
Single Restart with Time Stamps for Computational

Offloading in a Semi-Online Setting

Jaya Prakash Champati and Ben Liang

Department of Electrical and Computer Engineering, University of Toronto

{champati,liang}@comm.utoronto.ca

Abstract—We study the problem of scheduling n tasks on
m + m

′ parallel processors, where the processing times on
m processors are known while those on the remaining m

′

processors are not known a priori. This semi-online model is
an abstraction of certain heterogeneous computing systems, e.g.,
with the m known processors representing local CPU cores
and the unknown processors representing remote servers with
uncertain availability of computing cycles. Our objective is to
minimize the makespan of all tasks. We initially focus on the
case m

′ = 1 and propose a semi-online algorithm termed Single
Restart with Time Stamps (SRTS), which has time complexity
O(n log n). We derive its competitive ratio in comparison with
the optimal offline solution. If the unknown processing times
are deterministic, the competitive ratio of SRTS is shown to be
either always constant or asymptotically constant in practice,
respectively in cases where the processing times are independent
and dependent on m. A similar result is obtained when the
unknown processing times are random. Furthermore, extending
the ideas of SRTS, we propose a heuristic algorithm termed
SRTS-Multiple (SRTS-M) for the case m

′
> 1. Besides the

proven competitive ratios, simulation results further suggest that
SRTS and SRTS-M give superior performance on average over
randomly generated task processing times, substantially reducing
the makespan over the best known alternatives. Interestingly, the
performance gain is more significant for task processing times
sampled from heavy-tailed distributions.

I. INTRODUCTION

The problem of parallel task processing on multiple pro-

cessors has wide-ranging applications in information systems.

It is essential to contemporary computing and networking

applications, due to the prevalence of multi-core CPUs and

the availability of auxiliary resources for computational of-

floading. Existing studies in parallel task processing can be

categorized into three types: offline, where the processing

times of all tasks on all processors are known a priori; online,

where no processing time is known until after a task has been

processed [1]; and semi-online, where some processing time

information is known. Scheduling decisions proposed in the

research literature generally aim to minimize the makespan

of the given tasks, system cost in task processing, or a

combination of both. Most of such optimization problems

are known to be NP-hard and only approximate solutions are

available.

In this work, we study the problem of scheduling computing

tasks on m + m′ parallel processors, where m processors

(known processors) are identical and the task processing times

This work has been supported in part by grants from the Natural Sciences
and Engineering Research Council (NSERC) of Canada.

on them are known a priori, and the task processing times

on the remaining m′ processors (unknown processors) are

unknown before the tasks are processed. Under this semi-

online setting, we are interested in finding a schedule that

minimizes the makespan of n tasks.

The above semi-online scheduling model can be viewed as

an abstraction for several important practical systems. The m
processors may model parallel CPU cores in a local device

(e.g. smartphone, tablet, etc.) or processors in a local comput-

ing cluster. The unknown processors may represent computa-

tional servers whose help is enlisted by the local device or

the local cluster. In particular, in mobile cloud computing sys-

tems, the unknown processors may be shared virtual machine

instances in a public cloud [2] [3]; in Mobile Edge Computing

(MEC), they may be MEC hosts deployed by a cellular base

station [4] [5]; and in cyber foraging/opportunistic computing,

they may be neighboring mobile devices or cloudlets where

the local device offloads its computational tasks [6]–[10].

The scenario of not knowing the processing times on the

remote processors arises due to various factors. For example,

an MEC host is shared between network service tasks and

the offloaded user tasks from the subscribing mobile devices.

Thus, only a fraction of the MEC host’s CPU cycles may

be allocated to the mobile user. Similarly, in opportunistic

computing, a neighboring mobile device may not dedicate

all of its CPU cycles to the offloaded tasks. Furthermore,

there can be uncertain delays associated with offloading and

processing the offloaded tasks. The insights developed from

our theoretical model can be used to improve computational

offloading in these systems.

Most of the previous studies on parallel processing have

focused on either the offline or the fully online scenarios.

Offline algorithms are clearly not applicable to our problem.

Furthermore, even in the simplest offline setting, makespan

minimization is known to be NP-hard [11]. On the other hand,

if we ignore the partial knowledge of processing times in our

problem, we may use existing online algorithms. In the online

setting, if all processors are identical, the well-known List

Scheduling (LS) algorithm has
(

2− 1
m+m′

)

competitive ratio

[12]. However, in our case, the unknown processors are not

identical to the known ones. In fact, as shown in Section IV-A,

LS has infinite competitive ratio for our problem. For online

scheduling with non-identical processors, Shmoys et. al. has

proposed an iterative algorithm that achieves O(log n) compet-

itive ratio [13]. This algorithm can be applied to our problem.

However, as shown in [14] and in Section VII, Shmoys’

algorithm does not perform well on average.

Therefore, our objective is to develop a semi-online algo-

rithm that effectively utilizes both the known and unknown

processors, to provide both a provable competitive ratio and

satisfactory average performance. Instead of deterministic

scheduling such as LS, we use the approach of task restarts

similar to [13], where a task scheduled on a processor may be

cancelled and re-scheduled possibly on a different processor.

Unlike [13], we observe that only one round of restarts is

sufficient for our problem. This is similar in design principle to

[14], but as explained in Section II, the problem we consider,

the proposed algorithm, and the competitive ratio analysis are

substantially different from those in [14].

The main contributions of this work are as follows:

• We first show a negative result, that any semi-online

algorithm with a pre-determined scheduling order has

infinite competitive ratio. This motivates the need for a

more effective dynamic scheduling algorithm.

• We first focus on the important case of m′ = 1, which

represents, e.g., the case of mobile cloud computing with

m local CPU cores and a more powerful remote cloud

server. We propose an efficient Single Restart with Time

Stamps (SRTS) algorithm, which has time complexity

O(n log n). We derive its competitive ratio in comparison

with the optimal offline solution. If the unknown process-

ing times are deterministic, the competitive ratio of SRTS

is shown to be always constant when the processing times

are independent of m, and asymptotically constant in

practice when the processing times are dependent on m.

