
being overwhelmed themselves. However, there are several
obstacles to realizing this vision: 1) The cost function is
generally non-convex and not continuously differentiable due
to the max operation. 2) Unlike in min-sum optimization [7],
[8], the local cost functions are coupled in min-max load
balancing optimization, impeding problem decomposition and
distributed implementation. 3) There is strong need for online
optimization, so as to adapt to the unpredictable fluctuations
in the cost functions over time. 4) In large-scale distributed
computation, an online optimization algorithm needs to be
lightweight and scalable to provide timely decision making.

To address these challenges, we propose a new distributed
online optimization algorithm termed Distributed Online Load
Balancing with rIsk-averse assistancE (DOLBIE), which dy-
namically balances the workload among workers over time,
even though the local cost functions of the workers can be
unpredictable and arbitrarily time varying. Our objective is
to minimize the accumulation over time of a global cost
function, defined as the pointwise maximum over the local
cost functions. DOLBIE proceeds in an online round-by-round
manner. At the beginning of each round, we do not assume
a priori knowledge of the system in the current round. The
local cost functions become available only after the decision-
making at the current round. The workers learn to provide an



appropriate level of assistance to the straggler without risking
becoming worse stragglers themselves, so as to reduce the
global cost. Our contributions are summarized as follows:

• We formulate an online load balancing problem subject
to the constraint that all workload is assigned, which has
broad application in real-world systems. Our objective is
to minimize the accumulation of the pointwise maximum
over a set of time-varying local cost functions.

• We present DOLBIE, a novel distributed online algorithm
where all workers participate in updating the workload
decisions. Without a priori knowledge of future infor-
mation, the workers with lower local costs learn over
time to share a risk-averse amount of workloads to help
the worker who incurs the highest cost in the past. We
further demonstrate the flexibility of implementing DOL-
BIE under both the master-worker and fully-distributed
architectures.

• The performance DOLBIE is analyzed in terms of the
worst-case dynamic regret, which measures the time-
accumulated cost difference between the decisions gen-
erated by DOLBIE and a sequence of instantaneous
minimizers. It compares favorably with online gradient
descent and grows sublinearly with respect to the number
of decision variables.

• We demonstrate an example application of DOLBIE to
online batch size tuning for distributed learning. Our
experiment results show the advantage of DOLBIE over
state-of-the-art algorithms, in terms of substantially re-
duced training time and lower computational complexity.

The rest of this paper is structured as follows. Section II
presents the related work. Section III illustrates motivating ex-
amples and introduces the general formulation of online min-
max load balancing problem. Section IV presents the design
of DOLBIE, which can be implemented in both the master-
worker architecture and the fully-distributed architecture. We
analyze the dynamic regret in Section V. Experimental results
are presented and discussed in Section VI. Section VII presents
the conclusion.

II. RELATED WORK

A. Offline Load Balancing

The objective of load balancing is to optimize certain system
performance through even work distribution, e.g., maximizing
throughput and minimizing the maximum or average delay
[1], [9]. In this work, we restrict our attention to minimizing
the maximum cost incurred by any worker, e.g., makespan
minimization and min-max fairness. This belongs to the family
of min-max optimization problems. Offline min-max optimiza-
tion has been extensively studied in the literature [10]–[13].
All of these studies require a priori knowledge of the state of
the system. In real-world applications, the system may evolve
in an unpredictable fashion. Therefore, we seek an online
solution to compute a sequence of decisions over time under
uncertainty.

B. Online Load Balancing

A large family of prior studies on online load balancing
focus on the scheduling, among multiple servers, of indepen-
dent tasks that arrive at arbitrary times. They mostly concern
task migration or re-assignment among the servers [14]–[17]
(see also the surveys [18]–[20] and the references therein).
In contrast, in this work we consider non-movable workload,
which is important to applications with non-preemptive or non-
resumable jobs, for example in machine learning [6].

Our problem formulation and solution are most closely
related to those of [3] and [6]. In [3], an online algorithm was
proposed to balance the workload by updating the decisions in-
versely proportional to the historical local cost of each worker,
e.g., the local processing time. However, such proportional
adjustment is not robust to non-linear cost functions. To cope
with non-linear cost functions, it was proposed in [6] to assign
an additional amount of work to the worker who incurred
the lowest cost in the previous round, thereby reducing the
workload on the worker who incurred the highest cost in the
previous round. Furthermore, this method uses a prescribed
fixed amount of workload increment each time. In contrast, in
our work all non-straggling workers simultaneously take up
additional workload, and we dynamically compute appropri-
ate amounts of workload increment for different workers at
different times.

C. Online Min-Max Optimization

Our problem belongs to the general family of online min-
max optimization. With the assumption that the local cost
functions are convex, an exact penalty approach and a primal-
dual Lagrangian approach were proposed to solve the min-max
optimization over a time-varying topology in [21] and [22],
respectively. In [23], a repeated game approach was proposed
for online min-max load balancing, but it is applicable only to
linear local cost functions. In the online min-max algorithm of
[24], the convexity assumption was removed, but the local cost
functions must be decreasing in the decision variables, which
is opposite to the relation between the cost and the workload
in load balancing. Therefore, none of the above solutions
are applicable to our problem, where the cost functions are
typically non-convex and non-decreasing.

III. MOTIVATION AND PROBLEM FORMULATION

Load balancing over the pointwise maximum naturally
arises in a broad range of applications. In this section, we
will first discuss two example use cases and then present the
general problem formulation.