We obtain a similar result when the unknown processing

times are random.

• Extending the ideas of SRTS, we further propose a

heuristic algorithm SRTS-Multiple (SRTS-M), for the

case where there are multiple unknown processors, which

also has O(n log n) time complexity.

• To evaluate the average performance of SRTS and SRTS-

M, we show using simulation that they provide substantial

gains in reducing the makespan over the best known

alternatives, for task processing times generated from

typical distributions. We further observe that the gains

are much more significant for heavy-tailed distributions.

The rest of this paper is organized as follows. In Section II,

we present the related work. The system model is given in

Section III. The SRTS algorithm is presented in Section IV,

and its competitive ratio is derived in Section V. In Section VI

we present the SRTS-M algorithm for the case of multiple

unknown processors. We discuss simulation results in Sec-

tion VII and conclude in Section VIII.

II. RELATED WORK

Scheduling independent tasks on parallel processors is a

well-studied problem in theoretical computer science, particu-

larly from the perspective of approximation algorithms. In the

following we present relevant works from the literature under

offline, online, and semi-online settings.

A. Offline and Online Scheduling on Parallel Processors

Even in the simplest offline setting, where the processors

are identical, i.e., for each task the processing times are the

same on all processors, the problem is NP-hard [11]. The

classical Longest Processing Time (LPT) algorithm forms a

list of the tasks in the descending order of their processing

times and schedules the next task from the list on whichever

processor that becomes idle first. For m+m′ identical proces-

sors, LPT provides
(

4
3 − 1

3(m+m′)

)

-approximation [15]. Other

algorithms with various time complexity and approximation

ratios are also available in the literature [16], [17]. For the case

of non-identical processors, a 2-approximation algorithm was

proposed in [18], [19]. Since in our problem the processing

times on one processor are not known a priori, none of the

above works are applicable.

In the online setting, LS lists the tasks in an arbitrary

order and schedules the next task on whichever processor

that becomes idle first. It provides a
(

2− 1
m+m′

)

competitive

ratio for scheduling on m +m′ identical processors. LS can

be applied to solve our problem, by ignoring the known

processing times. However, we will show later that, due to

the non-identical processing times among the processors in

our problem, a family of deterministic algorithms that include

LS has infinite competitive ratio.

Shmoys et. al. in [13] considered the general problem

of online scheduling of independent tasks on non-identical

processors. Using an approach involving multiple rounds of

task restarts, they proposed an O(log n)-competitive online

algorithm. Similarly to LS, Shmoys’ algorithm can be applied

to our problem by simply ignoring the known processing

times. However, it has been shown in [14] that the average

performance of Shmoys’ algorithm can suffer due to the

multiple rounds of task restarts. We will show in Section VII

that even a semi-online improvement of this algorithm can give

substantially worse average performance than the proposed

SRTS algorithm. Furthermore, by judiciously utilizing the

known processing times, SRTS achieves a competitive ratio

that is independent of n.

B. Semi-online Scheduling on Parallel Processors

Studies under semi-online settings are comparatively scarce.

Even the definition of semi-online scheduling is not unified. In

[20]–[22], it refers to the case where only the total processing

time of the tasks on each processor is known. In [23], it refers

to the case where the processing time of a task is unknown

but its communication delay is known. Furthermore, all of

these works focus on the special case of identical or uniform

processors, so they are not applicable to our problem.

To the best of our knowledge, the semi-online setting most

similar to ours is in [14], which may be viewed as having

one processor with known processing times (which actually

was used to model some fixed usage cost in [14]) and m
identical processors with unknown processing times. However,

the Greedy-One-Restart (GOR) algorithm proposed in [14]

cannot be applied to our problem. While GOR schedules

tasks on the m unknown identical processors using estimated

processing times based on the single known processor, SRTS

schedules tasks on the m known processors directly using the

known processing times. Furthermore, the estimation of the

unknown processing times for task restarting requires different

methods. It depends on m in GOR, while in SRTS the known

processing times are directly used as the estimate. Notably, as

a result of these differences, the competitive ratio of SRTS is

constant under general conditions, in contrast to O(
√
m) for

GOR. Furthermore, we consider the case of multiple unknown

processors that are non-identical in the SRTS-M algorithm.

C. Other Related Works

In mobile cloud computing systems [2], [3], where a mobile

device enlists the help of a remote processor in a remote

cloud, most current research on task offloading is focused

on the objective of minimizing energy, e.g., [24]–[26]. In

addition, several empirical studies have been conducted on task

offloading from a mobile device to remote servers [6]–[10].

Furthermore, the hybrid cloud computing architecture, where

tasks are offloaded from a local cluster/cloud to a public cloud,

has been considered in [27]–[29]. However, all of these works

have system models different from ours, and none of them

considers makespan as their design objective. In this work,

our focus is to provide a general semi-online solution to the

problem of makespan minimization in parallel task scheduling,

which may be applied to cloud computing and other practical

computing and networked systems.

III. SYSTEM MODEL

For clarity of presentation, we initially focus on a het-

erogeneous system comprised of m identical “known” (or

“local”) parallel processors indexed by i ∈ Q = {1, . . . ,m}
and a single “unknown” (or “remote”) processor indexed

by i = m + 1. In this work we use the terms “remote

processor” and “unknown processor” interchangeably. Given

n tasks, indexed by j ∈ T = {1, . . . , n}, our objective is

to minimize the makespan to process them. The tasks are

assumed independent and non-preemptive. Even though we

initially consider a single unknown processor and propose

SRTS, later in Section VI we consider the case of m′ > 1
unknown processors, for which we propose SRTS-M.

The processing time of task j on processors in Q is denoted

by aj and is assumed to be known a priori. This may be

obtained, for example, by checking the number of instructions

per task and the processor speed. The processing time of task

j on processor m+ 1 is denoted by uj and is assumed to be

unknown until the task has been executed to completion. This

may arise in many scenarios of practical interest. For example,

a remote server may be shared and only a fraction of the CPU

cycles are allocated to the offloaded tasks. In scenarios where

the remote server is dedicated to the offloaded tasks, there

may be other uncertain delays in offloading and processing

the tasks. We do not assume any relation between uj and

aj , but it is important to note that our results can serve as a

benchmark to evaluate the performance of algorithms that do

consider the relation between uj and aj .

Note that even though uj is unknown, it may be determin-

istic, i.e., it remains the same independent of when task j
is processed. For example, this may model the case where

the remote CPU cycles allocated to the tasks do not change

frequently. However, uj may also be random, i.e., it depends

on when task j is processed. As shown in Section V, this

distinction is important in performance analysis, since the

proposed SRTS algorithm may cancel and then restart a task

at a different time. In this work, we consider both cases.

Let s denote a schedule and S denote the set of all possible

schedules. The schedule s decides the placement of a task

on one of the local processors Q and the remote processor

m + 1. Given the set of tasks at time 0, the makespan of

a schedule s, denoted by Cmax(s), is defined as the time

when the processing of the last task is completed. It equals

maxi{Ci(s)}, where Ci(s) is the completion time of the last

task assigned to processor i. We are interested in the following

makespan minimization problem P :

minimize
s∈S

Cmax(s).

From Section II, we see that even for the offline version of P ,

where all parameter values of the tasks are known at time zero,

the problem is NP-hard [11]. We are interested in the more

complicated semi-online setting, where uj are not known a

priori.

The efficacy of an online algorithm is often measured by

its competitive ratio in comparison with an optimal offline al-

gorithm. We use the same measure for semi-online algorithms

as well. Let {P, {uj}} be a problem instance of P , where

P = {m,n, {aj}}. Let s(P, {uj}) be the schedule given

by a semi-online algorithm and s
∗(P, {uj}) be the schedule

given by an optimal offline algorithm. If uj are deterministic,

then the problem instance {P, {uj}} is a set of constants and

an optimal offline algorithm outputs the minimum makespan

Cmax(s
∗(P, {uj})). In this case the semi-online algorithm is

said to have a competitive ratio θ if

max
∀{P,{uj}}

Cmax(s(P, {uj}))
Cmax(s∗(P, {uj}))

≤ θ. (1)

For the case where uj are random, we redefine the competitive

ratio θ as

max
∀P

E[Cmax(s(P, {uj}))]
E[Cmax(s∗(P, {uj}))]

≤ θ, (2)

where the expectations are taken over the randomness in {uj}.

We note that, in the rest of this paper, we implicitly assume

that a processor executes one task at a time. However, this

is without loss of generality, since sharing the cycles of the

processor by those tasks would result in the same completion

time.

IV. SINGLE RESTART WITH TIME STAMPS (SRTS)

In this section we focus on the important case of m′ = 1.

We first present our design consideration for SRTS, then de-

scribe the algorithm details, and finally present an illustrative

example to explain the working of SRTS.

A. Design Considerations

In this subsection we explain the failure of some existing

algorithms for our problem and derive insights into the design

of SRTS.

1) Failure of algorithms with pre-determined scheduling

order: We note that the celebrated LS algorithm can be used to

solve P as it does not require the processing times of the tasks

on any processor. Also, one can extend the LPT algorithm

to solve P by sorting tasks based on the known aj values.

In the rest of this paper we term this algorithm Semi-Online

LPT (SO-LPT). Both LS and SO-LPT belong to the family of

algorithms with a pre-determined scheduling order, which is

formally defined as algorithms that rank the tasks according

to some rule and then schedule them one after another in that

fixed order. In the following, we study the performance of

these algorithm.

In Section II, we have noted that when all processors

are identical, LS has a constant competitive ratio. Also, if

all processors are identical and the processing times of the

tasks are known, then LPT has 4
3 approximation ratio [15].

Since our problem model has m known identical processors

with only one unknown processor, one may expect that there

exists some deterministic scheduling algorithm that gives a

low competitive ratio. However, in the following theorem,

we observe that the family of all algorithms with a per-

determined scheduling order are highly ineffective in the worst

case. Therefore, we need a more flexible dynamic scheduling

approach in our design of SRTS.

Theorem 1. Any algorithm with pre-determined scheduling

order has infinite competitive ratio with respect to P .

Proof. The proof is given in [30].

2) Inefficiency of multiple rounds of restarts: In Sec-

tion II, we have noted that Shmoys’ online algorithm is

the only existing algorithm that can be applied to solve P
with a provable competitive ratio. Shmoys’ algorithm initially

estimates the unknown processing times of the tasks and then

uses any ρ-approximation offline algorithm to schedule them.

Tasks that are not completed within the estimated time are

cancelled and rescheduled using an increased estimate for the

unknown processing times and the same offline algorithm.

The procedure is repeated until all tasks are completed. This

algorithm has (4ρ logn+4ρ log 2ρ+1) competitive ratio [13].

However, its average performance may be unsatisfactory [14],

and its competitive ratio still depends on n.

One might consider improving Shmoys’ algorithm to a

semi-online version to solve P , by incorporating the informa-

tion about known processing times aj . We term this improved

version Semi-Online Shmoys (SO-Shmoys) in the rest of this

paper. In SO-Shmoys, we use aj as the initial estimate of the

unknown processing time uj , and LPT as the offline compo-

nent algorithm. For each iteration, the estimated processing

time is doubled. In iteration k, since LPT is applied to an

offline problem where the processing time of a task is aj on

the first m processors and 2kaj on processor (m+1), it yields

2 approximation [31] for all k. Thus, overall SO-Shmoys

remains O(log n)-competitive, and its average performance is

improved. However, as shown in Section VII, we observe that

SO-Shmoys does not perform better than SO-LPT in terms

of average performance. This is due to the multiple rounds

of task restarts, each penalizing the makespan, since the time

already spent on processing a cancelled task is wasted.