A. Example 1: Batch Size Tuning in Distributed Learning

In distributed machine learning (ML), the learning task is
parallelized by breaking down the data samples and assigning
them to multiple workers, e.g., parallel processors or mobile
devices [25]. Since the workers have heterogeneous computing
capacity, they complete their tasks at different speeds, incur-
ring wasted idle time at the synchronization barrier. Therefore,
it is important to assign different sizes of data batches to
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Fig. 1: Examples of load balancing for makespan minimization.

different workers to balance their workload. This batch size
tuning problem can be formulated as online load balancing to
minimize the wall-clock training time [4], [26], [27].

As illustrated in Fig. 1a, a set of parallel processors
N = {1, ..., N}, e.g., CPUs and GPUs, cooperatively train a
shared model. The parameter server is responsible for global
model aggregation. The training is carried out over rounds
T = {1, ..., T}. Let B be the global batch size, i.e., the total
number of data samples that need to be processed in each
round, and bi,t, 0 ≤ bi,t ≤ 1, be the portion of B assigned to
processor i in round t ∈ T . Let bt = [b1,t, ..., bN,t].

After each processor calculates the local gradients, the
parameter server will aggregate the local gradients from all
processors and update the global model. Let fi,t(bi,t) =
fP
i,t(bi,t) + fC

i,t denote local latency function of processor i,
where fP

i,t(bi,t) =
bi,tB
γi,t

is the batch processing time on pro-

cessor i, γi,t is the data processing speed, and fC
i,t =

di,t
ϕi,t

is the
communication time between processor i and the parameter
server, di,t is the transmitted ML model size and ϕi,t is the
data rate. The per-round training latency is dominated by the
slowest processor that sends its local gradients to the parameter
server, i.e., maxi∈N

{
fP
i,t(bi,t) + fC

i,t

}
.

We aim at minimizing the total wall-clock training time
by efficiently tuning the batch size over time. The batch size
tuning problem can be formulated as

min
{bt}t∈T

∑
t∈T

max
i∈N

{
fP
i,t(bi,t) + fC

i,t

}
,

s.t.
∑
i∈N

bi,t = 1,∀t ∈ T ,

bi,t ≥ 0,∀i ∈ N ,∀t ∈ T .

The first constraint ensures that all data samples are processed.
The second constraint prevents negative values for the batch
size. Note that due to the uncertain available processing power
γi,t and data rate ϕi,t, the processor can only observe fi,t(·)

after processing the data samples and sending its local gradient
to the parameter server. This necessitates online optimization.

B. Example 2: Task Offloading in Edge Computing

Edge computing distributes computation power closer to
the end users than conventional cloud computing [28]. The
computation offloading problem can be formulated as the
minimization of the total task completion time [4], [26],
[27], [29]. The computation tasks of end users can be either
executed locally or independently offloaded to nearby more
powerful servers. As illustrated in Fig. 1b, a set of heteroge-
neous edge servers N = {1, ..., N} help process a portion of
user tasks. Let T = {1, ..., T} denote the time horizon and
λt = [λ0,t, λ1,t, ..., λN,t] denote the task partition scheme at
time t, where λ0,t denotes the portion of the tasks for local
computation and λi,t denotes the portion of the tasks offloaded
to edge server i,∀i ∈ N .

The cost function associated with local computation
f0,t(λ0,t) is the task completion time at the user. The cost
function associated with task offloading fi,t(λi,t) consists of
the task transmission time from the user to the edge server
and the task execution time at the edge server. In each round
t, the overall completion time is determined by the maximum
completion time, either in local computing mode or offloading
mode at server i, i.e., maxi∈{0,1,...,N} fi,t(λi,t). The objective
is to minimize the total task completion time over a time
horizon T , subject to the task partition constraints. This
computation offloading problem can be written as

min
{λt}t∈N

∑
t∈T

max
i∈{0,1,...,N}

fi,t(λi,t)

s.t.
∑

i∈{0,1,...,N}

λi,t = 1,

λi,t ≥ 0,∀i ∈ {0, 1, ..., N}.

Similar to the previous example, since the cost functions are
unpredictable and time-varying, this is an online optimization
problem.



C. General Problem Formulation

Motivated by the above examples and many other real-world
applications, we formulate the general problem of online min-
max load balancing as follows.

Consider a set of parallel workers N = {1, ..., N} in a
system where the time is slotted into rounds T = {1, ..., T}.
At each round t ∈ T , let xt = [x1,t, ..., xN,t] denote the
load balancing scheme at round t, where xi,t denotes the
portion of workload assigned to worker i. The local cost
function associated with xi,t is fi,t(xi,t). It is increasing,
but not necessarily strictly increasing, with respect to xi,t.
Furthermore, fi,t may depend on other random factors such as
the worker’s available computation capacity or communication
environment, so it varies over time. The global cost function
in round t is defined as the pointwise maximum over the set
of local cost functions, i.e.,

ft(xt) = max
i∈N

fi,t(xi,t).

Our objective is to minimize the accumulation of the
sequence of global cost functions over time. Then, the load
balancing problem is

min
{xt}t∈T

∑
t∈T

ft(xt), (1)

s.t.
∑
i∈N

xi,t = 1,∀t ∈ T , (2)

xi,t ≥ 0,∀i ∈ N ,∀t ∈ T . (3)

Constraint (2) ensures that all workloads are executed. Con-
straint (3) prevents negative workload assignment.