Therefore, in SRTS we use only a single round of task

restarts. Cancelling a task with large uj on processor m + 1
may allow some tasks that have smaller uj values to be

scheduled on that processor. At the same time, we avoid the

wastage of time in cancelling a task more than once. As shown

in Sections V and VII, our new design achieves both a small

competitive ratio and superior average performance. A detailed

description of SRTS is given below.

B. SRTS Algorithm Description

SRTS is comprised of two iterations. In the initial iteration,

it first uses aj as the estimate for the processing time of task j
on the unknown processor m+1. It forms a list according to

the ascending order of aj . When processor m+1 becomes idle,

it schedules the next available task from the end of the list. If

the task is not completed within duration aj , it cancels the task

and sets it aside. Whenever a processor in the known processor

set Q becomes idle, it schedules the next available task from

the start of the list. We note that the above scheduling order

of tasks is advantageous for tasks that incur large aj and small

uj values.

After going through all tasks in the first iteration above,

those tasks that are cancelled are again sorted, and a list is

formed in the ascending order of aj . In the second iteration,

this list is scheduled using the same procedure as above, but

this time we do not cancel a task, unless it is simultaneously

scheduled on two processors. Note that in both iterations some

tasks may be scheduled on both processor m + 1 and some

processor in Q. In such a case we cancel the task on one

processor if it is either completed or cancelled on another

processor first.

SRTS can be readily implemented in practice by a scheduler

in a local device or a local cluster. For example, this can

be achieved by assigning time stamps to the tasks that are

offloaded. A remote processor looks at the time stamp of a

task to determine when to discard it. The scheduler at the local

processor decides to restart an offloaded task if it does not

receive an acknowledgement or the output of the task within

the duration specified by time stamp.

The details of the algorithm are presented in Algorithm 1,

where l = 1 or 2 indicates the iteration number. We note that

SRTS runs in O(n logn) time due to the need for sorting n
tasks. We use s

SRTS to denote the resultant schedule.

C. Illustrative Example

In the following, we explain the working of SRTS using

the following family of problem instances: u1 = α > 1,

Algorithm 1: Single Restart with Time Stamps (SRTS)

1: T (1) = T
2: for l = 1 to 2 do

3: Sort T (l) in the ascending order of aj . WLOG,

re-index tasks such that a1 ≤ a2 ≤ . . . ≤ a|T (l)|.

4: j1 = |T (l)|, j0 = 0
5: Start processing task j1 on processor m+ 1
6: if l = 1 then

7: Cancel task j1 if its execution time

exceeds aj1 and include it in T (l+1)

8: end if

9: for k = 1 to min{m, |T (l)|} do

10: j0 = j0 + 1
11: Start processing task j0 on processor k.

12: end for

13: while T (l) 6= ∅ do

14: Wait until next event E occurs

15: if E = a processor î ∈ Q becomes idle then

16: Let task j be the last task completed on î
17: Cancel task j if it is scheduled on processor

m+ 1
18: T (l) = T (l)\{j}
19: j0 = j0 + 1
20: If task j0 is not completed or cancelled yet,

schedule it on processor î
21: else if E = processor m+ 1 becomes idle then

22: Cancel task j1 if it is scheduled on some

processor from Q
23: T (l) = T (l)\{j1}
24: j1 = j1 − 1
25: If task j1 is not completed yet, schedule it on

processor m+ 1
26: if l = 1 then

27: Cancel task j1 if its execution time exceeds

aj1 and include it in T (l+1)

28: end if

29: end if

30: end while

31: end for

uj = 1, ∀j ∈ {2, . . . , n}, and aj = 1, ∀j. For simplicity of

illustration, we further assume that n is a multiple of m+ 1.

Since aj = 1, ∀j, SRTS do not differentiate the tasks. Let us

consider the worst case scenario, where task 1 is scheduled

on processor m + 1 in the first iteration of SRTS. Note that

in the first iteration of SRTS, any task scheduled on processor

m + 1 is processed for a duration of min{aj , uj}, which is

equal to 1 for all tasks. Therefore, task 1 will be cancelled

after a duration of 1. At the end of the first iteration, n− n
m+1

tasks will be completed on the processors in Q and n
m+1 − 1

of them will be completed on processor m + 1, with task 1
being cancelled. Then, in the second iteration of SRTS, task

1 will be completed on some processor in Q.

In the first iteration, the n − n
m+1 tasks on the processors

in Q require a duration of 1
m

(

n− n
m+1

)

= n
m+1 on each

processor. On processor m+1, the duration is also n
m+1 . The

duration of the second iteration is 1. Therefore, the makespan

of SRTS for these problem instances is n
m+1 + 1, which is

independent of the unknown processing time α. Note that,

since the processing time of any task on any processor is

at least 1, the offline optimal makespan cannot be less than

n/(m+ 1). This example illustrates that, by restarting a task

that has larger uj value, SRTS can effectively limit the impact

of that task on the makespan.

V. COMPETITIVE RATIO ANALYSIS

In this section, we first consider the case of deterministic uj

and derive a competitive ratio θ for SRTS. Then, we extend

the result to the case of random uj , showing that the same

competitive ratio θ holds with only minor modification.

A. Deterministic uj

In each iteration l of Algorithm 1, where l = 1 or 2, we

consider the following intermediate outcome of SRTS that will

be used extensively in our analysis and proofs. Let sl denote

the intermediate schedule in iteration l obtained by breaking

the loop in Line 13 of Algorithm 1 as soon as j0 becomes

equal to j1. We note that sl is a schedule over the set T (l),

and all the tasks from T (l) will be scheduled at least once

under sl. To understand this, in the while loop from Line 13 of

Algorithm 1, when j0 = j1−1, all the |T (l)| tasks should have

been scheduled on some processor. Now, any more iterations

in the while loop will only result in scheduling a task that is

already scheduled on processor m+1 onto some processor in

Q, or vice-versa. Since under sl the while loop breaks when

j0 = j1, there will be only one task that is scheduled on both

processor m + 1 and some processor in Q. This will be the

last task scheduled by sl in iteration l, and we denote it by

q(l) = j0 = j1.