Thus, the decision variables are a sequence of load balanc-
ing schemes over time. As illustrated in the above motivating
examples, in many real-world often the local cost functions
are unpredictable and time-varying. In particular, they are
revealed only after decision making in each round. This
calls for an online optimization algorithm. Moreover, directly
solving this problem at a central controller might incur large
communication overhead, as the controller would require the
knowledge of all components in the local cost functions. This
could also raise privacy concerns for the workers. Therefore,
we are interested in developing a distributed online algorithm
to solve problem (1).

IV. DISTRIBUTED ONLINE LOAD BALANCING WITH
RISK-AVERSE ASSISTANCE

In this section, we present the design of DOLBIE to
solve the online min-max load balancing problem in (1).
In DOLBIE, the workers simultaneously learn to track the
unknown local cost functions, to make judicious decisions on
load sharing with the straggler without becoming worse strag-
glers themselves. Furthermore, they update the local decision
variables by only sharing the local cost values instead of the
local cost functions.

A. Important Quantity x′t
In round t, given the decision xi,t, let us label the local

cost at worker i by li,t = fi,t(xi,t). Then the global cost is
lt = maxi∈N li,t. We call the worker with the highest cost the
straggler in this round, with random tie breaking if necessary,
i.e.,

st = arg max
i∈N

li,t.

Intuitively, if a small amount of workload from the straggler
is moved to the non-stragglers, we can reduce lt, but we must
take care not to change the workload by too much, since
otherwise a non-straggler may suffer a new cost great than
that of the original straggler, thus incurring a worse global
cost.

Let x̃i,t denote the maximum value such that fi,t(x̃i,t) ≤ lt,
i.e.,

x̃i,t = max{x̃|fi,t(x̃) ≤ lt}.

Since fi,t(·) is increasing, x̃i,t can be found efficiently with
function inverse or bisection search [30]. Since lt ≥ fi,t(xi,t),
we have x̃i,t ≥ xi,t. Since a feasible amount of workloads is
restricted by the total amount of workloads xi,t ≤ 1, we refine
the maximum acceptable workload by truncating it to

x′i,t = min {x̃i,t, 1} . (4)

The non-negative quantity (x′i,t−xi,t) represents the maximum
additional workload that worker i could have shared with the
straggler without making itself the worse straggler. Further-
more, since lt = fst,t(xst,t), the straggler does not need to
acquire additional workload, i.e., x′st,t = xst,t. We will use
the quantity x′i,t extensively in the design of DOLBIE.

If the workers update with xi,t+1 = x′i,t for the next round
t, any increase in the workloads of the non-stragglers involves
a corresponding decrease in that of the straggler. Therefore,
the maximum total workloads that can be reduced from the
straggler is

∑
i∈N (xi,t+1 − xi,t). However, if we use this

maximum, i.e., setting xi,t+1 = x′i,t,∀t, the decision variable
on the straggler could become infeasible , i.e., xst,t+1 =
xst,t−

∑
i∈N (xi,t+1−xi,t) < 0. Furthermore, such aggressive

behavior could make the non-stragglers easily become a worse
straggler in the next round. In the next section, we will address
this issue in the design of DOLBIE.

B. DOLBIE Algorithm Design

DOLBIE can work in both the master-worker architecture
and the fully-distributed architecture.

1) DOLBIE in Master-Worker Architecture: Here we first
illustrate the master-worker version where either an external
controller or an elected worker acts also as the master.

To address the feasibility issues discussed in Section IV-A,
we update the decision variable by taking a step αt ∈ [0, 1]
from xi,t towards the potential maximum workload x′i,t,∀i.
However, this step size αt needs to be carefully coordinated
among the workers.

As shown in Algorithm 1, at the beginning of round t, each
worker proceeds with the workloads xi,t,∀i (line 1). Then



Algorithm 1: DOLBIE (master-worker version)
Input: Number of rounds T .
Initialization: Arbitrary partition x1 and step size α1.
for Round t = 1 to T do

Worker i = 1, 2, . . . , N runs in parallel:
1 Proceed with xi,t; . Play action
2 Suffer cost li,t = fi,t(xi,t); . Reveal local cost
3 Observe local cost function fi,t(·);
4 Send li,t to master; . Share local cost
5 Receive lt, αt, and 1{i 6=st} from master;

if 1{i 6=st} then
6 Update xi,t+1 with . Risk-averse assistance

xi,t+1 = xi,t − αt(xi,t − x′i,t)

7 Send xi,t+1 to master;
else

8 Receive xi,t+1 from master;
end

Master runs:
9 Receive local cost li,t from all workers i ∈ N ;

10 Observe the global cost lt = maxi∈N li,t;
11 Identify the straggler st = arg maxi∈N li,t. If

multiple stragglers exist, select the worker that
ranks higher in the worker list;

12 Send lt, αt, and 1{i 6=st} to all workers i ∈ N ;
13 Receive xi,t+1 from all workers i ∈ N ;
14 Update xst,t+1 = 1−

∑
i6=st xi,t+1;

15 Send xst,t+1 to worker st;
16 Update αt+1 such that . Retain feasibility

αt+1 ≤ min
{
αt,

xst,t+1

N−2+xst,t+1

}
;

end

the workers observe the resultant local cost li,t = fi,t(xi,t)
assiciated with xi,t (line 2), and become aware of its local
cost function fi,t(·) (line 3). If the master cannot naturally
obtain the global cost, each worker sends the local cost li,t
to it (line 4). After receiving the local cost information, the
master obtains the global cost lt and identifies the straggler
st (lines 9-11). If multiple stragglers exist, the master will
randomly choose one of the stragglers. Then, the master sends
the global cost lt and step size αt to all workers, as well as
a signal 1{i 6=st} indicating whether worker i is the straggler,
where 1{·} is the indicator function (line 12).

After receiving the information sent by the master (lines 5),
the workers compute the maximum acceptable workload x′i,t
that they could have handled, as defined in (4). If worker i
is not the straggler, based on the step size αt, it updates its
decision by moving towards x′i,t (line 6):

xi,t+1 = xi,t − αt(xi,t − x′i,t),∀i ∈ N . (5)

To inform the straggler its new workload, the non-straggling
works sent its new local decisions xi,t+1 to the master (line 7).
The master then aggregates the local decisions xi,t+1, update

Algorithm 2: DOLBIE (fully-distributed version)
Input: Number of rounds T and worker list with size N .
Initialization: Arbitrary partition x1 and step size ᾱ1.
for Round t = 1 to T do

Worker i = 1, 2, . . . , N runs in parallel:
1 Proceed with xi,t; . Play action
2 Suffer cost li,t = fi,t(xi,t); . Reveal local cost
3 Observe local cost function fi,t(·);
4 Send li,t and ᾱi,t to (and receive lj,t and ᾱj,t

from) worker j,∀j ∈ N\{i}; . Share local cost
5 Observe the global cost lt = maxj∈N lj,t;
6 Consensus on the step size αt = minj∈N {ᾱj,t};
7 Identify the straggler st = arg maxj∈N lj,t. If

multiple stragglers exist, select the worker that
ranks higher in the worker list;

if i 6= st then
8 Update xi,t+1 with . Risk-averse assistance

xi,t+1 = xi,t − αt(xi,t − x′i,t)

9 Send xi,t+1 to the straggler st;
10 Update ᾱi,t+1 = ᾱi,t;

else
11 Receive xj,t+1 from other workers

j,∀j ∈ N\{i};
12 Update xi,t+1 = 1−

∑
j 6=i xj,t+1;

13 Update ᾱi,t+1 such that . Retain feasibility
ᾱi,t+1 ≤ min

{
ᾱi,t,

xi,t+1

N−2+xi,t+1

}
;

end
end

and inform the straggler its updated decision variable (lines 8,
13-15), i.e.,

xst,t+1 = 1−
∑
i6=st

xi,t+1 = xst,t − αt
∑
i6=st

(x′i,t − xi,t), (6)

With the update rules in (5) and (6), the constraint∑
i∈N xi,t+1 = 1 is naturally guaranteed in round t+1,∀t. We

emphasize here that the proposed online workload updating is
different from task mitigation where the tasks are transmitted
among workers. Instead, here the value xi,t+1 instructs worker
i on the amount of workload to be executed in the next round.

To retain feasibility with respect to constraint (3), the key
is to properly coordinate the workers with step size αt.
This constraint indicates that the total workloads additionally
assigned to the non-stragglers should not exceed the existing
workloads of the straggler. We select a step size such that (line
16)

αt+1 ≤ min

{
αt,

xst,t+1

N − 2 + xst,t+1

}
. (7)

The min operation enforces a diminishing step size, which
provides useful properties for our convergence analysis, which
will be discussed in Section V. The rationale behind the second
term in (7) is to limit the amount of work additionally assigned



to the non-stragglers. This update of the step size provides the
following two benefits: first, the non-stragglers avoid behaving
aggressively and reduce the risk of becoming a worse straggler
in the next round; second, constraint (3) can be naturally
guaranteed. To see this, for any t, since x′i,t+1 ≤ 1,∀i, in
(4), we have

αt ≤
xst,t

N − 2 + xst,t
=

xst,t
N − 1− (1− xst,t)

≤ xst,t∑
i 6=st x

′
i,t − (1− xst,t)

=
xst,t∑

i 6=st x
′
i,t −

∑
i 6=st xi,t

=
xst,t∑

i 6=st(x
′
i,t − xi,t)

.

In (6), we must have xst,t+1 ≥ 0. For i 6= st, since x′i,t ≥ xi,t
and αt ∈ [0, 1], we always have xi,t+1 ≥ xi,t ≥ 0. Therefore,
constraint (3) is satistied for any i and t.

The initial step size α1 can be set similarly to (7). Since x
a+x

is increasing with x for any non-negative a, we can initialize
the step size as α1 =

mini xi,1

N−2+mini xi,1
,∀i.

2) DOLBIE in Fully-Distributed Architecture: The fully-
distributed architecture helps to avoid a single point of failure
or overwhelming one worker. A naive extension of the master-
work version of DOLBIE to the fully-distributed version
would be to make every worker i obtain the same knowledge
as the master in each round t, i.e., the values of li,t, lt, st,
and xj,t+1,∀j ∈ N\{i}. However, this can lead to large
communication overhead, and the workers may not want to
share all private information with each other. Therefore, here
we propose a communication-efficient fully-distributed version
of DOLBIE with limited information exchange. Each worker
shares its decision variable xi,t+1 with only the straggler in
the current round. By design, a non-straggler i ∈ N\{st} will
not know the decision variables xj,t+1 of the other workers
j ∈ N\{i}.