We refer to the time to process the set of tasks T (l) in itera-

tion l as the schedule length of this iteration, denoted by C
(l)
max.

In the rest of this paper, to differentiate the terms with respect

to s
SRTS and sl, we append onto them the labels of (sSRTS)

and (sl), respectively. We note that in iteration l, the schedule

produced by s
SRTS improves on sl. To see this, observe that sl

stops scheduling when j0 = j1. The step j0 = j1 also occurs

under s
SRTS in both iterations. However, sSRTS may not stop

at this step. If processor m + 1 is faster and completes task

q(l) − k first, where k ∈ {0, 1, . . . ,min{q(l),m} − 1}, then

s
SRTS schedules task q(l) − k − 1, if it is not completed yet,

onto processor m+1. This will result in a schedule length no

longer than that given by sl, i.e., C
(l)
max(sSRTS) ≤ C

(l)
max(sl).

Note that, in the analysis and proofs that follow, we do not

explicitly mention problem instance {P, {uj}}, as the results

are valid over all possible problem instances. Also, we simply

use s∗ to denote an optimal offline schedule and C∗
max to denote

the offline optimal makespan.

In Lemma 1, using load balancing arguments we establish

a relation between C
(l)
max(sl) and the known processing times

aj .

Lemma 1.

mC(l)
max(sl) ≤

∑

j∈T (l)

aj + (m− 1)aq(l) ,

where task q(l) is the last task scheduled, in iteration l, under

schedule sl.

Proof. The proof is given in Appendix A.

In the first iteration of SRTS, task j scheduled on processor

m + 1 is processed for duration min{uj, aj}, since it is

cancelled if its processing duration exceeds aj . We use this

fact and Lemma 1 to derive an upper bound for C
(1)
max(sSRTS),

which is given in Lemma 2.

Lemma 2.

C(1)
max(s

SRTS) ≤ min

{

2 +
βmax − 2

m+ 1
,m+ 1

}

C∗
max,

where βmax = maxj
aj

uj
.

Proof. Due to space limitation, the proof is given in [30].

A task j scheduled in the second iteration has the property

uj > aj . Using this fact along with Lemma 1, we arrive at

Lemma 3.

Lemma 3. C
(2)
max(sSRTS) ≤ 2C∗

max

Proof. Due to space limitation, the proof is given in [30].

Noting that Cmax(s
SRTS) = C

(1)
max(sSRTS) + C

(2)
max(sSRTS), the

following theorem immediately follows from Lemmas 2 and 3:

Theorem 2. For deterministic uj , SRTS is θ-competitive for

P , where

θ = min

{

4 +
βmax − 2

m+ 1
,m+ 3

}

. (3)

From Theorem 2 it can be observed that SRTS yields a

competitive ratio with some interesting features. First, unlike

in the case of SO-Shmoys, θ is independent of n. This is

important, since the number of tasks in common applications

such as cloud computing can be large.

Second, if βmax is independent of m, then a simple upper

bound for θ in terms of βmax can be obtained by solving for

m in the following equation:

4 +
βmax − 2

m+ 1
= m+ 3.

The solution is given by m =
√
βmax − 1. Substituting this

value in (3) and noting that m ≥ 1, we obtain

θ ≤
{

4, 0 < βmax < 2√
βmax − 1 + 3, βmax ≥ 2.

Therefore, in this case SRTS has constant competitive ratio

independent of m.

Third, consider the case where βmax is a function of m.

As an example, this may happen if we assume that the

capacity of the remote processor is always at a similar level

as the combined capacity of all m local processors. From

(3), we observe that as long as βmax is O(m), θ is O(1).
In other words, if the unknown processing speed is O(m)
times the processing speed of each known processor, SRTS has

asymptotically constant competitive ratio. Note that in most

practical parallel computing systems, the speed difference

between the unknown (e.g., cloud) processor and a known

(e.g., local) processor is not excessive. Therefore, in this case

we expect SRTS to have asymptotically constant competitive

ratio in general.

B. Worst Case Bound for Random uj

In the case of random uj , if a task is restarted on processor

m + 1 under SRTS, it acquires a different processing time.

Therefore, C∗
max and Cmax(s

SRTS) are not directly comparable.

Nevertheless, we may compare their expected values over the

random realizations of uj . Here, we observe that Theorem 2

can be generalized to the competitive ratio definition in (2).

Theorem 3. For random uj , SRTS has the following upper

bound for the expected makespan ratio:

E[Cmax(s(P, {uj}))]
E[Cmax(s∗(P, {uj})]

≤ min

{

4 +
maxj(

aj

νmin
)− 2

m+ 1
,m+ 3

}

,

where νmin > 0 is the minimum value in the sample space

from which uj are drawn.

Proof. The proof is given in [30].

VI. EXTENSION TO MULTIPLE UNKNOWN PROCESSORS

In this section, we consider the problem where multiple

remote processors with unknown processing times are avail-

able for offloading the computational tasks. We consider the

general case where the remote processors are non-identical and

index them by i ∈ Q′ = {m + 1, . . . ,m + m′}. Recall that

Shmoys’ algorithm can be applied to this case and is O(log n)-
competitive if the processing times are deterministic. However,

as noted before it has very poor average performance. Instead,

learning from the proven ideas of SRTS, we propose a heuristic

SRTS-Multiple (SRTS-M) algorithm to solve this problem.

Similar to SRTS, SRTS-M also has two iterations. The tasks

are listed in the ascending order of aj values. Without loss

of generality, consider a1 ≤ a2 ≤ . . . ≤ an. In the first

iteration of SRTS-M, whenever a local processor becomes

idle, it is given a task from the start of the list. Similarly,

whenever a remote processor becomes idle it is given a task

from the end of the list. A task j1 that is scheduled on a remote

processor is cancelled in the first iteration if its processing on

the remote processors exceeds the estimation time
∑n

j=j1
aj .