As shown in Algorithm 2, to retain feasibility on xt, we
allow each worker i to maintain a local step size ᾱi,t ∈ [0, 1]
in round t. Let ᾱt = [ᾱ1,t, ..., ᾱi,t, ..., ᾱN,t]. After observing
the local cost li,t, each worker shares the cost value li,t
and the local step size ᾱi,t with all other workers. Then,
all workers obtain the global cost lt and can independently
identify the straggler st and compute the step size αt (lines
4-7). If multiple stragglers exist, the worker identity numbers
can be used for tie breaking. Based on the step size αt, each
worker updates its decisions by moving towards x′i,t (line 10).
Correspondingly, the workload of the straggler is adjusted by
computing the remaining workload (lines 9, 11, and 12). Note
that the constraint

∑
i∈N xi,t+1 = 1 is naturally guaranteed

in round t+ 1,∀t.
To retain feasibility with respect to constraint (3), the step

size is updated by the straggler via selecting a value such that
(line 13)

ᾱst,t+1 ≤ min

{
ᾱst,t,

xst,t+1

N − 2 + xst,t+1

}
. (8)

Therefore, for any t, since x′i,t+1 ≤ 1,∀i, similar to the master-
worker case, we have

αt = min
j∈N
{ᾱj,t} ≤ ᾱst,t ≤

xst,t∑
i 6=st(x

′
i,t − xi,t)

,

and constraint (3) is satisfied for any i and t.
We remark here that both the master-worker and fully-

distributed versions of DOLBIE enjoy some beneficial features
by design:

1) No gradient calculation: In general, the gradients or
subgradients of complex functions are difficult to calcu-
late. DOLBIE enjoys substantially reduced computation
complexity with no need for gradient calculation.

2) No projection calculation: The projection operation is
expensive even for simple feasible sets [31]. For DOL-
BIE, the feasibility of the decision variables is naturally
guaranteed by design in each round. Therefore, DOLBIE
eliminates the need for projection.

3) Distributed implementation: DOLBIE facilitates dis-
tributed implementation in both the master-worker and
fully-distributed versions. Much of the DOLBIE algo-
rithm can be run in parallel. Moreover, each worker only
needs to keep its local variable xi,t rather than a full copy
of all decision variables xt.

4) Privacy protection: DOLBIE addresses the privacy con-
cern by only communicating the workload decisions xi,t
and the cost value li,t instead of the full information
contained in the local cost functions fi,t(·).

C. Computation and Communication Complexity

In the master-worker version, in each round t, each worker
i sends the local cost li,t, the updated decision xi,t+1 to the
master, and receives lt, αt, and 1{i 6=st} from the master,
each of which is a scalar value. In each round t, each
worker updates the value xi,t+1. Therefore, the total per-round
communication and computation complexity over all workers
are both O(N), achieving the same communication complexity
as [3] and [6]. When compared with the projection-based
online algorithms, e.g., projected online gradient methods
with at least O(N2 logN) computation complexity [31], [32],
DOLBIE enjoys substantially reduced computation overhead.

In the fully-distributed version, in each round t, each
worker i broadcasts its local cost li,t and the local step size
αi,t, and sends its decision xi,t+1 only to the straggler st.
Therefore, the total per-round communication complexity over
all workers is O(N2). Although this is substantially increased
when compared with the master-worker architecture, the fully-
distributed version enjoys a higher level of privacy protection.
In each round t, each worker updates its decision xi,t+1 and
the local step size ᾱi,t locally, each of which is a scalar value.
Therefore, the total per-round computation complexity over all
workers remains O(N),

V. DYNAMIC REGRET ANALYSIS

In this section, we analyze the theoretical performance
guarantee provided by DOLBIE, by deriving an upper bound
on its dynamic regret.



We consider a version of the dynamic regret over the time
horizon T defined as [33]

Regd
T =

∑
t∈T

ft(xt)−
∑
t∈T

ft(x
∗
t ),

where x∗t ∈ arg minx∈F ft(x) is the instantaneous minimizer
in round t and F is the feasible set of problem (1). The
dynamic regret typically involves some regularity measures of
the system dynamics, e.g., the path-length of the instantaneous
minimizers, which is defined as PT =

∑T
t=2 ||x∗t−1 − x∗t ||2.

To proceed with our analysis, we require the following
assumption, which is common in the online optimization
literature:

Assumption 1 (Lipschitz). We assume fi,t(·) is Lipschitz
continuous with constant L, i.e., |fi,t(x1)−fi,t(x2)| ≤ L|x1−
x2|,∀x1, x2, i and t.

Theorem 1. Consider the online min-max load balanc-
ing problem defined in (1) with Assumption 1. The dy-
namic regret RegdT for the sequence of decisions xt
generated by DOLBIE is upper bounded by RegdT ≤√
TL2( 1

αT
+ PT

αT
+
∑T
t=1

N−1
2 +Nαt

2 ), where PT is the path
length of the dynamic minimizers.

Proof. For notation simplicity, let Gi,t denote the maximum
acceptable workload on worker i in round t defined in the
design of DOLBIE, i.e.,

Gi,t =

{
xi,t − x′i,t, if i 6= st,

−
∑
j 6=st(xj,t − x

′
j,t), o.w.

Let Gt = [G1,t, ..., GN,t]. The updating rule in (5)–(6) can be
rewritten as

xt+1 = xt − αtGt. (9)

We emphasize that Gt is not the gradient but the designed
degree of risk-averse assistance in DOLBIE. We first show
that DOLBIE implies the following lemmas:

Lemma 1. For any round t, let x∗t = [x∗1,t, ..., x
∗
N,t] denote the

instataneous minimizer of problem (1). Any feasible solution
xt = [x1,t, ..., xN,t] ∈ F has the following properties:

i) xst,t ≥ x∗st,t;
ii) x′i,t ≥ xi,t,∀i ∈ N ;

iii) x′i,t ≥ x∗i,t,∀i ∈ N ;
iv)
∑
i 6=st(xi,t − x

′
i,t)(xi,t − x∗i,t) ≥ −1/4,

where st = arg maxi∈N fi,t(xi,t) denotes the worker with the
highest cost when applying the solution xt and x′i,t is defined
the same as in (4).

Proof Sketch of Lemma 1 For any round t and any feasible
solution xt,

fst,t(xst,t) = ft(xt) ≥ ft(x
∗
t ) = max

j∈N
fj,t(x

∗
j,t) ≥ fst,t(x

∗
st,t).

Since fst,t(·) is a non-decreasing function, we have i).
Since x∗i,t, xi,t ≤ 1 for any i and t, if x′i,t = 1, we directly have

ii) and iii). If x′i,t = x̃i,t, since ft(xt) ≥ fi,t(xi,t) and ft(xt) ≥
ft(x

∗
t ), we have

fi,t(x
′
i,t) ≥ fi,t(xi,t), and fi,t(x

′
i,t) ≥ fi,t(x

∗
i,t).

Since fi,t(·) is a non-decreasing function, we have ii) and iii).
To prove iv), we can derive its left-hand side as follows:∑

i 6=st

(xi,t − x′i,t)(xi,t − x∗i,t)

=
∑
i6=st

{(
xi,t −

x′i,t + x∗i,t
2

)2

−
(
x′i,t − x∗i,t

2

)2
}

≥ −
∑

i 6=st
(x′i,t − x∗i,t)

2

4
≥ −N − 1

4
.

The last step holds since 0 ≤ x′i,t, x
∗
i,t ≤ 1, ∀i ∈ N .

Lemma 2. Any instantaneous feasible solution xt ∈ F to
problem (1) with Assumption 1 satisfies[

ft(xt)− ft(x∗t )
L

]2
≤ N − 1

4
+GT

t (xt − x∗t ) (10)

Proof of Lemma 2 From iv) in Lemma 1, we have

GT
t (xt − x∗t ) =

∑
i6=st

(xi,t − x′i,t)(xi,t − x∗i,t)

− (xst,t − x∗st,t)
∑
i 6=st

(xi,t − x′i,t)

≥ −N − 1

4
+ (xst,t − x∗st,t)

∑
i 6=st

(x′i,t − xi,t)

From iii) in Lemma 1, we have x′i,t ≥ x∗i,t. Since
∑
i∈N xi,t =∑

i∈N xi,t = 1, we have∑
i 6=st

(x′i,t − xi,t) ≥
∑
i6=st

(x∗i,t − xi,t)

= (1− x∗st,t)− (1− xst,t) = xst,t − x∗st,t.

Therefore, we have

GT
t (xt − x∗t ) ≥ −

N − 1

4
+
(
x∗st,t − xst,t

)2
.

Then, with Assumption 1, we have

(
x∗st,t − xst,t

)2 ≥ [fst,t(xst,t)− fst,t(x∗st,t)
L

]2
(a)

≥

[
fst,t(xst,t)− fs∗t ,t(x

∗
s∗t ,t

)

L

]2
≥
[
ft(xt)− ft(x∗t )

L

]2
,

where s∗t = arg maxi∈N fi,t(x
∗
i,t) denotes the worker who is

the straggler in round t with the instantaneous optimal solution
x∗t . Inequality (a) holds since fst,t(x

∗
st,t) ≤ fs∗t ,t(x

∗
s∗t ,t

).
Therefore, we further have

N − 1

4
+GT

t (xt − x∗t ) ≥
[
ft(xt)− ft(x∗t )

L

]2
.

We are now ready to proceed with the proof of Theorem 1.
With the updating rule of DOLBIE in (9), we have

||xt+1 − x∗t ||2 = ||xt − x∗t − αtGt||2

= ||xt − x∗t ||2 + αt
2||Gt||2 − 2αtG

T
t (xt − x∗t ). (11)
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Fig. 2: DOLBIE for batch size tuning in distributed learning.

By summing up the left-hand side of (10) over t, we have

1

L2

T∑
t=1

(ft(xt)− ft(x∗t ))2 ≤
T∑
t=1

{
GT
t (xt − x∗t ) +

N − 1

4

}
(a)

≤
T∑
t=1

1

2αt
(||xt − x∗t ||2 − ||xt+1 − x∗t ||2) +

T∑
t=1

N−1
2 +Nαt

2

(b)
=
||x1||2

2α1
− ||xT+1||2

2αT
+

T∑
t=2

(
1

2αt
− 1

2αt−1
)||xt||2 −

xT
1x
∗
1

α1

+
xT
t xt+1

αT
+

T∑
t=2

(
xT
t x
∗
t−1

αt−1
− x

T
t x
∗
t

αt
) +

T∑
t=1

N−1
2 +Nαt

2

(c)

≤ ||x1||2

2α1
+
xT
t xt+1

2αT
+

1

αT

T∑
t=2

(x∗t−1 − x∗t )Txt

+

T∑
t=1

N−1
2 +Nαt

2

(d)

≤ 1

αT
+
PT
αT

+

T∑
t=1

N−1
2 +Nαt

2
,

where (a) is due to (11), (b) holds since ||xt−x∗t ||2−||xt+1−
x∗t ||2 = ||xt||2− ||xt+1||2 + 2(xt+1−xt)Tx∗t , and ||Gt||2 ≤
N , (c) holds due to diminishing step sizes αt−1 ≥ αt,∀t
defined in (8), and (d) holds since ||xt||2 ≤ 1 and

T∑
t=2

(x∗t−1 − x∗t )Txt ≤
T∑
t=2

||x∗t−1 − x∗t || · ||xt||.