The rationale behind this choice of the estimation times is

the following. Consider a hypothetical powerful single remote

processor in place of the set of remote processors, and we use

SRTS to schedule the tasks. In this case, in the first iteration

of SRTS, the time that any offloaded task j1 is completed

or cancelled is upper bounded by
∑n

j=j1
aj . We note that

our choice of estimation time
∑n

j=j1
aj for any offloaded

task j1 in SRTS-M is greater than or equal to the estimation

time aj1 used in SRTS. This higher estimation time in SRTS-

M potentially avoids unnecessary restarts on multiple remote

processors.

The details of SRTS-M are presented in Algorithm 2.

Similarly to SRTS, SRTS-M runs in O(n logn) time and

can be readily implemented in practice by a local scheduler.

However, it is challenging to derive its competitive ratio,

because restarting an offloaded task on an unknown processor

does not reveal any information about its processing time

on another unknown processor, thereby making it difficult to

derive an upper bound expression for the makespan. Instead,

in Section VII, we show using simulation that it significantly

out performs the best existing alternatives.

VII. EVALUATION OF AVERAGE PERFORMANCE

In addition to the competitive ratios derived for SRTS in

Section V, we are interested in studying the average perfor-

mance of SRTS and SRTS-M over general parameter values.

Toward this end, we conduct simulation in MATLAB for eval-

uation and comparison with several well-known alternatives.

A. Single Remote Processor

We compare SRTS with LS, SO-LPT, and SO-Shmoys. In

addition, we also consider a Semi-Online Shortest Processing

Time (SO-SPT) algorithm, which is the same as SO-LPT

except that the known process times aj are listed in ascending

order. For Figures 1 and 2, aj and uj are generated indepen-

dently from an exponential distribution. We set the number of

tasks n = 1500. For each data point, we average the makespan

over 10, 000 runs, combining 100 realizations each for {aj}
and {uj}. In Figure 1, we set m = 10, E[aj] = 60, and

vary E[uj]. In Figure 2, we set E[aj] = 60, E[uj] = 6,

and vary m. We choose E[aj] larger than E[uj] to reflect

the practical scenario where the remote server is often faster

than the local processors. We observe that SRTS outperforms

all other algorithms. It provides a makespan reduction up to

30% compared with the best alternatives of SO-LPT and SO-

Shmoys.

Similar performance trends have been observed when we

use other distributions. In general, the performance advantage

of SRTS is more pronounced when the distribution of aj and

uj has a heavier tail. This is because a heavier tail implies

more chances for some extremely long processing times,

which can clog an unknown processor in algorithms with

deterministic scheduling order, such as LS and SO-LPT, and

lead to high inefficiency in algorithms with multiple restarts

and no simultaneous processing, such as SO-Shmoys. This

is illustrated in Figure 3, where we generate {aj} and {uj}
using the Pareto distribution. The Pareto scale parameters of

{aj} and {uj} are given by the Pareto tail index multiplied

by 60 and 6, respectively. We note that as the Pareto tail index

parameter increases, the heaviness of the tail decreases.

B. Multiple Remote Processors

In Figure 4, we compare the average performance of SRTS-

M with the alternate algorithms mentioned in Section VII-A.

Algorithm 2: SRTS-M

1: T (1) = T
2: for l = 1 to 2 do

3: Sort T (l) in the ascending order of aj . WLOG,

re-index tasks such that a1 ≤ a2 ≤ . . . ≤ a|T (l)|.

4: j1 = |T (l)|+ 1, j0 = 0
5: for k = m+ 1 to m+min{m′, |T (l)|} do

6: j1 = j1 − 1
7: Start processing task j1 on processor k
8: if l = 1 then

9: Cancel task j1 if its execution time

exceeds
∑n

j=j1
aj1 and include it in T (l+1)

10: end if

11: end for

12: for k = 1 to min{m, |T (l)|} do

13: j0 = j0 + 1
14: Start processing task j0 on processor k.

15: end for

16: while T (l) 6= ∅ do

17: Wait until next event E occurs

18: if E = a processor î ∈ Q becomes idle then

19: Let task j be the last task completed on î
20: Cancel task j if it is scheduled on some

processor from Q′

21: T (l) = T (l)\{j}
22: j0 = j0 + 1
23: If task j0 is not completed or cancelled yet,

schedule it on processor î
24: else if E =a processor î ∈ Q′ becomes idle then

25: Cancel task j1 if it is scheduled on some

processor from Q
26: T (l) = T (l)\{j1}
27: j1 = j1 − 1
28: If task j1 is not completed yet, schedule it on

processor î
29: if l = 1 then

30: Cancel task j1 if its execution time exceeds
∑n

j=j1
aj1 and include it in T (l+1)

31: end if

32: end if

33: end while

34: end for

The processing times aj and uj are generated independently

from exponential distributions. The default parameters are

m = 4, E[aj] = 60, and E[uj] = 60. We observe that SRTS-

M provides 20−30% reduction in the average makespan over

a wide range of m′ values.

For task processing times generated using heavy-tailed

distributions as in the previous section, we observe that SRTS-

M significantly reduces the makespan when compared with the

alternatives. This is illustrated in Figure 5. Finally, we note that

the performance of SO-Shmoys degrades significantly with

multiple unknown processors because of the multiple rounds

E[uj]
20 30 40 50 60 70 80 90 100

A
v
er
a
g
e
m
a
k
es
p
a
n

×10
4

0.6

0.8

1

1.2

1.4

1.6

1.8

2

LS
SO-SPT
SO-Shmoys
SO-LPT
SRTS

Fig. 1. Effect of varying E[uj]. Single remote processor.

m

5 10 15 20 25 30 35 40 45 50

A
v
er
a
g
e
m
a
k
es
p
a
n

1000

2000

3000

4000

5000

6000

7000

8000

9000

LS

SO-SPT

SO-Shmoys

SO-LPT

SRTS

Fig. 2. Effect of the number of local processors. Single remote processor.

of restarts on all the unknown processors.

VIII. CONCLUSION

We have proposed SRTS and SRTS-M algorithms for semi-

online scheduling of n tasks on m identical known processors

and one or multiple unknown processors, with an aim to reduce

the makespan of processing all tasks. If the unknown task

processing times are deterministic, the competitive ratio of

SRTS is shown to be always constant when the processing

times are independent of m, and asymptotically constant in

practice when the processing times are dependent on m. We

derive a similar result for the case where the unknown task

processing times are random. Furthermore, our simulation

results show that SRTS and SRTS-M provide substantial

performance improvement over existing alternatives in terms

of the average makespan, and the performance improvement

is more pronounced if the task processing times follow heavy-

tailed distributions.

IX. APPENDIX

A. Proof of Lemma 1

In iteration l, let C
(l)
i denote the schedule length, and T (l)

i

denote the set of tasks scheduled on processor i. We note

that, in the definition of T (l)
i , when a task is scheduled on

two processors simultaneously, it will be counted only on the

processor where it is completed or cancelled first. Recall that

under schedule sl, q
(l) is the last task scheduled on processor

m + 1 and some processor, say î, from Q. Let C
(l)
max(sl) =

Pareto tail index
0.5 1 1.5 2 2.5 3 3.5 4

A
v
er
a
g
e
m
a
k
es
p
a
n

10
4

10
5

10
6

10
7

10
8

10
9

10
10

10
11

LS

SO-SPT

SO-Shmoys

SO-LPT

SRTS

Fig. 3. Effect of the tail of distribution, for m = 4. Single remote processor.

m′

5 10 15 20 25 30 35 40 45 50

A
v
er
a
g
e
m
a
k
es
p
a
n

×10
4

0

0.5

1

1.5

2

2.5

LS

SO-SPT

SO-Shmoys

SO-LPT

SRTS-M

Fig. 4. Effect of the number of remote processors.

C
(l)

ī
(sl) for some processor ī ∈ Q∪{m+1}. Now, we consider

the following cases.

Case 1: ī = m+1. For this case, task q(l) is scheduled both

on processor m+1 and processor î, but completed or cancelled

first on processor m+1. Therefore, C
(l)
max(sl) should be smaller

than the sum of the processing times of tasks scheduled on

processor î plus aq(l) , i.e.,

C(l)
max(sl) ≤

∑

j∈T
(l)

î
(sl)

aj + aq(l) . (4)

Also, at time
∑

j∈T
(l)

î
(sl)

aj , all the processors in Q\{î}
should be busy executing some task, since otherwise the task

q(l) would have been scheduled on that processor which is

idle before this time. Therefore,

∑

j∈T
(l)

î
(sl)

aj ≤
∑

j∈T
(l)
i

(sl)

aj , ∀i ∈ Q\{î}

⇒ C(l)
max(sl) ≤

∑

j∈T
(l)
i

(sl)

aj + aq(l) , ∀i ∈ Q\{î}. (5)

In the second inequality above, we have used (4). Since

task q(l) is completed or cancelled first on processor m + 1,

q(l) ∈ T (l)
m+1(sl). Note that in Algorithm 1, the tasks are

listed in the ascending order of aj and then the tasks from

the start of the list are scheduled on processors in Q. This

implies ∪i∈QT (l)
i (sl) = {1, . . . , q(l)−1} ⊆ T (l). We use these

Pareto tail index
0.5 1 1.5 2 2.5 3 3.5 4

A
v
er
a
g
e
m
a
k
es
p
a
n

10
4

10
5

10
6

10
7

10
8

10
9

10
10

10
11

LS

SO-SPT

SO-Shmoys

SO-LPT

SRTS-M

Fig. 5. Effect of the tail of distribution, for m = 4, and m
′ = 4.

observations and summing (4) and (5) to obtain the intended

result.

Case 2: ī = î. The proof of this case is similar to Case 1

and is given in [30].

Case 3: ī /∈ {î, m + 1}. We claim that for this case

task q(l) is completed or cancelled first on processor m + 1.

Note that processors from Q are identical, and tasks are

sorted in the ascending order of aj and re-indexed such that

a1 ≤ a2 ≤ . . . ≤ aq(l) . This implies that task q(l) has

the largest processing time among the tasks scheduled on

processors in Q, and it has the latest starting time. If task

q(l) were completed on processor î, then C
(l)
max(sl) = C

(l)

î
(sl),

which would be a contradiction for this case since ī 6= î.
Now, completing task q(l) on processor î would have

increased the schedule length. Further, task q(l) is scheduled on

processor î because at the time when processor î becomes idle

and q(l) is the next task to be scheduled, all other processors

are busy executing some task. The above two observations

imply that scheduling and completing task q(l) on any of the

processors in Q would have increased the schedule length.

This results in similar inequalities as in Case 1, and using the

same manipulation we can obtain the intended result.

REFERENCES

[1] J. Sgall, Online Algorithms: The State of the Art. Berlin, Heidelberg:
Springer, 1998, ch. On-line scheduling, pp. 196–231.

[2] M. R. Rahimi, J. Ren, C. H. Liu, A. V. Vasilakos, and N. Venkatasub-
ramanian, “Mobile cloud computing: A survey, state of art and future
directions,” Mob. Netw. Appl., vol. 19, no. 2, pp. 133–143, 2014.

[3] K. Kumar, J. Liu, Y.-H. Lu, and B. Bhargava, “A survey of computation
offloading for mobile systems,” Mob. Netw. Appl., vol. 18, no. 1, pp.
129–140, Feb. 2013.

[4] Y. C. Hu, M. Patel, D. Sabella, N. Sprecher, and V. Young, “Mobile
edge computing - a key technology towards 5g,” European Telecommu-
nications Standards Institute (ETSI) White Paper, 2015.

[5] B. Liang, “Mobile edge computing,” in Key Technologies for 5G Wireless

Systems, V. W. S. Wong, R. Schober, D. W. K. Ng, and L.-C. Wang,
Eds. Cambridge University Press, 2017.

[6] M. Satyanarayanan, P. Bahl, R. Caceres, and N. Davies, “The case for
vm-based cloudlets in mobile computing,” IEEE Pervasive Computing,
vol. 8, no. 4, pp. 14–23, Oct. 2009.