As the inequality 1
T

∑
t xt ≤

√
1
T

∑
t x

2
t holds for any xt, we

further have

Regd
T =

T∑
t=1

ft(xt)− ft(x∗t ) ≤

√√√√T

T∑
t=1

(ft(xt)− ft(x∗t ))2

≤

√√√√TL2(
1

αT
+
PT
αT

+

T∑
t=1

N−1
2 +Nαt

2
).

Since we do not make prior assumptions on how system
varies over time, the dynamic regret scales linearly in the
worst case. Our upper bound compares favorably with online
gradient descent. It scales the same as in Theorem 2 of [33],
while it does not require any assumption on the convexity of

the cost function. Moreover, the dynamic regret bound grows
sublinearly with respect to the number of workers, i.e., the
number of decision variables, making DOLBIE an attractive
alternative to existing solutions.

VI. EXPERIMENTAL PERFORMANCE EVALUATION

As an example for experimental performance evaluation,
we apply DOLBIE to the problem of batch size tuning
in distributed ML as defined in Section III-A. We conduct
extensive experiments to compare the performance of DOLBIE
with that of several state-of-the-art alternatives.

A. Integration of DOLBIE and Distributed ML

As illustrated in Fig. 2, both the parameter server and
workers are responsible for batch size tunning as well as
learning over the designed batch of data samples. The round
index t of DOLBIE is the same as the ML training rounds,
each of which consists of a batch size tuning phrase of running
DOLBIE and a prescribed ML learning phrase. In the batch
size tuning phrase, the parameter server has access to the
training latency in the previous round ft−1 and the workers
locally determine the batch size simultaneously for the current
round. The parameter server only makes decisions for the
straggler who is the slowest in the previous round.

At the end of the previous training round t−1, the parameter
server becomes aware of the training latency ft−1(bt−1). After
each worker calculates the local gradients of the ML model,
the processing speed γi,t−1 is observed by the worker. After
each worker sends its local gradient to the parameter server,
the communication time fC

i,t−1 is observed by the worker.
Therefore, at the beginning of round t, the previous training
latency ft−1(bt−1) becomes available to all workers and the
local information fi,t−1(·) becomes available to the corre-
sponding worker i. Then, each worker independently updates
the workload by first calculating the maximum workload it
can handle without making itself the straggler in (4), i.e.,

b′i,t−1 = min

{
1,

(
ft−1 − fC

i,t−1
)
γi,t−1

B

}
.

The non-stragglers update their decision variables by pro-
cessing a suitably increased amount of data samples, i.e.,
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Fig. 3: Per-round latency of one realization.

bi,t = bi,t−1−αt−1(bi,t−1− b′i,t−1). The remaining workload
that has not been claimed by the non-stragglers is assigned to
the straggler, i.e., bst−1,t = 1 −

∑
i 6=st−1

bi,t. The parameter
server then updates the step size αt to retain feasibility for
the next round, i.e., αt ≤ min

{
αt−1,

bst,t
N−2+bst,t

}
. After this

batch size tuning phrase, each worker i calculates the local
gradients of the ML model by processing a batch of data
samples of size bi,tB. After aggregating the local gradients
from all workers, the parameter server updates the global
ML model. Afterward, the current training round ends and
all workers enter the next training round.

B. Experimental Results

We perform experiments using the actual measured compu-
tation time and data transfer time of training various ML mod-
els over various processors. We consider a distributed learning
scenario where N = 30 heterogeneous workers cooperatively
train ML models in parallel. Each worker is equipped with
one of the following processors uniformly at random: NVIDIA
Tesla V100 Pascal, NVIDIA Tesla P100 Volta, NVIDIA T4
Turing, Intel Xeon Gold 6238 Cascade Lake @ 2.10GHz,
and Intel E5-2683 v4 Broadwell @ 2.1GHz. We train LeNet5
[34], ResNet18 [35], and VGG16 [36] on the CIFAR-10
dataset [37]. Our learning system is implemented with the
distributed package (i.e., torch.distributed) in PyTorch.

We train the three ML models with the cross-entropy loss
and the stochastic gradient descent (SGD) optimizer. The
learning rate is set to 0.1. We set a global batch size B = 256
as the required number of data samples to be processed in
each training round.

We compare the performance of DOLBIE with that of the
following benchmarks:
• Equal assignment (EQU) : Each worker processes data

of batch size B
N in each round. This is frequently assumed

in the analysis of distributed training.
• Online Gradient Descent (OGD) [38]: The batch

size is updated with gradient descent, i.e., xt+1 ←
πF (xt − βg̃t), where β is the learning rate, g̃t is the
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Fig. 4: Per-round latency with 95% CI.

gradient or a subgradient of ft(xt) when the gradient
does not exist, and πF (·) denotes the Euclidean projec-
tion onto the feasible set F of problem (1), which is
implemented using the method in [39].

• Adaptive Batch Size (ABS) [3]: The batch size is
updated proportionally to the training time over the
previous P training rounds on each worker, where P is
a predefined tuning period.

• Load-Balanced Bulk Synchronous Parallel (LB-BSP)
[6]: If the fastest worker in the previous round preceded
the straggler for consecutive D rounds, the workload of
the straggler in the previous training round is reduced by
∆. The same amount of work ∆ is additionally assigned
to the fastest worker.