[7] R. Balan, J. Flinn, M. Satyanarayanan, S. Sinnamohideen, and H.-
I. Yang, “The case for cyber foraging,” in Proceedings of the 10th

Workshop on ACM SIGOPS European Workshop, ser. EW 10. New
York, NY, USA: ACM, 2002, pp. 87–92.

[8] M. Conti and M. Kumar, “Opportunities in opportunistic computing,”
Computer, vol. 43, no. 1, pp. 42–50, Jan. 2010.

[9] C. Shi, V. Lakafosis, M. H. Ammar, and E. W. Zegura, “Serendipity:
Enabling remote computing among intermittently connected mobile
devices,” in Proceedings of the Thirteenth ACM International

Symposium on Mobile Ad Hoc Networking and Computing, ser.
MobiHoc ’12. New York, NY, USA: ACM, 2012, pp. 145–154.
[Online]. Available: http://doi.acm.org/10.1145/2248371.2248394

[10] M. Pitkänen, T. Kärkkäinen, J. Ott, M. Conti, A. Passarella, S. Gior-
dano, D. Puccinelli, F. Legendre, S. Trifunovic, K. Hummel, M. May,
N. Hegde, and T. Spyropoulos, “Scampi: Service platform for social
aware mobile and pervasive computing,” SIGCOMM Comput. Commun.

Rev., vol. 42, no. 4, pp. 503–508, Sep. 2012.
[11] M. Drozdowski, Scheduling for Parallel Processing. Springer Publish-

ing Company, 2009.
[12] R. L. Graham, “Bounds for certain multiprocessing anomalies,” Bell

System Technical Journal, vol. 45, pp. 1563–1541, 1966.
[13] D. B. Shmoys, J. Wein, and D. P. Williamson, “Scheduling parallel

machines on-line,” SIAM J. Comput., vol. 24, no. 6, pp. 1313–1331,
Dec. 1995.

[14] J. P. Champati and B. Liang, “One-restart algorithm for scheduling
and offloading in a hybrid cloud,” in Proc. IEEE/ACM International

Symposium on Quality of Service (IWQoS), Jun. 2015.
[15] R. L. Graham, “Bounds on multiprocessing timing anomalies,” SIAM

Journal on Applied Mathematics, vol. 17, pp. 416–429, 1969.
[16] R. L. Graham, E. L. Lawler, J. K. Lenstra, and A. H. G. Rin-

nooy Kan, “Optimization and approximation in deterministic sequencing
and scheduling: a survey,” Annals of discrete mathematics, vol. 5, no. 2,
pp. 287–326, 1979.

[17] D. P. Williamson and D. B. Shmoys, The Design of Approximation

Algorithms, 1st ed. New York, NY, USA: Cambridge University Press,
2011.

[18] C. N. Potts, “Analysis of a linear programming heuristic for scheduling
unrelated parallel machines,” Discrete Applied Mathematics, vol. 10,
no. 2, pp. 155–164, 1985.

[19] J. K. Lenstra, D. B. Shmoys, and E. Tardos, “Approximation algorithms
for scheduling unrelated parallel machines,” Math. Program., vol. 46,
no. 3, pp. 259–271, Feb. 1990.

[20] H. Kellerer, V. Kotov, M. G. Speranza, and Z. Tuza, “Semi on-line
algorithms for the partition problem,” Operations Research Letters,
vol. 21, no. 5, pp. 235 – 242, 1997.

[21] T. E. Cheng, H. Kellerer, and V. Kotov, “Semi-on-line multiprocessor
scheduling with given total processing time,” Theoretical Computer

Science, vol. 337, no. 13, pp. 134 – 146, 2005.
[22] S. Albers and M. Hellwig, “Semi-online scheduling revisited,” Theoret-

ical Computer Science, vol. 443, no. 0, pp. 1 – 9, 2012.
[23] J. P. Champati and B. Liang, “Semi-online algorithms for computational

task offloading with communication delay,” to appear in the IEEE

Transactions on Parallel and Distributed Systems.
[24] E. Cuervo, A. Balasubramanian, D.-k. Cho, A. Wolman, S. Saroiu,

R. Chandra, and P. Bahl, “Maui: making smartphones last longer
with code offload,” in Proc. ACM International Conference on Mobile

Systems, Applications, and Services (MobiSys), 2010, pp. 49–62.
[25] S. Kosta, A. Aucinas, P. Hui, R. Mortier, and X. Zhang, “Thinkair:

Dynamic resource allocation and parallel execution in the cloud for
mobile code offloading,” in Proc. IEEE INFOCOM, 2012, pp. 945–953.

[26] J. Champati and B. Liang, “Energy compensated cloud assistance in
mobile cloud computing,” in Proc. IEEE INFOCOM Workshop on

Mobile Cloud Computing, April 2014.
[27] M. Rahman, X. Li, and H. N. Palit, “Hybrid heuristic for scheduling

data analytics workflow applications in hybrid cloud environment,” in
Proc. IEEE IPDPS Workshops, 2011, pp. 966–974.

[28] X. Qiu, W. L. Yeow, C. Wu, and F. C. M. Lau, “Cost-minimizing
preemptive scheduling of mapreduce workloads on hybrid clouds,” in
Proc. IEEE IWQoS, 2013, pp. 213–219.

[29] M. Shifrin, R. Atar, and I. Cidon, “Optimal scheduling in the hybrid-
cloud,” in Proc. IFIP/IEEE International Symposium on Integrated

Network Management, 2013, pp. 51–59.
[30] J. P. Champati and B. Liang, “Single restart with time stamps

for computational offloading in a semi-online setting (technical
report),” 2017. [Online]. Available: http://www.comm.utoronto.ca/
%7eliang/publications/techreport/INFOCOM2017TechRepSRTS.pdf

[31] T. Gonzalez, O. H. Ibarra, and S. Sahni, “Bounds for LPT Schedules
on Uniform Processors,” SIAM Journal on Computing, vol. 6, no. 1, pp.
155–166, 1977.