• Dynamic Optimum (OPT): We assume a priori knowl-
edge of all system variables, and we solve the instanta-
neous optimization problem in each round. This is also
the comparator in the definition of dynamic regret. We
note that OPT cannot be implemented in reality due to
the lack of future information.

All algorithms are initialized with batch size B/N . The step
size β of OGD and the initial step size α1 of DOLBIE are
both set to 0.001. We set ∆ = 5 and P = D = 5, which
are the same as in [3] and [6]. Our experiments are run over
the actual processing speed and the parameter transfer time
among processors in each round.

Fig. 3 shows one realization of the per-round latency
when training ResNet18 on CIFAR-10. Figs. 4 and 5 show
the performance of various algorithms, with 95% confidence
intervals (CI), over 100 realizations of processor sampling. We
observe that EQU incurs the worst latency and ABS shows a
radical fluctuation. The performance of ABS and LB-BSP is
affected by the design of the window sizes P and D, resulting
in a step-down decrease in latency. The other three methods,
OGD, LB-BSP, and DOLBIE, adjust the workload partition by
identifying the straggler. However, OGD and LB-BSP require
many more rounds than DOLBIE. Because the update in OGD
and LB-BSP occurs only at the fastest and slowest workers
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Fig. 6: Training accuracy of LeNet5.

and the amount of the update in LB-BSP does not account for
system heterogeneity and dynamics. In contrast, in DOLBIE,
all non-straggling workers participate in assisting the straggler
such that the global latency can be reduced sharply. As shown
in Fig. 3, by round 40, DOLBIE has reduced the per-round
latency by 89.6%, 82.2%, 67.4%, and 47.6%, respectively,
when compared with EQU, OGD, LB-BSP, and ABS.

Figs. 6–8 show the training accuracy of LeNet5, ResNet18,
and VGG16 versus the wall-clock time for 100 epochs, respec-
tively. When training ResNet18 for 95% training accuracy,
DOLBIE speeds up the training time by 78.1%, 67.4%,
46.9%, and 34.1%, respectively, when compared with EQU,
OGD, LB-BSP, and ABS. The performance advantages of
DOLBIE become more substantial as we go from LeNet5 to
ResNet18 and then VGG16, i.e., as both the computational
cost and the number of model parameters increase, which
inevitably amplifies the system heterogeneity. With DOLBIE,
each worker dynamically adjusts its workload based on the
historical latency differences with the straggler workers. For
95% training accuracy, the performance advantage of DOLBIE
over LB-BSP increases from 27.6% to 83.2%, when the ML
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task is changed from LeNet5 to VGG16.
We further investigate the performance of the individual

workers under various load balancing algorithms and elaborate
on the actions taken by these algorithms. Each subfigure
in Figs. 9 and 10 shows the per-round training time and
the corresponding batch size assigned to the workers, with
the most powerful GPUs in green, Cascade Lake in orange
and the straggler Broadwell in red. Overall, all load balanc-
ing algorithms reduce the global latency by assigning more
workload to the non-stragglers and reducing the stragglers’
workload. In EQU, each worker processes the same amount
of data samples in each round and thus the per-round training
latency is dominated by the same type of slow processors. In
OPT, all workers incur similar latency at the optimum. The
radical fluctuation of ABS is affected by its update window
P and the proportional scaling in ABS overlooks the system
heterogeneity that is independent of the batch size, i.e., the
communication component in the training latency. OGD, LB-
BSP, and DOLBIE all tune the batch size to achieve similar
latency among the workers and track the system dynamics, but
the lines representing different workers converge much more
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quickly in DOLBIE. The non-stragglers in OGD and LB-BSP
are passively updated without consideration for these workers’
own local cost functions, while DOLBIE jointly considers the
processing and communication heterogeneity as well as the
system dynamics based on historical feedback.

Fig. 11 shows the utilization averaged over all workers in
100 rounds. Besides the quality of solutions, another impor-
tant criterion of online algorithms is the speed of decision-
making. The upper figure decomposes the training latency
into computation time, communication time, and waiting time.
The lower figure shows the statistics of the overhead intro-
duced by the load balancing algorithms. Each data point is
obtained from 100 realizations. As expected, OPT provides
the optimal solution where the training latency of the workers
reaches equilibrium, and hence all workers are always busy
with negligible waiting time. However, the algorithm run
time of OPT and OGD ranks high since they either solve
an instantaneous optimization problem or require gradient
and projection calculation. In comparison, DOLBIE improves
worker utilization leading to a significantly reduced waiting
time. With DOLBIE, the average idle time among the workers
in 100 epochs is reduced by 84.6%, 71.1%, 67.2%, and 42.8%,
respectively when compared with EQU, OGD, LB-BSP, and
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ABS. Overall, DOLBIE is efficient by jointly considering
system heterogeneity and system dynamics. It is also light-
weighted due to its gradient- and projection-free distributed
computing.

VII. CONCLUSION

We have proposed a new distributed online algorithm termed
DOLBIE to solve the problem of dynamic load balancing
in a multi-worker system with coupling linear constraints.
DOLBIE has high computation efficiency without gradient
or projection calculation. We have analyzed the dynamic
regret of DOLBIE. When DOBIE is applied to online batch
size tuning in distributed ML, our experimental results show
that it outperforms state-of-the-art OGD, ABS, and LB-BSP
algorithms in terms of significantly reduced training time.
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